Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

SD如何部署

Answer

SD 的部署方式如下:

  1. 本地部署(Win 系统):
    • 系统要求:Win10 或 Win11。
    • 查看配置:
      • 查看电脑系统:在桌面上找到“我的电脑”,鼠标右键点击,点击“属性”,查看 Windows 规格。
      • 查看电脑配置:需要满足 3 个要求(推荐),电脑运行内存 8GB 以上,是英伟达(NVIDA)的显卡,显卡内存 4GB 以上。打开任务管理器(同时按下 ctrl+shift+esc),可查看电脑运行内存,8GB 运行内存可以勉强运行 SD,推荐 16GB 以上运行内存;查看电脑显卡内存(显存),4GB 显存可运行 SD,推荐 8GB 以上显存。
    • 配置达标跳转至对应安装教程页:1.Win 系统 SD 安装
    • 一键式安装:
      • 电脑配置能支持 SD 运行的朋友们,可使用 B 站秋叶分享的整合包。
      • 具体安装方法:
        • 打开链接 https://pan.baidu.com/s/1hY8CKbYRAj9RrFGmswdNiA?pwd=caru ,下载《1.整合包安装》,存放到电脑本地。
        • 打开保存到电脑里的文件夹。
        • 打开文件夹《1.秋叶整合包主包》,鼠标右击文件,点击“解压文件”。
        • 选择解压到 D 盘或者 E 盘,小心 C 盘被占满,点击确定。
        • 解压完成后,来到第二个文件夹,双击里面的文件,点击安装。
        • 打开刚刚解压保存的 SD 的根目录,找到启动器,鼠标右击启动器,点击“发送到”,桌面快捷方式。
        • 双击启动器,等待更新,接着点击左边第二个“高级选项”,在显存优化里,根据自己电脑的显存选择(就是上面查看的专用 GPU 内存),自己电脑是多少就选多少。
        • 回到第一个一键启动,点击右下角的一键启动。出现代码页面不用管,等一下就行了,SD 的主界面会自动在网页上弹出来。如果出现报错,可以回到最开始的界面,在左边点击“疑难解答”,再点击右边的“开始扫描”,最后点击“修复”按钮。
  2. 云端部署:
    • 部署流程:
      • 安装和配置基础环境:浏览器上按照腾讯云->控制台->云服务器的路径找到你刚才购买的实例,点击启动,就会新开一个远程访问的窗口,输入你购买时设置的密码,进入,这样你就有了一个远程的 Windows 系统环境,接下来安装显卡驱动、配置环境变量即可。
      • 安装显卡驱动:用内置的 IE(也可下载 Chrome),打开英伟达的网站,找到驱动下载,选择购买机器时选定的显卡型号、Windows 版本号,下载对应的驱动,然后安装上。
      • 配置环境变量:驱动安全完成后,开始配置环境变量。首先先找到你安装后驱动所在的目录,如果没有特殊设定的话,一般是在「C:\Program Files\NCIDIA Corporation」这里,复制这个路径,找到环境变量配置入口(控制面板->系统和安全->系统),选择「高级系统设置」,弹窗设置环境变量,找到「系统变量」里的 Path 环境变量,点击「编辑...」,然后「新建」,帮刚才复制的 nvidia 驱动安装地址粘贴进去,保存即可。

备选:SD 好难,先试试简单的无界 AI:图像类-无界 AI 使用教程

Content generated by AI large model, please carefully verify (powered by aily)

References

0. SD的安装

①系统需为Win10、Win11②Win系统查看配置③配置达标跳转至对应安装教程页[1.Win系统SD安装](https://qa3dhma45mc.feishu.cn/wiki/D5nawAs1fivF4ykx88ucRIYwn1d)④配置不够可选择云端部署(Mac也推荐云端部署)[3.SD云端部署](https://qa3dhma45mc.feishu.cn/wiki/A6WYw1Nm0ikGplkuO9Ecwomqnnd)⑤备选:SD好难,先试试简单的无界AI:[图像类-无界AI使用教程](https://qa3dhma45mc.feishu.cn/wiki/LRdOw75tQiN3wAkU43ucwb5Ondd)[heading2]Win系统查看配置[content]Win10和Win11一样没区别[heading3]查看电脑系统:[content]在桌面上找到“我的电脑”一鼠标右键点击一一点击"属性”一一查看Windows规格[heading3]查看电脑配置:[content]这里是检查自己的电脑配置能不能带动SD(Stable Diffusion)需要满足3个要求(推荐):电脑运行内存8GB以上是英伟达(NVIDA)的显卡显卡内存4GB以上①打开任务管理器:同时按下ctrl+shift+esc②查看电脑运行内存8GB运行内存可以勉强运行SD推荐16GB以上运行内存③查看电脑显卡内存(显存)4GB显存可运行SD,推荐8GB以上显存

2. SD云端部署

浏览器上按照腾讯云->控制台->云服务器的路径找到你刚才购买的实例点击启动,就会新开一个远程访问的窗口,输入你购买时设置的密码,进入,这样你就有了一个远程的Windows系统环境,接下来安装显卡驱动、配置环境变量即可。[heading3]3.1安装显卡驱动[content]用内置的IE(也可下载Chrome,就是个电脑可以随便造),打开英伟达的网站,找到驱动下载,选择购买机器时选定的显卡型号、Windows版本号,下载对应的驱动,然后安装上。[heading3]3.2配置环境变量[content]驱动安全完成后,开始配置环境变量。首先先找到你安装后驱动所在的目录,如果没有特殊设定的话,一般是在「C:\Program Files\NCIDIA Corporation」这里,复制这个路径,找到环境变量配置入口(控制面板->系统和安全->系统),选择「高级系统设置」,弹窗设置环境变量找到「系统变量」里的Path环境变量,点击「编辑...」然后「新建」,帮刚才复制的nvidia驱动安装地址粘贴进去,保存即可。

教程:超详细的Stable Diffusion教程

电脑配置能支持SD运行的朋友们,接下来我会手把手教你安装SD的本地部署这里我们用到的是B站秋叶分享的整合包小白直接下载整合包可以避免很多困难整合包点开链接就能下载保存啦链接:https://pan.baidu.com/s/1hY8CKbYRAj9RrFGmswdNiA?pwd=caru提取码:caru具体安装方法:①打开上面的链接,下载《1.整合包安装》,存放到电脑本地②打开保存到电脑里的文件夹③打开文件夹《1.秋叶整合包主包》——鼠标右击文件——点击“解压文件”④选择解压到D盘或者E盘,小心C盘被占满!!点击确定⑤解压完成后,来到第二个文件夹,双击里面的文件点击安装⑥打开刚刚解压保存的SD的根目录,找到启动器鼠标右击启动器——点击“发送到”——桌面快捷方式这样下次进入就可以直接在桌面双击进入,不用每次都到文件夹里面找啦!⑦双击启动器,等待更新接着点击左边第二个“高级选项”在显存优化里,根据自己电脑的显存选择(就是上面查看的专用GPU内存),自己电脑是多少就选多少⑧回到第一个一键启动,点击右下角的一键启动出现这个代码页面不用管,等一下就行了!SD的主界面会自动在网页上弹出来如果在上面的页面出现了报错可以回到最开始的界面在左边点击“疑难解答”,再点击右边的“开始扫描”最后点击“修复”按钮下面这个页面就是SD的主页面,大家看到这样一个复杂的页面千万不要慌实际上有些功能在我们基础使用中用不上接下来我们就把常用功能配合上实际例子来讲解

Others are asking
comfyui 与 SD 功能上有啥区别
ComfyUI 与 SD 在功能上主要有以下区别: 1. 工作原理:ComfyUI 更接近 SD 的底层工作原理。 2. 自动化工作流:ComfyUI 具有更出色的自动化工作流,能够消灭重复性工作。 3. 后端工具:ComfyUI 作为强大的可视化后端工具,可实现 SD 之外的功能,如调用 API 等。 4. 定制开发:可根据定制需求开发节点或模块。 5. 应用场景:例如在抠图素材方面,ComfyUI 能根据需求自动生成定制的抠图素材。 6. 与其他软件的结合:如与 Blender 整合,从工作流程上天然适配。 7. 工作流搭建:ComfyUI 以连线方式搭建工作流,可通过改变节点实现不同功能,具有更高的自由和拓展性,能根据自身需求搭建和改造工作流。
2025-03-28
我是一名电商设计师,现在想学习SD AI绘图,有一点基础,但学习课程资源有限,请你帮我制定一份详细的学习计划,并提供一些学习资源。
以下是为您制定的学习 SD AI 绘图的详细计划及相关学习资源: 学习计划: 1. 首先,深入学习 Stable Diffusion 的核心基础原理,包括模型工作流程、核心基础原理、训练全过程以及其他主流生成式模型介绍。 2. 接着,掌握 Stable Diffusion 的核心网络结构,如 SD 模型整体架构、VAE 模型、UNet 模型、CLIP Text Encoder 模型等。 3. 学习从 0 到 1 搭建使用 Stable Diffusion 模型进行 AI 绘画的不同方式,如使用 ComfyUI、SD.Next、Stable Diffusion WebUI、diffusers 搭建推理流程,并查看生成示例。 4. 了解 Stable Diffusion 的经典应用场景,如文本生成图像、图片生成图片、图像 inpainting、使用 controlnet 辅助生成图片、超分辨率重建等。 5. 最后,尝试从 0 到 1 上手使用 Stable Diffusion 训练自己的 AI 绘画模型,包括配置训练环境与训练文件,以及基于 Stable Diffusion 训练 LoRA 模型。 学习资源: 1. 教程:深入浅出完整解析 Stable Diffusion(SD)核心基础知识 知乎。 目录涵盖了 Stable Diffusion 系列的各个方面,包括核心基础知识、网络结构解析、搭建推理流程、应用场景和模型训练等。 2. SD 模型权重百度云网盘: 关注 Rocky 的公众号 WeThinkIn,后台回复:SD 模型,即可获得资源链接,包含多种模型权重。 3. SD 保姆级训练资源百度云网盘: 关注 Rocky 的公众号 WeThinkIn,后台回复:SDTrain,即可获得资源链接,包含数据处理、模型微调训练以及基于 SD 的 LoRA 模型训练代码全套资源。 4. Stable Diffusion 中 VAE,UNet 和 CLIP 三大模型的可视化网络结构图下载: 关注 Rocky 的公众号 WeThinkIn,后台回复:SD 网络结构,即可获得网络结构图资源链接。
2025-03-28
sd 换脸
以下是关于 SD 换脸插件 Roop 的详细步骤: 1. 勾选包含 Python 和 C++包等相关项目,更改安装位置后点击右下角安装。安装时间较长,需耐心等待。 2. 安装好后,打开 SD 文件目录下的相关文件夹,在地址栏输入“cmd”并回车,在打开的 dos 界面粘贴“python m pip install insightface==0.7.3 user”代码,自动安装 insightface。若此阶段出错,建议下载最新的秋叶 4.2 整合包(6 月 23 号更新),在云盘后台回复【SD】可下载。 3. 安装完成后,重新打开启动器,后台会继续下载一些模型,全程要保证科学上网。 4. 选用真实系模型“realisticVisionV20”,关键词描述相关内容生成照片。 5. 启用 ROOP 插件,选择要替换的人物照片,面部修复选择“GFPGAN”,根据需求设置右边的参数数值和放大算法,点击生成。 6. 若生成的人脸像素偏低、模糊,可将图发送到“图生图”,开较小的重绘幅度,然后使用 controlnet 中的 tile 模型进行重绘。 此插件主要适用于真实人脸替换,对二次元人物作用不大。在使用时要谨慎,切勿触犯法律。若想要此插件,可添加公众号【白马与少年】,回复【SD】即可。推荐使用最新的秋叶整合包,出错概率最小,且科学上网很重要。
2025-03-19
SD 反推模型
以下是关于 SD 反推模型的相关内容: Fooocus 模型: LoRA 模型默认放在:Fooocus_win64_1110\\Fooocus\\models\\loras 程序默认用到 3 个 SDXL 的模型,包括一个 base、一个 Refiner 和一个 LoRA。单独安装需下载三个模型: SDXL 基础模型:https://huggingface.co/stabilityai/stablediffusionxlbase1.0/resolve/main/sd_xl_base_1.0_0.9vae.safetensors refiner 模型:https://huggingface.co/stabilityai/stablediffusionxlrefiner1.0/resolve/main/sd_xl_refiner_1.0_0.9vae.safetensors LoRA 模型:https://huggingface.co/stabilityai/stablediffusionxlbase1.0/resolve/main/sd_xl_offset_examplelora_1.0.safetensors 若部署了 SD 秋叶包,可共用模型(大模型和 LoRA),通过修改 Fooocus_win64_1110\\Fooocus\\modules\\path.py 文件中的路径来配置,修改为秋叶包模型对应的路径,如: 大模型路径:sdwebui\\models\\Stablediffusion\\SDXL LoRA 模型路径:sdwebui\\models\\lora 配置好后点击 run.bat 文件启动。 Comfyui SD 学社做黏土头像的相关插件: 提示词反推 WD14Tagger:https://github.com/pythongosss/ComfyUlWD14Tagger,首次使用会自动下载模型(需要网络环境) 处理人物一致性: IPAdapter:https://github.com/cubiq/ComfyUI_IPAdapter_plus 也可以用 instantID,这里使用的是 IPadpter,后续很多地方也会用到,建议先使用起来。关于 IPAdapter 的使用,之前有文章介绍。 ControlNet: 预处理的插件:comfyui_controlnet_aux https://github.com/Fannovel16/comfyui_controlnet_aux ControlNet 模型: XLCN 模型下载:https://huggingface.co/lllyasviel/sd_control_collection/tree/main 1.5 理模型下载:https://huggingface.co/lllyasviel/ControlNetv11/tree/main ControlNet 的 tile 模型: 随着 ControlNet1.1 的更新,tile 模型横空出世,其强大的功能让之前的一些模型变得有点黯然失色。 可用于高清修复小图,比如将分辨率不高的食物图片拖进“WD 1.4 标签器”反推关键词,然后发送到图生图。使用大模型“dreamshaper”调整参数尺寸,放大为 2K,提示词引导系数官方推荐在 15 以上,重绘幅度在 0.5 以上。 可用于修复和增加细节,如处理一张细节不足且结构错误的小屋图。tile 的预处理器用来降低原图的分辨率,为新图添加像素和细节提供空间。若图片本身像素很低,可以不使用预处理器,直接使用 tile 模型。
2025-03-13
请你用简单易懂的语言告诉我comfyui和SD的区别
ComfyUI 和 SD(Stable Diffusion)主要有以下区别: 1. UI 界面:SD WebUI 的 UI 更接近传统产品,有很多输入框和按钮;ComfyUI 的 UI 界面复杂,除输入框外,还有很多块状元素和复杂的连线。 2. 学习成本:ComfyUI 的学习成本比 SD WebUI 高。 3. 工作流方式:ComfyUI 主要通过连线搭建自动化工作流,从左到右依次运行;SD WebUI 则通过输入框和按钮配置参数。 4. 灵活性和拓展性:ComfyUI 具有更高的自由和拓展性,可以根据自身需求搭建、调整甚至改造工作流,无需依赖开发者,还能开发并改造节点;SD WebUI 在这方面相对较弱。 5. 功能实现:从功能角度看,两者提供的功能本质相同,但 ComfyUI 通过改变节点方式能实现不同功能,如一个节点是直接加载图片,另一个是通过画板绘制图片,从而实现导入图片生图和绘图生图等不同功能。
2025-03-08
你有内置sd吗
Stable Diffusion(SD)相关知识如下: SD 内置了 LyCORIS,使用 LoRA 模型较多,其与 LyCORIS 相比可调节范围更大。LoRA 和 LyCORIS 的后缀均为.safetensors,体积较主模型小,一般在 4M 300M 之间。管理模型时可进入 WebUl 目录下的 models/LoRA 目录,在 WebUl 中使用时,可在 LoRA 菜单中点击使用,也可直接使用 Prompt 调用。 SD 的安装:系统需为 Win10 或 Win11。Win 系统查看配置,包括查看电脑系统(在桌面上找到“我的电脑”,鼠标右键点击,点击“属性”,查看 Windows 规格)和查看电脑配置(需要满足电脑运行内存 8GB 以上、是英伟达(NVIDA)的显卡、显卡内存 4GB 以上。打开任务管理器:同时按下 ctrl + shift + esc,查看电脑运行内存和显卡内存)。配置达标可跳转至对应安装教程页,如 【SD】无需 Lora,一键换脸插件 Roop:勾选相关项目,确保包含 Python 和 C++包。更改安装位置,点击右下角安装。安装时间长需耐心等待。安装好后,打开 SD 文件目录下的相关文件夹,在地址栏输入“cmd”回车,在打开的 dos 界面粘贴“python m pip install insightface==0.7.3 user”安装 insightface。若此阶段出错,建议下载最新的秋叶 4.2 整合包(6 月 23 号更新),后台回复【SD】下载。安装完成后,重新打开启动器,后台会继续下载模型,需全程科学上网。Roop 插件主要适用于真实人脸替换,对二次元人物作用不大。选用真实系模型,设置相关参数后生成,若人脸像素偏低模糊,可发送到“图生图”进行重绘。
2025-03-06
本地部署大模型硬件配置
本地部署大模型的硬件配置如下: 生成文字大模型: 最低配置:8G RAM + 4G VRAM 建议配置:16G RAM + 8G VRAM 理想配置:32G RAM + 24G VRAM(如果要跑 GPT3.5 差不多性能的大模型) 生成图片大模型(比如跑 SD): 最低配置:16G RAM + 4G VRAM 建议配置:32G RAM + 12G VRAM 生成音频大模型: 最低配置:8G VRAM 建议配置:24G VRAM 需要注意的是,最低配置可能运行速度非常慢。对于 SDXL 大模型的本地部署,其分为两个部分,base + refiner 是必须下载的,还有一个配套的 VAE 模型用于调节图片效果和色彩。要在 webUI 中使用 SDXL 的大模型,需在秋叶启动器中将 webUI 的版本升级到 1.5 以上,然后将模型放入对应的文件夹中。对于通义千问的 Qwen2.5 1M 模型的本地部署,使用以下命令启动服务时要根据硬件配置进行设置,如设置 GPU 数量、最大输入序列长度、Chunked Prefill 的块大小、限制并发处理的序列数量等。如果遇到问题,可参考相关的 Troubleshooting 内容。与模型交互可以使用 Curl 或 Python 等方法,对于更高级的使用方式,可以探索如 Qwen Agent 之类的框架。
2025-03-31
如何部署本地大模型
以下是本地部署大模型的一般步骤: 1. 部署大语言模型: 下载并安装 Ollama:根据您的电脑系统,从 https://ollama.com/download 下载。下载完成后,双击打开,点击“Install”。安装完成后,将 http://127.0.0.1:11434/ 复制进浏览器中,若出现相关字样则表示安装完成。 下载 qwen2:0.5b 模型(若设备充足可下载更大模型): Windows 电脑:点击 win+R,输入 cmd 点击回车。 Mac 电脑:按下 Command(⌘)+Space 键打开 Spotlight 搜索,输入“Terminal”或“终端”,然后从搜索结果中选择“终端”应用程序。 复制相关命令行并粘贴回车,等待自动下载完成。 2. 部署 SDXL 大模型: SDXL 的大模型分为 base+refiner(必须下载)和配套的 VAE 模型。 关注公众号【白马与少年】,回复【SDXL】获取下载链接。 在秋叶启动器中将 webUI 的版本升级到 1.5 以上。 将模型放入对应的文件夹:base 和 refiner 放在“……\\sdwebuiakiv4.2\\models\\Stablediffusion”路径下;vae 放在“……\\sdwebuiakiv4.2\\models\\VAE”路径下。 3. ComfyUI ollama 本地大模型部署: 先下载 ollama 安装,安装完成后可在电脑桌面右下角或隐藏图标里找到。 下载对应的模型,选择模型并复制对应的命令。 打开命令行界面,输入对应的模型获取命令,等待下载完成。 设置目录,下载的模型会保存到 D:\\ollama\\blobs。 进行 docker 安装,安装会下载一些文件,安装后更改目录,不要放在 C 盘。 进行 Open webui 安装,输入相关命令,安装成功后回到 docker,点击会自动打开网页,第一次使用需注册账号,选择下载好的模型即可开始使用。 4. 错误解决:端口占用问题,在 Windows 上可能出现,运行下面两条命令可以解决。 5. 相关链接: comfyuiollama:https://github.com/stavsap/comfyuiollama?tab=readmeovfile Ollama:https://ollama.com/ docker:https://www.docker.com/ Open webui:https://openwebui.com/
2025-03-31
本地用Ollama部署模型,使用哪个ChatBox客户端好?
目前在本地使用 Ollama 部署模型时,没有特别突出或被广泛推荐的特定 ChatBox 客户端。不同的客户端可能在功能、界面和兼容性方面存在差异,您可以根据自己的需求和使用习惯进行选择和尝试。常见的一些客户端包括但不限于 Web 端的简单界面工具,或者一些具有特定功能扩展的桌面应用程序。但具体哪个最适合您,还需要您亲自测试和评估。
2025-03-27
AI本地化部署
AI 本地化部署主要包括以下内容: 目前市面上的 AI 有线上和线下本地部署两种方式。线上部署出图速度快,不吃本地显卡配置,无需下载大模型,但出图分辨率受限;线下部署可自己添加插件,出图质量高,但使用时电脑易宕机,配置不高可能爆显存导致出图失败。 线上和线下平台可结合使用,充分发挥各自优势。线上用于找参考、测试模型,线下作为主要出图工具。具体操作如在在线绘图网站的绘图广场上发现想要的画风,点击创作会自动匹配创作使用的模型、lora 和 tag,截取游戏人物底图将线上算力集中在人物身上,多批次、多数量尝试不同画风得出符合游戏的模型+lora 组合,最后在 C 站下载对应模型到本地加载部署即可生图。 此外,Mistral AI 推出的 Mistral Saba 模型可本地部署,适用于单 GPU,能保障数据隐私。
2025-03-27
部署
以下是关于不同场景下部署的相关信息: AutoDL 部署 One2345 部署条件:需要有英伟达 GPU 显卡,且运行内存大于 18G,建议使用 RTX3090 及以上显卡。需要有 Ubuntu 系统操作基础。 部署步骤: 挑选设备:在 AutoDL 上挑选符合需求的设备,如 RTX4090/24GB。 镜像选择:选择与原作者要求相同的环境版本,如 PyTorch 2.0.1 与 cuda_11.8。 控制台打开设备:关机后想开机,直接点击即可。 打开终端,部署环境+代码:代码在数据盘中操作,Conda activate 报错输入 conda init bash,然后重启终端。安装步骤原文见:https://github.com/One2345/One2345 。注意:Huggingface 需要代理。 【保姆级】Meta Llama 3 部署到电脑上(Ollama+Open WebUI) 下载 Open WebUI: Windows 电脑:点击 win+R,输入 cmd,点击回车。 Mac 电脑:按下 Command(⌘)+Space 键打开 Spotlight 搜索,输入“Terminal”或“终端”,然后从搜索结果中选择“终端”应用程序。 输入命令等待下载,完成后点击或复制地址进入浏览器:http://localhost:3000/auth/ ,进行注册登录,选择“llama3:8b”即可。 在 Amazon SageMaker 上部署 Llama 3 要将与 llama 交互,使用常见的 OpenAI 格式 messages。 注意:Llama 3 是一个有门槛的模型,请在提交表单前访问并接受许可条款和可接受的使用政策。创建 HuggingFaceModel 后,使用 deploy 方法将其部署到 Amazon SageMaker,使用 ml.p4d.24xlarge 实例类型部署模型,部署可能需要 1015 分钟。
2025-03-27
本地部署
SDXL 的本地部署步骤如下: 1. 模型下载:SDXL 的大模型分为两个部分,第一部分 base + refiner 是必须下载的,base 是基础模型用于文生图操作,refiner 是精炼模型用于细化图片生成细节更丰富的图片;还有一个配套的 VAE 模型用于调节图片的画面效果和色彩。您可以关注公众号【白马与少年】,回复【SDXL】获取下载链接。 2. 版本升级:在秋叶启动器中将 webUI 的版本升级到 1.5 以上。 3. 放置模型:将 base 和 refiner 放在“……\\sdwebuiakiv4.2\\models\\Stablediffusion”路径下,vae 放在“……\\sdwebuiakiv4.2\\models\\VAE”路径下。 4. 启动使用:启动 webUI,在模型中即可看到 SDXL 的模型。正常使用时,先在文生图中使用 base 模型填写提示词和常规参数生成图片,然后将图片发送到图生图中切换大模型为“refiner”重绘。对于不想在两个界面来回操作的情况,可以安装 refine 插件,在文生图界面直接使用 refine 模型。 另外,关于本地部署资讯问答机器人,实现 Langchain + Ollama + RSSHub 的 RAG 需: 1. 导入依赖库:加载所需的库和模块,如 feedparse 用于解析 RSS 订阅源,ollama 用于在 python 程序中跑大模型(使用前确保 ollama 服务已开启并下载好模型)。 2. 从订阅源获取内容:从指定的 RSS 订阅 url 提取内容,通过专门的文本拆分器将长文本拆分成较小的块,并附带相关元数据,最终合并成列表返回。 3. 为文档内容生成向量:使用文本向量模型 bgem3(https://huggingface.co/BAAI/bgem3),从 hf 下载好模型放置在指定路径,通过函数利用 FAISS 创建高效的向量存储。
2025-03-27