Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

工作流 和 智能体的区别?

Answer

工作流和智能体的区别主要体现在以下几个方面:

  • 定义:
    • 工作流是通过预定义代码路径来编排 LLM 和工具的系统。
    • 智能体则是由 LLM 动态指导自身流程和工具使用的系统,能够自主控制任务完成方式。
  • 功能:
    • 智能体是一个自动化的“助手”,用来执行特定任务,擅长做一些具体的、重复性的任务,比如客服聊天、推荐商品、处理订单等,但只能按照预先设定的规则和任务来做事,如果遇到超出范围的情况,就不知道怎么办了。
    • 工作流是一系列任务的流程,决定了每个步骤应该做什么,可以处理一个完整的过程,比如从客户下单、付款到发货和售后服务,涵盖了所有步骤和环节,更灵活,能够适应变化,可以调整步骤和规则来应对不同的情况,不需要一开始就固定下来。
  • 范围:
    • 智能体是特定任务的“助手”,用于局部执行任务。
    • 工作流是一个“计划”或“路线图”,指导整个任务的流程。简单说,工作流是全局的,智能体是局部的。

在业务中,通常需要的是工作流而非单个智能体,因为整个业务流程设计至关重要。例如,在烹饪中,关键不在于使用多贵的锅,而是按步骤完成每道工序。因此,工作流才是解决问题的关键,它帮助优化思路、提升效率。设计好工作流才能大幅提升整体业务效率。

Content generated by AI large model, please carefully verify (powered by aily)

References

小七姐:来自 Anthropic 的建议:构建高效智能体

原文地址:[Building effective agents](https://www.anthropic.com/research/building-effective-agents)本文为上文的译文(包括图片汉化)过去一年,我们与多个行业的团队合作,协助他们构建大语言模型(Large Language Model,LLM)智能体。我们发现,最成功的实践并非依赖复杂的框架或专门的代码库,而是采用简单、可组合的模式。本文将分享我们通过与客户合作以及自主构建智能体所获得的经验,并为开发者提供实用的建议。[heading3]什么是智能体?[content]"智能体"(Agent)可以有多种定义。一些客户将智能体定义为能够长期独立运行的全自动系统,它们可以使用各种工具来完成复杂任务。另一些则用这个术语描述更具规范性的实现,即遵循预定义工作流程的系统。在Anthropic,我们将这些变体统称为智能系统(Agentic Systems),但在架构上区分为工作流(Workflows)和智能体(Agents)两种类型:工作流是通过预定义代码路径来编排LLM和工具的系统。智能体则是由LLM动态指导自身流程和工具使用的系统,能够自主控制任务完成方式。下文将详细探讨这两种智能系统。在附录1("智能体的实践应用")中,我们将介绍客户在使用这类系统时发现特别有价值的两个领域。

Coze - 打造 AI 私人提效助理实战知识库

在AI领域,AI智能体(AI Agent)的概念很火,许多同学也尝试搭建了智能体。那么智能体和工作流的区别是什么,为什么我们要使用工作流而非智能体呢?智能体和工作流的区别?智能体(AI Agent)是什么:智能体是一个自动化的“助手”,用来执行特定任务。就像你设置一个闹钟,它帮你在指定时间提醒你。能做什么:它擅长做一些具体的、重复性的任务,比如客服聊天、推荐商品、处理订单等。缺点:它只能按照预先设定的规则和任务来做事,如果遇到超出范围的情况,它就不知道怎么办了。工作流(Workflow)是什么:工作流是一系列任务的流程,决定了每个步骤应该做什么,就像一本操作指南,告诉你从头到尾要怎么做。能做什么:工作流可以处理一个完整的过程,比如从客户下单、付款到发货和售后服务,涵盖了所有步骤和环节。优点:它更灵活,能够适应变化。你可以调整步骤和规则来应对不同的情况,不需要一开始就固定下来。区别总结智能体是特定任务的“助手”,用于局部执行任务。工作流是一个“计划”或“路线图”,指导整个任务的流程。简单说,工作流是全局的,智能体是局部的。在业务中,通常需要的是工作流而非单个智能体,因为整个业务流程设计至关重要。例如,在烹饪中,关键不在于使用多贵的锅,而是按步骤完成每道工序。因此,工作流才是解决问题的关键,它帮助优化思路、提升效率。设计好工作流才能大幅提升整体业务效率。

小七姐:来自 Anthropic 的建议:构建高效智能体

在构建基于LLM的应用时,我们建议先寻找最简单的解决方案,只在必要时增加复杂度。这可能意味着完全不使用智能系统。智能系统通常会以延迟和成本为代价来换取更好的任务表现,开发者需要考虑这种权衡是否合理。当需要更复杂的解决方案时,工作流适合需要可预测性和一致性的明确任务,而智能体则更适合需要灵活性和模型驱动决策的大规模场景。然而,对于许多应用来说,优化单个LLM调用(配合检索和上下文示例)通常就足够了。[heading3]什么时候以及如何使用框架[content]目前有许多框架可以简化智能系统的实现,包括:LangChain的LangGraph亚马逊Bedrock的AI Agent框架Rivet(一个拖放式GUI的LLM工作流构建器)Vellum(另一个用于构建和测试复杂工作流的GUI工具)这些框架通过简化标准的底层任务(如调用LLM、定义和解析工具、链接调用等)使入门变得容易。但它们往往会创建额外的抽象层,这可能会使底层提示词和响应变得难以调试。它们也可能诱使开发者在简单设置就足够的情况下增加不必要的复杂性。我们建议开发者先直接使用LLM API:许多模式只需要几行代码就能实现。如果确实要使用框架,请确保理解底层代码。对底层机制的错误假设是客户常见的错误来源。详细示例请参考我们的实践指南。https://github.com/anthropics/anthropic-cookbook/tree/main/patterns/agents[heading3]构建模块、工作流和智能体[content]在这一部分,我们将探讨我们在生产环境中观察到的智能系统常用模式。我们将从基础构建模块——增强型LLM开始,逐步增加复杂度,从简单的组合工作流到自主智能体。

Others are asking
我是一个AI小白,我现在已经学习了输入提示词的方法,利用coze搭建简单的智能体,请问我下一步应该怎么学习,请给我一些建议
以下是为您提供的学习建议: 1. 深入学习提示词技术,编写更加清晰、精确的指令,以更好地引导 AI 工具产生所需结果。 2. 探索构建智能体(AI Agents),为每个智能体赋予特定角色和任务,协同工作提高效率和创新能力。 在实际应用中遵循以下准则: 彻底让自己变成一个“懒人”。 能动嘴的不要动手(用嘴说出想做的事远比打字来的快)。 能动手的尽量用 AI(用 AI 远比苦哈哈的手敲要来的快)。 把手上的工作单元切割开,建设属于自己的智能体。 根据结果反馈不断调整自己的智能体。 定期审视工作流程,看哪个部分可以更多地用上 AI。 3. 如果在组织内部,先将所学应用于手头工作,优化工作流程。若想进一步提升,可深入钻研技术层面,如学习搭建专业的知识库、构建系统的知识体系,用于工作和个人爱好创作。 4. 注重个人素质提升,尤其是学习能力和创造能力,这是在时代中保持竞争力的关键。 此外,您还可以参考以下内容: 学习 AI agent 可能较痛苦,建议先吃透 prompt 再看相关内容。官方文档内容很全面,包含市面上 cos 的教程等。社区小伙伴参加 cos 比赛常拿大奖,有共学活动,获奖小伙伴会分享经验。cos 平台可用于工作生产,有很多功能,感兴趣可体验其官网,能进行对话感受功能。 了解智能体由大语言模型衍生而来,学习智能体进阶案例拆解,推荐景淮老师的相关成果。然后阐述扣子、千帆百炼属于智能体范畴,扣子更偏 ToC 应用,所以有专门讲解扣子相关内容。 搭建 Coze 工作流: 第一步:创建智能体工作流。打开 Coze 的主页,登录后,在【工作空间】创建一个智能体。接着,在编排页面,给这个智能体编辑好人设,可以自己先写一个简单的,然后点右上角自动优化,系统会自动给您补全更精细的描述。然后点击工作流的+,创建一个工作流。 第二步:耐心编排设计您的工作流。大模型节点:把 input 给到 DeepSeek,让 DeepSeek 按照提前规定的输出框架,生成对应文案。生图节点:这个输出会给到图像生成组件,来画一张图。结束输出:这两个输出都会给到最终的 end 作为最终的输出。注意:如果需要 input 可被 DeepSeek 调用,在编写系统提示词的时候需要用{{input}}作为参数引入,不然大模型不知道自己需要生成和这个 input 相关的结果。编排完,点击【试运行】,就可以看结果了,如果输出结果看起来不对可以继续在这里调试,直到最终结果让您满意。调到满意之后点击发布就行。 您还可以从 AI 绘画开始学习相关内容。
2025-04-16
人工智能是否能被赋予法律人格
目前在法律领域,对于人工智能是否能被赋予法律人格存在不同的观点和探讨。 一方面,如《人工智能法案》中提到,为确保相关工作的有效开展,建立的欧洲联盟人工智能办公室应具有法律人格。 另一方面,在一些趋势研究和法律风险研究中也有相关讨论。例如,AGI 的出现引发了伦理挑战,有观点认为若 AGI 拥有类人格智能,可能需要考虑赋予其某种“权利”。在关于 AI 生成物的知识产权侵权问题的研究中,有学者主张独立人格权说,认为可类比“法人”制度,将人工智能拟制成为法律意义上的“人”,以解决相关权利归属问题。但同时也存在其他不同的观点,如领接权说认为应考虑投资者利益,将相关权利作为领接权;孳息说则认为人工智能生成物属于物的范畴,不应纳入著作权法体系保护,应视为人工智能的“孳息”。 总之,人工智能能否被赋予法律人格仍在探讨和研究中,尚未有明确的定论。
2025-04-15
可以进行数字人换脸的智能体
以下是关于数字人换脸的相关内容: 制作数字人视频: 1. 在显示区域拖动背景图的角,将图片放大到适合尺寸并将数字人拖动到合适位置。 2. 点击文本 智能字幕 识别字幕,点击开始识别,软件会自动将文字智能分段并形成字幕。 3. 完成后点击右上角“导出”按钮导出视频备用。 AI 换脸: 1. 点击右下角创建实例按钮,创建并启动实例(服务器)。 2. 点击快捷工具中顶部的 JupyterLab 打开工具,通过终端启动 facefusion。 点击顶部“+”号选项卡,新打开一个终端窗口。 在终端窗口输入 3 条命令: 输入“ls”并按回车,查看文件列表。 输入“cd facefusion”并按回车,进入程序目录。 输入“python./run.py executionproviders cuda cpu”启动程序(注意参数“executionproviders cuda cpu”非常重要,不加 cuda 则默认不使用 GPU 能力,推理将非常慢)。 3. 当出现提示信息时说明启动成功。 4. 打开 facefusion 软件,返回实例列表,点击自定义服务按钮,通过新的浏览器窗口访问 facefusion 提供的 UI 界面。 5. 在 facefusion 软件界面上传准备好的图片、视频,在右侧可看到预览效果,点击下方开始按钮执行换脸处理。 此外,还有关于表演的相关讨论,提到表演本质是展现深层情感,要戏剧化地放大情感,不能单靠语言,肢体语言和行为也是创造人物个性的重要方式。
2025-04-15
AI Agents(智能体)
AI 智能体(Agents)是人工智能领域中一个重要的概念: 1. 从 AGI 的发展等级来看,智能体不仅具备推理能力,还能执行全自动化业务,但目前许多 AI Agent 产品在执行任务后仍需人类参与,尚未达到完全智能体的水平。 2. 作为大模型的主要发展方向之一,智能体中间的“智能体”其实就是大模型(LLM)。通过为 LLM 增加工具、记忆、行动、规划这四个能力来实现。目前行业里主要用到的是 langchain 框架,它把 LLM 与 LLM 之间以及 LLM 与工具之间通过代码或 prompt 的形式进行串接。 3. 从智能体的起源探究来看,心灵社会理论认为智能是由许多简单的 Agent(分等级、分功能的计算单元)共同工作和相互作用的结果。这些 Agent 在不同层次上执行不同的功能,通过协作实现复杂的智能行为。心灵社会将智能划分为多个层次,每个层次由多个 Agent 负责,每个 Agent 类似于功能模块,专门处理特定类型的信息或执行特定任务。同时存在专家 Agent、管理 Agent、学习 Agent 等不同类型的 Agent 及其相应功能。从达特茅斯会议开始讨论人工智能,到马文·明斯基引入“Agent”概念,“AI”和“Agent”就彻底聚齐,往后被称之为 AI Agent。
2025-04-15
人工智能软件现在有哪些
以下是一些常见的人工智能软件: 1. 在自然语言处理和神经科学应用方面,大型语言模型取得了进展,拥有更先进的工具用于解码大脑状态和分析复杂脑部活动。 2. 在艺术创作领域,有涉及知识产权保护的相关软件,如软件工程师在设计时应确保生成内容合法合规、注重用户知识产权保护等。创作者使用此类软件时,应了解自身权利并做好保护。 3. 在线 TTS 工具方面,如 Eleven Labs(https://elevenlabs.io/)、Speechify(https://speechify.com/)、Azure AI Speech Studio(https://speech.microsoft.com/portal)、Voicemaker(https://voicemaker.in/)等。这些工具可将文本转换为语音,具有不同的特点和适用场景。但请注意,相关内容由 AI 大模型生成,请仔细甄别。
2025-04-15
什么是通用人工智能
通用人工智能(AGI)是指具有人类水平的智能和理解能力的 AI 系统。它有能力完成任何人类可以完成的智力任务,适用于不同的领域,同时拥有某种形式的意识或自我意识。 目前 AGI 还只是一个理论概念,没有任何 AI 系统能达到这种通用智能水平。 OpenAI 在其内部会议上分享了 AGI 的五个发展等级: 1. 聊天机器人(Chatbots):具备基本对话能力的 AI,主要依赖预设脚本和关键词匹配,用于客户服务和简单查询响应。 2. 推理者(Reasoners):具备人类推理水平的 AI,能够解决复杂问题,如 ChatGPT,能够根据上下文和文件提供详细分析和意见。 3. 智能体(Agents):不仅具备推理能力,还能执行全自动化业务的 AI。目前许多 AI Agent 产品在执行任务后仍需人类参与,尚未达到完全智能体的水平。 4. 创新者(Innovators):能够协助人类完成新发明的 AI,如谷歌 DeepMind 的 AlphaFold 模型,可以预测蛋白质结构,加速科学研究和新药发现。 5. 组织(Organizations):最高级别的 AI,能够自动执行组织的全部业务流程,如规划、执行、反馈、迭代、资源分配和管理等。 常见名词解释: AGI:通用人工智能(Artificial General Intelligence)能够像人类一样思考、学习和执行多种任务的人工智能系统。 NLP:自然语言处理(Natural Language Processing),就是说人话。 LLM:大型语言模型(Large Language Model),数据规模很大,没钱搞不出来,大烧钱模型。
2025-04-15
AI 衡量一个AI任务的指标是不是有准确率 和召回率 分别啥区别
在 AI 任务中,常见的衡量指标包括准确率和召回率。准确率(Accuracy)衡量的是模型预测正确的比例。而召回率主要用于信息检索等任务,衡量的是模型能够正确检索出相关内容的比例。 在摘要任务中,一般用 ROUGE 指标,其中 ROUGE2 是把两个 sequence 按 2gram 的方式做切分做频次统计,然后计算 pred 和 gt 之间的召回率。 对于不同的 AI 任务,还有其他多种指标,如在 NLP 中: 信息检索任务常用 NDCG@K 指标,核心衡量最相关文档是否排序足够靠前。 文本生成任务可用 BitsperByte 指标。 针对二分类任务,一般用 ECE 指标(Expected Calibration Error)来度量模型输出概率 p 时,最终正确率真的为 p 的一致性。 此外,还有一些其他方面的评估指标,如不确定性(Calibration and Uncertainty)、鲁棒性(Robustness,包括 invariance 和 equivariance)、公平性(Fairness)、偏见程度(Bias and stereotypes)、有毒性(Toxicity)等。 传统的 RAG 解决方案在检索效率和准确性上存在问题,Anthropic 通过“上下文嵌入”解决了部分问题,但 RAG 的评估仍待解决,研究人员正在探索新的方法,如 Ragnarök。 在提示词设计方面,Claude 官方手册提出“链式提示”的方法理念,将复杂任务拆解为多个步骤,具有准确率高、清晰性好、可追溯性强等好处。ChatGPT 官方手册也有类似理念,同时还有相关论文如在 ICLR 2023 上发表的提出 LeasttoMost Prompting 提示词策略的论文,在文本理解和生成场景中表现优秀。
2025-04-09
在ai context中,token和word的区别是?
在 AI 领域中,Token 和 Word 有以下区别: 定义和范围:Token 通常是大语言模型处理文本数据时的一个单元,在不同语境下,可能代表一个字、一个词、一个句子、标点、词根、前缀等,更加灵活。而 Word 一般指能够表达一定意义的独立单位,如单词。 语言处理:在英文中,一个 Word 通常是一个词或标点符号。在一些汉语处理系统中,一个 Word 可能是一个字或一个词。而 Token 在不同的语言模型和处理系统中,对应的范围和形式有所不同。 作用和意义:Token 不仅是文本数据的单位,还可能携带丰富的语义、句法等信息,在模型中有着对应的向量表示。Word 主要用于传达相对明确和完整的意义。 计算和收费:大模型的收费计算方法以及对输入输出长度的限制,通常是以 Token 为单位计量的。 例如,在处理“ I’m happy ”这句话时,“I”、“’m”、“happy”可能被视为 Token,而“I’m happy”整体可看作一个 Word 。
2025-04-08
AI chatbot、agent、copilot区别
AI chatbot、agent、copilot 主要有以下区别: 1. 定义和角色: Copilot:翻译成副驾驶、助手,在帮助用户解决问题时起辅助作用。 Agent:更像主驾驶、智能体,可根据任务目标自主思考和行动,具有更强的独立性和执行复杂任务的能力。 Chatbot:具备基本对话能力,主要依赖预设脚本和关键词匹配,用于客户服务和简单查询响应。 2. 核心功能: Copilot:更多地依赖于人类的指导和提示来完成任务,功能很大程度上局限于在给定框架内工作。 Agent:具有更高的自主性和决策能力,能够根据目标自主规划整个处理流程,并根据外部反馈进行自我迭代和调整。 3. 流程决策: Copilot:处理流程往往依赖于人类确定的静态流程,参与更多是在局部环节。 Agent:解决问题的流程由 AI 自主确定,是动态的,不仅可以自行规划任务步骤,还能根据执行过程中的反馈动态调整流程。 4. 应用范围: Copilot:主要用于处理简单、特定的任务,更多是作为工具或助手存在,需要人类引导和监督。 Agent:能够处理复杂、大型的任务,并在 LLM 薄弱的阶段使用工具或 API 等进行增强。 5. 开发重点: Copilot:主要依赖于 LLM 的性能,开发重点在于 Prompt Engineering。 Agent:同样依赖于 LLM 的性能,但开发重点在于 Flow Engineering,即在假定 LLM 足够强大的基础上,把外围的流程和框架系统化。 以下是一些 Agent 构建平台: 1. Coze:新一代一站式 AI Bot 开发平台,适用于构建基于 AI 模型的各类问答 Bot,集成丰富插件工具。 2. Mircosoft 的 Copilot Studio:主要功能包括外挂数据、定义流程、调用 API 和操作,以及部署 Copilot 到各种渠道。 3. 文心智能体:百度推出的基于文心大模型的智能体平台,支持开发者根据需求打造产品能力。 4. MindOS 的 Agent 平台:允许用户定义 Agent 的个性、动机、知识,以及访问第三方数据和服务或执行工作流。 5. 斑头雁:2B 基于企业知识库构建专属 AI Agent 的平台,适用于多种场景,提供多种成熟模板。 6. 钉钉 AI 超级助理:依托钉钉强大的场景和数据优势,在处理高频工作场景方面表现出色。 以上信息由 AI 大模型生成,请仔细甄别。
2025-04-07
人工智能搜索与百度搜索的区别
人工智能搜索与百度搜索存在以下区别: 1. 底层技术:人工智能搜索的底层技术常包括“RAG”,即“检索增强生成”,包括检索、增强和生成三个步骤。而百度搜索的技术构成相对复杂,不断融合新的技术和功能。 2. 发展路径:在中国市场,相较欧美,百度作为搜索巨头已将文心一言大模型融入搜索,提供对话式回答和创作功能。同时,市场上还涌现出如秘塔 AI 搜索等创新型产品,主打“无广告,直接答案”,提供结构化结果和引用来源等特色功能。 3. 产品更新与竞争态势:Google 仍在战斗前线密集释放技能,与其他公司竞争激烈。而百度在新模型发布方面相对较少。此外,Google 推出新功能曾引发大量用户不满,而百度的相关新功能在页面布局和使用体验上更靠近某些特定产品,并聚合了多种创作能力和智能体快捷调用窗口。百度文库也上线了“AI 全网搜”功能,打通了特定工作流,产品功能较为完整,但受限于模型能力,生成内容尚有提升空间。
2025-04-01
用ai建立知识库和直接使用ai有什么区别、
用 AI 建立知识库和直接使用 AI 主要有以下区别: 直接使用 AI 时,AI 生成的内容可能较为笼统模糊,就像遇到只会说“很急,今天就要”却不提供具体指导的领导。若想让 AI 成为得力助手,需对复杂任务进行拆解,提供方法论和定义输出格式。 建立知识库就如同为 AI 准备了“教科书”。知识库灵活,但偶尔会出现查不到内容而“猜题”的情况。例如,将《梦想与颠覆》卡牌等相关内容导入作为 AI 可调用的知识库,后续在创作中激活知识库,AI 会根据场景自动匹配库内素材,使输出更具针对性。 相比之下,微调类似于让 AI“自己真的学会了整本书”,答题更快更准,但训练成本高。微调适合高精度、长期任务,而知识库更适合临时查找、快速问答。
2025-03-30
comfyui 与 SD 功能上有啥区别
ComfyUI 与 SD 在功能上主要有以下区别: 1. 工作原理:ComfyUI 更接近 SD 的底层工作原理。 2. 自动化工作流:ComfyUI 具有更出色的自动化工作流,能够消灭重复性工作。 3. 后端工具:ComfyUI 作为强大的可视化后端工具,可实现 SD 之外的功能,如调用 API 等。 4. 定制开发:可根据定制需求开发节点或模块。 5. 应用场景:例如在抠图素材方面,ComfyUI 能根据需求自动生成定制的抠图素材。 6. 与其他软件的结合:如与 Blender 整合,从工作流程上天然适配。 7. 工作流搭建:ComfyUI 以连线方式搭建工作流,可通过改变节点实现不同功能,具有更高的自由和拓展性,能根据自身需求搭建和改造工作流。
2025-03-28
AI能在工作中提供哪些帮助(不限制职业,不要妄想推测,要能真正落实的帮助
AI 在工作中能提供以下帮助: 对于各类职业: 减轻单调任务负担:如输入数据、填写文书、扫描文档查找信息等,让人们有更多时间从事专业训练相关的工作,例如教师有更多时间教学,临床医生有更多时间陪伴患者,警察有更多时间巡逻而非坐班。 提高工作效率和安全性:支持人们更好地完成现有工作。 提供创新的监管框架:在确保风险得到识别和处理的同时支持创新。 对于技术爱好者: 从小项目开始,熟悉 AI 能力和局限性。 探索 AI 编程工具,从生成注释或简单函数逐步过渡到复杂任务。 参与 AI 社区,与其他开发者交流经验,了解最新趋势。 构建 AI 驱动的项目,深入理解 AI 实际应用过程。 对于内容创作者: AI 辅助头脑风暴,提供创意方向。 建立 AI 写作流程,从生成大纲到扩展段落和提供数据支持。 辅助翻译和本地化内容,拓展国际市场。 利用 AI 工具优化 SEO。
2025-04-16
作为一个想要使用AI工具提升工作效率的AI小白,我已经学习了怎么编写prompt,接下来我应该学习什么
如果您已经学习了如何编写 prompt ,接下来可以学习以下内容: 1. 理解 Token 限制:形成“当前消耗了多少 Token”的自然体感,把握有效记忆长度,避免在超过限制时得到失忆的回答。同时,编写 Prompt 时要珍惜 Token ,秉承奥卡姆剃刀原理,精简表达,尤其是在连续多轮对话中。 熟练使用中英文切换,若 Prompt 太长可用英文设定并要求中文输出,节省 Token 用于更多对话。 了解自带方法论的英文短语或句子,如“Chain of thought”。 2. 学习精准控制生成式人工智能:重点学习提示词技术,编写更清晰、精确的指令,引导 AI 工具产生所需结果。 探索构建智能体(AI Agents),将工作单元切割开,赋予其特定角色和任务,协同工作提高效率。 在实际应用中遵循准则,如彻底变“懒人”、能动嘴不动手、能让 AI 做的就不自己动手、构建自己的智能体、根据结果反馈调整智能体、定期审视工作流程看哪些部分可用更多 AI 。 3. 若想进一步提升: 学习搭建专业知识库、构建系统知识体系,用于驱动工作和个人爱好创作。 注重个人能力提升,尤其是学习能力和创造能力。 您还可以结合自身生活或工作场景,想一个能简单自动化的场景,如自动给班级孩子起昵称、排版运营文案、安排减脂餐、列学习计划、设计调研问卷等。选一个好上手的提示词框架开启第一次有效编写,比如从基础的“情境:”开始。
2025-04-15
学习AI怎么在工作中使用,提高工作效率,有必要从技术原理开始学习吗
学习 AI 在工作中使用以提高工作效率,不一定需要从技术原理开始学习。以下是一些相关的案例和建议: 案例一:GPT4VAct 是一个多模态 AI 助手,能够模拟人类通过鼠标和键盘进行网页浏览。其应用场景在于以后互联网项目产品的原型设计自动化生成,能使生成效果更符合用户使用习惯,同时优化广告位的出现位置、时机和频率。它基于 AI 学习模型,通过视觉理解技术识别网页元素,能执行点击和输入字符操作等,但目前存在一些功能尚未支持,如处理视觉信息程度有限、不支持输入特殊键码等。 案例二:对于教师来说,有专门的 AI 减负指南。例如“AI 基础工作坊用 AI 刷新你的工作流”,从理解以 GPT 为代表的 AI 工作原理开始,了解其优势短板,学习写好提示词以获得高质量内容,并基于一线教师工作场景分享优秀提示词与 AI 工具,帮助解决日常工作中的常见问题,提高工作效率。 建议:您可以根据自身工作的具体需求和特点,有针对性地选择学习方向。如果您只是想快速应用 AI 提高工作效率,可以先从了解常见的 AI 工具和应用场景入手,掌握基本的操作和提示词编写技巧。但如果您希望更深入地理解和优化 AI 在工作中的应用,了解技术原理会有一定帮助。
2025-04-15
comfyui工作流
ComfyUI 工作流主要包括以下内容: FLUX 低显存运行工作流:目的是让 FLUX 模型能在较低的显存情况下运行。分阶段处理思路为:先在较低分辨率下使用 Flux 模型进行初始生成,然后采用两阶段处理,即先用 Flux 生成,后用 SDXL 放大,有效控制显存的使用,最后使用 SD 放大提升图片质量。工作流的流程包括初始图像生成(Flux)的一系列操作,如加载相关模型、处理输入提示词、生成初始噪声和引导等,以及初始图像预览;图像放大和细化(SDXL)的一系列操作,如加载 SDXL 模型、对初始图像进行锐化处理等,还有最终图像预览。 工作流网站: “老牌”workflow 网站 Openart.ai:https://openart.ai/workflows/ 。流量比较高,支持上传、下载、在线生成,免费账户总共有 50 个积分,加入 Discord 可以再加 100 积分,开通最低的每个月 6 美元的套餐后,每个月会有 5000 积分。 ComfyWorkflows 网站:https://comfyworkflows.com/cloud 。支持在线运行工作流,从 workflow 的实际下载量和访问量来看,略少于 openart。 Flowt.ai:https://flowt.ai/community 。 绿幕工作流:包含两个组,即生成绿幕素材和绿幕素材抠图。因为 SD 无法直接生成透明背景的 png 图片,所以要先生成一张素材图,前景是重要的主体素材,背景是纯色(方便识别),选择绿幕是为了方便抠图。工作流文件可通过链接 https://pan.quark.cn/s/01eae57419ce 提取(提取码:KxgB),下载拖入 ComfyUI 中自动加载工作流进行学习。
2025-04-14
需要做一个自动化出视频的工作流
以下是一个关于自动化出视频工作流的详细介绍: 优势: 全自动化处理,解放双手。 40 秒快速出片,效率提升。 成本低廉,每条仅需 0.0x 元。 输出质量稳定专业。 DeepseekR1 保证文案质量。 还能改进,例如可以加入配套 BGM,让视频更有感染力;增加更丰富的画面内容和转场效果;使用免费节点替代付费插件,进一步降低成本;优化模板样式,支持更多展示形式;增加自动化程度,支持批量处理。 工作流程: 1. 可以在扣子商店体验,建议自己搭建。 2. 工作流调试完成后,加入到智能体中,可以选择工作流绑定卡片数据,智能体则通过卡片回复。 3. 选择发布渠道,重点如飞书多维表格,填写上架信息(为了快速审核,选择仅自己可用),确认发布等待审核,审核通过后即可在多维表格中使用。 4. 创建飞书多维表格,添加相关字段,配置选择“自动更新”,输入相关字段后,“文案视频自动化”字段捷径会自动调用工作流,生成视频。 5. 表单分享,实现“填写表单,自动创建文案短视频”的效果。 6. 全自动视频合成使用多视频融合插件,一键导出成品。但需注意节点产生的视频是异步生成,可能无法马上展现,需耐心等待几秒。 如果您还有其他疑问或需要进一步的帮助,请随时联系。
2025-04-14
coze搭建工作流调用deepseek如何把模型的输出存入到多维表中
以下是将模型的输出存入到多维表中的步骤: 1. 逐步搭建 AI 智能体: 搭建整理入库工作流。 设置大模型节点提取稍后读元数据,使用 MiniMax 6.5s 245k,设置最大回复长度至 50000,以确保能完整解析长内容网页。 进行日期转时间戳,后续的飞书多维表格插件节点在入库日期字段时只支持 13 位时间戳,需要使用「日期转时间戳time_stamp_13」插件进行格式转化。 把稍后读元数据转换为飞书多维表格插件可用的格式,飞书多维表格插件目前(2024 年 08 月)只支持带有转义符的 string,以 Array<Object>格式输入,所以必须将之前得到的元数据数组进行格式转换。 添加「飞书多维表格add_records」插件,只需要设置{{app_token}}与{{records}}参数,将元数据写入飞书表格。 2. 搭建 Coze 工作流: 打开 Coze 的主页,登录后,在【工作空间】创建一个智能体。 在编排页面,给智能体编辑好人设,可先写一个简单的,然后点右上角自动优化,系统会自动补全更精细的描述。点击工作流的+,创建一个工作流。 大模型节点把 input 给到 DeepSeek,让 DeepSeek 按照提前规定的输出框架生成对应文案。 生图节点将输出给到图像生成组件画图。 结束输出时,两个输出给到最终的 end 作为最终的输出。注意在编写系统提示词时,如果需要 input 可被 DeepSeek 调用,需要用{{input}}作为参数引入,不然大模型不知道自己需要生成和这个 input 相关的结果。编排完,点击【试运行】,调试至满意后点击发布。
2025-04-14