Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

这个网站的作用是什么?是通过这个网站更好的使用训练AI吗?

Answer

WaytoAGI 网站具有以下功能:

  1. 和 AI 知识库对话:您可以在此询问任何关于 AI 的问题。
  2. AI 网站:集合了精选的 AI 网站,可按需求找到适合您的工具。
  3. AI 提示词:集合了精选的提示词,能复制到 AI 对话网站使用。
  4. 知识库精选:将每天知识库的精华内容呈现给大家。

总之,WaytoAGI 网站和 WaytoAGI 知识库相互独立又有关联,希望成为您学习 AI 路上的好助手。

Content generated by AI large model, please carefully verify (powered by aily)

References

2025 年 AI 指数报告,斯坦福.pdf

Research collectiveAcademia–government2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024Publication dateFigure 1.3.152322 FLOP stands for“floating-point operation.”A floating-point operation is a single arithmetic operation involving floating-point numbers,such as addition,subtraction,multiplication,or division.The number of FLOP a processor or computer can perform per second is an indicator of its computational power.The higher the FLOP rate,the more powerful the computer.The number of floating-point operations used to train an AI model reflects its requirement for computational resources during development.23 Estimating training compute is an important aspect of AI model analysis,yet it often requires indirect measurement.When direct reporting is unavailable,Epoch estimates compute by using hardware specifications and usage patterns or by counting arithmetic operations based on model architecture and training data.In cases where neither approach is feasible,benchmark performance can serve as a proxy to infer training compute by comparing models with known compute values.Full details of Epoch’s methodology can be found in the documentation section of theirwebsite.Table of ContentsChapter 1 Preview561.3 Notable AI Models Chapter 1:Research and DevelopmentFigure 1.3.16 highlights the training compute of notable machine learning models since 2012.For example,AlexNet,one of the models that popularized the now standard practice of using GPUs to improve AI models,required an estimated 470 petaFLOP for training.24 The original Transformer,released in 2017,required around 7,400 petaFLOP.OpenAI’s GPT-4o,one of the current state-of-the-art foundationTraining compute of notable AI models by domain,2012–24Source:Epoch AI,2025|Chart:2025 AI Index reportLanguage Vision Multimodal100B10B

问:这个网站可以干什么?

欢迎来到[WaytoAGI网站](https://www.waytoagi.com/),我们提供以下一些功能的使用:和AI知识库对话:你可以在这里问任何关于AI的问题AI网站:集合了精选的AI网站,按需求找到适合你的工具AI提示词:集合了精选的提示词,可以复制到AI对话网站来使用知识库精选:将每天知识库的精华内容呈现给大家。总之,WaytoAGI网站和WaytoAGI知识库是各自独立的,但有相互关联,是希望成为你学习AI路上的好助手。类似问题:waytoagi网站可以做什么?这个网站有什么用?

本信:Bard的prompt使用技巧

今天Litong Cao同学收到了bard的EDM,内容如下:疑问来了:这个有啥规律么感觉就是不要说的太口语化那比如说我让他画个logo,不能直接说给我画个网站logo那应该怎么说?感觉上面的英文翻译成中文不是一样么?本信同学给出了一个解答:Bard建议使用“给AI下具体设计任务”的方式,而不是简单地“要求AI直接输出内容”。这可以让AI更好地发挥创造力,同时也便于人类对最终输出进行检查和修改。通过比对可以看出,Bard推荐的优化prompt采用了更明确的任务驱动方式,有助于AI生成更好的内容。这是一个提高prompt质量的很好建议。尝试了一下https://g.co/bard/share/aa17479887c2i want to design a logo for my AI websideHere are some tips on how to design a logo for your AI website:Keep it simple and memorable.Your logo should be easy to remember and identify,even when it is small or used in different contexts.Use relevant symbols or icons.Symbols or icons can help to communicate the meaning of your brand and make your logo more visually appealing.Choose colors that are associated with technology and trust.Colors like blue,green,and white are often associated with technology and trust,which can be helpful for an AI website.Use a consistent font.The font you choose should be consistent with the overall branding of your website.Get feedback from others.Once you have designed a few logos,get feedback from others to see which one they prefer.Here are some examples of AI logos that follow these tips:

Others are asking
AI相关的最前沿技术网站
以下是一些 AI 相关的前沿技术网站: 1. OpenAI:提供了诸如 GPT 等先进的语言模型和相关技术。 2. Google AI:涵盖了多种 AI 领域的研究成果和应用。 3. Microsoft Research:在 AI 方面有众多创新研究和技术展示。 此外,WaytoAGI 也是一个致力于人工智能学习的中文知识库和社区平台,汇集了上千个人工智能网站和工具,提供最新的 AI 工具、应用、智能体和行业资讯。在没有任何推广的情况下,WaytoAGI 两年时间已有超过 300 万用户和超千万次的访问量,其目标是让每个人的学习过程少走弯路,让更多的人因 AI 而强大。目前合作过的公司/产品包括阿里云、通义千问、淘宝、智谱、支付宝等。
2025-04-15
提示词网站
以下是为您精选的一些提示词网站: 文本类 Prompt 网站: Learning Prompt:授人以渔,非常详尽的 Prompt 学习资源,包括 ChatGPT 和 MidJourney。网站地址: FlowGPT:国外做的最大的 prompt 站,内容超全面,更新快。网站地址: ChatGPT Shortcut:ChatGPT 提示词网站,提供了非常多使用模板,简单修改即可指定输出。网站地址: ClickPrompt:轻松查看、分享和一键运行模型,创建 Prompt 并与其他人分享。网站地址: Prompt Extend:让 AI 帮你自动拓展 Prompt。网站地址: PromptPerfect:帮你自动优化提示词,你可以看到优化前后的对比。网站地址: PromptKnit:The best playground for prompt designers。网站地址: PromptPort(支持中文):AI Prompt 百科辞典,其中 prompts 是聚合了市场上大部分优质的 prompt 的词库,快速的寻找到用户需求 prompt。网站地址: Prompt Engineering Guide:GitHub 上点赞量非常高的提示工程指南,基于对大语言模型的浓厚兴趣,编写了这份全新的提示工程指南,介绍了大语言模型相关的论文研究、学习指南、模型、讲座、参考资料、大语言模型能力以及与其他与提示工程相关的工具。网站地址: LangChain Hub:提示词管理工具,LangChain 推出了 LangChain Hub,一个提示词上传、浏览、拉取和管理的工具。网站地址: 微软 Prompt Flow:微软发布开源的 LLM 开发工具集 Prompt flow,它简化了基于 LLM 的人工智能应用程序的端到端开发周期,从构思、原型设计、测试、评估到生产部署和监控,对于简单工作流非常实用。网站地址: 与 SD 相关的提示词网站: Majinai: 词图: Black Lily: Danbooru 标签超市: 魔咒百科词典: AI 词汇加速器: NovelAI 魔导书: 鳖哲法典: Danbooru tag: AIBooru:
2025-04-14
Deepseek自动生成网站前端页面
以下是关于 DeepSeek 自动生成网站前端页面的相关内容: DeepSeek v3 能力更新后虽能生成炫目的前端页面,但多为静态且实用性有限。可结合飞书多维表格将生成的漂亮前端变为真实的系统,如【智能作业分发系统】。 该系统整体包括用户登陆(可加飞书调查表二维码实现注册)、作业类型、作业详情(含连连看游戏、AI 智能问答、考试系统)。其实现逻辑为用户登陆系统后进入页面看到老师分配的作业分类,选择分类进入作业详情页面,详情页有学习单词发音及三个模块。 对于小白,可用飞书作数据源,通过飞书 API 接口获取内容,用 DeepSeek v3 制作前端+后端(用 Trae 更方便)。获取请求参数时,测试成功后的示例代码中有完整的请求参数和请求体可直接复制使用。创建前后端时,若用 DeepSeek 官网搭建需按代码目录结构创建对应文件(用 Trae 可省略),首次运行可能遇到飞书 API 未正确配置 CORS 导致浏览器拦截请求的问题,V3 会给出修改意见。 此外,Same dev 能像素级复制任意 UI 界面并生成前端代码,支持多种文件格式和技术栈代码,但免费额度消耗快,网站被谷歌标记。360 智脑复现了 DeepSeek 强化学习效果并发布开源模型 LightR114BDS。 AI 时代生存法则:会提需求比会写代码更重要,会开脑洞比会复制粘贴更值钱,真正的大佬都是让 AI 当乙方!
2025-04-13
图生图网站排名推荐
以下是为您推荐的图生图网站排名: 1. 文生图: Imagen 3:真实感满分,指令遵从强。 Recraft:真实感强,风格泛化很好,指令遵从较好(会受风格影响)。 Midjourney:风格化强,艺术感在线,但会失真,指令遵从较差。 快手可图:影视场景能用,风格化较差。 Flux.1.1:真实感强,需要搭配 Lora 使用。 文生图大模型 V2.1L(美感版):影视感强,但会有点油腻,细节不够,容易糊脸。 Luma:影视感强,但风格单一,糊。 美图奇想 5.0:AI 油腻感重。 腾讯混元:AI 油腻感重,影视感弱,空间结构不准。 SD 3.5 Large:崩。 2. 图生视频: pd 2.0 pro:即梦生成的画面有点颗粒感,p2.0 模型还是很能打的,很适合做一些二次元动漫特效,理解能力更强,更适合连续运镜。 luma 1.6:画面质量挺好,但是太贵了。 可灵 1.6 高品质:YYDS! 海螺01live:文生视频比图生视频更有创意,图生也还可以,但是有时候大幅度动作下手部会出现模糊的情况,整体素质不错,就是太贵了。 runway:我的快乐老家,画面质量不算差,适合做一些超现实主义的特效、经特殊就容镜头的。 智谱 2.0:做的一些画面特效挺出圈的,适合整过,但是整体镜头素质还差点,好处就是便宜,量大,管饱,还能给视频加音效。 vidu1.5:二维平面动画的快乐老家,适合做特效类镜头,单镜头也很惊艳,大范围运镜首尾帧 yyds!就是太贵了!!!!! seaweed 2.0 pro:s2.0 适合动态相对小的,更适合环绕旋转运镜动作小的。 pixverse v3 高品质:pincerse 的首尾帧还是非常能打的,就是画面美学风格还有待提升的空间。 sora:不好用,文生视频挺强的,但是最需要的图生视频抽象镜头太多,半成品都算不上,避雷避雷避雷,浪费时间。 3. 小白也能使用的国内外 AI 生图网站: 可灵可图 1.5:https://app.klingai.com/cn/texttoimage/new 通义万相(每日有免费额度):https://tongyi.aliyun.com/wanxiang/creation 文心一言:https://yiyan.baidu.com/ 星流(每日有免费额度):https://www.xingliu.art/ Libiblib(每日有免费额度但等待较久):https://www.liblib.art/
2025-04-13
有没有免费制作数字人的网站?
以下是一些免费制作数字人的网站及使用方法: HEYGEN: 优点:人物灵活,五官自然,视频生成很快。 缺点:中文的人声选择较少。 使用方法:点击网址注册后,进入数字人制作,选择Photo Avatar上传自己的照片。上传后效果如图所示,My Avatar处显示上传的照片。点开大图后,点击Create with AI Studio,进入数字人制作。写上视频文案并选择配音音色,也可以自行上传音频。最后点击Submit,就可以得到一段数字人视频。 DID: 优点:制作简单,人物灵活。 缺点:为了防止侵权,免费版下载后有水印。 使用方法:点击上面的网址,点击右上角的Create vedio。选择人物形象,可以点击ADD添加照片,或者使用DID给出的人物形象。配音时,可以选择提供文字选择音色,或者直接上传一段音频。最后,点击Generate vedio就可以生成一段视频。打开自己生成的视频,可以下载或者直接分享给朋友。 KreadoAI: 优点:免费(对于普通娱乐玩家很重要),功能齐全。 缺点:音色很AI。 使用方法:点击上面的网址,注册后获得120免费k币,这里选择“照片数字人口播”的功能。点击开始创作,选择自定义照片。配音时,可以选择提供文字选择音色,或者直接上传一段音频。打开绿幕按钮,点击背景,可以添加背景图。最后,点击生成视频。 此外,在剪映中也可以生成数字人:在剪映右侧窗口顶部,打开“数字人”选项,选取一位免费的、适合的数字人形象,比如“婉婉青春”。选择数字人形象时,软件会播放声音,可判断是否需要,点击右下角的“添加数字人”,将其添加到当前视频中。软件会根据提供的内容生成对应音视频,并添加到当前视频文件的轨道中。左下角会提示渲染完成,可点击预览按钮查看效果。还可以为视频增加背景图片,删除先前导入的文本内容,点击左上角的“媒体”菜单并点击“导入”按钮,选择本地图片上传,将图片添加到视频轨道上,通过拖拽轨道右侧竖线使其与视频对齐。
2025-04-11
请帮我生成一个大三毕业论文的题目,专业是关于计算机应用的,技术栈:Python(Pandas/Matplotlib),MYSQL,生成可视化图表,可生成HTML网站,包含数据分析,需要有最基本的功能,最好与生活中的某些东西联系起来
以下是为您生成的几个与生活相关的计算机应用专业大三毕业论文题目,供您参考: 1. 《基于 Python 和 MySQL 的居民日常消费数据分析及可视化网站构建》 2. 《利用 Python 和 MySQL 分析城市交通流量数据并实现可视化与网站展示》 3. 《基于 Python 和 MySQL 的家庭能源消耗数据分析与可视化网站设计》 4. 《运用 Python 和 MySQL 对校园图书馆借阅数据的分析及可视化网站开发》 5. 《通过 Python 和 MySQL 研究城市空气质量数据的可视化分析与网站实现》
2025-04-11
AI产品经理招聘
以下是为您整理的 AI 产品经理招聘信息: 特看科技: 岗位要求: 负责 AI 视频工具方向产品工作,对生成式 AI 产品有一定研究,熟悉 Transformer 和 Diffusion 模型的优先。 英文好,有海外产品经验优先,有内容工具或 SaaS 产品经验优先。 2 年以上产品岗位经验,职级根据经验能力制定,对标阿里 P6P8 区间。 您能得到: 确定性的商业化应用场景,已有大量品牌客户。 初创公司充沛的早期期权池。 强大的工程师团队,将新技术快速落地应用。 最高可到合伙人级别。 加分项:有电子商务、企业服务、人工智能、海外产品等行业经验。 联系方式:欢迎推荐或自荐简历至 qingshen@tabcut.com,或飞书与@清慎联系。 阿里大文娱妙鸭团队: 工作地点:北京 职位要求: 熟悉图像、视频、文本领域的前沿大模型和应用。 对算法能力边界有很好的感知。 有某一场景下的大模型微调和应用的项目经验。 联系方式:欢迎推荐简历至 xiaocen.cxc@alibabainc.com 其他: 职责描述: 负责基于通用人工智能技术(AGI)的智慧医疗诊断产品的规划、研发、发布上市的全过程管理。 通过市场调研和分析,开发满足客户需求的产品或服务,为公司制定产品战略。 制定并执行产品开发计划和目标,协调项目相关人员,推动产品开发工作的顺利进行。 提出产品优化建议,推动产品快速迭代,并协调增长部门实现产品的持续增长。 任职要求: 本科及以上学历,计算机、信息技术、工程、检验、生物科学、细胞生物学等相关专业优先考虑。 具备 3 年以上产品管理经验,有医疗领域产品管理经验者、有极致产品案例者优先。 在产品创新、研发、迭代改进及商业化方面有丰富的项目管理经验。 对客户需求具有高度敏感度,熟悉竞品分析、定价策略。
2025-04-15
金融业相关AI应用场景或AI技术介绍
在金融业中,AI 有以下应用场景和技术: 1. 风控和反欺诈:用于识别和阻止欺诈行为,降低金融机构的风险。 2. 信用评估:评估借款人的信用风险,帮助金融机构做出更好的贷款决策。 3. 投资分析:分析市场数据,辅助投资者做出更明智的投资决策。 4. 客户服务:提供 24/7 的客户服务,回答客户常见问题。 例如,Hebbia 获得近 1 亿美元 B 轮融资,其 AI 技术能够一次处理多达数百万份文档,在短时间内浏览数十亿份包括 PDF、PowerPoint、电子表格和转录内容等,并返回具体答案,主要面向金融服务公司,如对冲基金和投资银行,同时也适用于律师事务所等其他专业领域。
2025-04-15
AI meeting summary tools
以下是一些 AI 会议总结工具: :这是一款 GDPR 合规的 AI 会议助手,专为 Zoom、Google Meet、Microsoft Teams 会议设计,能够根据用户的指令制作定制笔记,将长时间录音压缩成 2 分钟会议摘要,以用户偏好结构和语言编写笔记,捕捉重要细节,用户可连接日历让其代做笔记,提高效率,其笔记功能出色,能识别行动项提高会议效率,远超其他提供商。
2025-04-15
AI Agents(智能体)
AI 智能体(Agents)是人工智能领域中一个重要的概念: 1. 从 AGI 的发展等级来看,智能体不仅具备推理能力,还能执行全自动化业务,但目前许多 AI Agent 产品在执行任务后仍需人类参与,尚未达到完全智能体的水平。 2. 作为大模型的主要发展方向之一,智能体中间的“智能体”其实就是大模型(LLM)。通过为 LLM 增加工具、记忆、行动、规划这四个能力来实现。目前行业里主要用到的是 langchain 框架,它把 LLM 与 LLM 之间以及 LLM 与工具之间通过代码或 prompt 的形式进行串接。 3. 从智能体的起源探究来看,心灵社会理论认为智能是由许多简单的 Agent(分等级、分功能的计算单元)共同工作和相互作用的结果。这些 Agent 在不同层次上执行不同的功能,通过协作实现复杂的智能行为。心灵社会将智能划分为多个层次,每个层次由多个 Agent 负责,每个 Agent 类似于功能模块,专门处理特定类型的信息或执行特定任务。同时存在专家 Agent、管理 Agent、学习 Agent 等不同类型的 Agent 及其相应功能。从达特茅斯会议开始讨论人工智能,到马文·明斯基引入“Agent”概念,“AI”和“Agent”就彻底聚齐,往后被称之为 AI Agent。
2025-04-15
B端AI Agent
以下是关于 B 端 AI Agent 的相关知识: 一、概念定义 1. 智能体(Agent)简单理解就是 AI 机器人小助手,参照移动互联网,类似 APP 应用的概念。随着 ChatGPT 与 AI 概念的爆火,出现了很多相关新名词,如 bot 和 GPTs 等。AI 大模型是技术,面向用户提供服务的是产品,因此很多公司关注 AI 应用层的产品机会。 C 端案例:如社交方向,用户注册后先捏一个自己的 Agent,然后让其与他人的 Agent 聊天,两个 Agent 聊到一起后真人再介入;还有借 Onlyfans 入局打造个性化聊天的创业公司。 B 端案例:字节扣子和腾讯元器若为面向普通人的低代码平台,类似 APP 时代的个人开发者,那么帮助 B 端商家搭建 Agent 就类似 APP 时代专业做 APP 的。 2. 智能体开发平台:最早接触到的扣子 Coze 是通过一篇科技报道,如 2 月 1 日,字节正式推出 AI 聊天机器人构建平台 Coze 的国内版“扣子”,主要用于开发下一代 AI 聊天机器人。国内还有很多智能体开发平台,如 Dify.AI,但个人较常用的是扣子,所以常对比字节扣子和腾讯元器。 3. 关注智能体的原因:目前 AI Agent 的概念在市场上未达成共识,存在被滥用现象。AI Agent 指的是一种智能代理系统,接近人类大脑,可形成记忆、达成行动规划、自动交互、主动预测。其应用具有个性化、自主完成任务、多 Agent 协作等特点。目前 AI Agent 应用大多集中在 2B 场景,面向个人消费者的产品少,一方面是高度智能化的 Agent 能力需打磨,概念落地有距离;另一方面是 AI 和娱乐消费诉求结合少,主要带来生产方式和效率变革,个人消费者方向目前只看到“私人助理”场景。
2025-04-15
我想做电商主图,用什么ai
如果您想制作电商主图,可以考虑以下几种 AI 工具和方法: 1. Midjourney:通过输入相关关键词,如“Guerlain Perfume,plant flowers,top light.cean natural backaround with water,saturation color scheme.The productis bright,Motled shading,studo lighfing,contrast high precision,Fine gloss,Centered composition,Photography,HD4Krealism–q 2–v 5–s 750–ar 9:16”,生成图片后再进行后期修改调整和文字排版。 2. Stable Diffusion:对于运营网店的女装店主,可采用局部重绘的方法。先真人穿衣服拍照,获取真实质感的照片,选好真人照片风格的底模,如 majicmixRealistic_v7,再根据不同平台需求换头,如面向海外市场换白女头,然后在图生图下的局部重绘选项卡下涂抹自己替换的部分,并设置相关的 prompts 和 parameters,如“breathtaking cinematic photo,masterpiece,best quality,,blonde hair,silver necklace,carrying a white bag,standing,full body,detailed face,big eyes,detailed hands”。
2025-04-15
想自学ai训练师 推荐哪个视频去学习
以下是为您推荐的自学 AI 训练师的视频: 1. 3 月 26 日|自由讨论|离谱视频切磋大会 猫先生介绍自己的背景和擅长领域 AI 学习与实践的重要性 AI 交流会:分享项目经验和技能 讨论比赛规则和资源分配 AI 工具学习与合作 广州 AI 训练师叶轻衣分享使用 AI 工具的经验和想法 组队提升工作效率 AI 技术在 3D 动画制作中的应用与优势 链接:https://waytoagi.feishu.cn/minutes/obcnc915891t51l64uyonvp2?t=0 2. AI 大神 Karpathy 再发 LLM 入门介绍视频 神经网络训练的目标:训练神经网络的目标是让模型学习 token 在序列中彼此跟随的统计关系,即预测给定上下文(token 序列)后,下一个最有可能出现的 token。 Token 窗口:训练时,模型从数据集中随机抽取固定长度的 token 窗口(例如 8000 个 token)作为输入。 神经网络的输入与输出:输入为 Token 序列(上下文),输出为预测下一个 token 的概率分布,词汇表中每个 token 都有一个概率值。 随机初始化与迭代更新:神经网络初始参数是随机的,预测也是随机的。训练过程通过迭代更新参数,调整预测结果,使其与训练数据中的统计模式相匹配。 损失函数与优化:训练过程使用损失函数来衡量模型预测与真实 token 的差距。优化算法(如梯度下降)用于调整参数,最小化损失函数,提高预测准确率。 神经网络内部结构:Transformer 包含注意力机制和多层感知器等组件,能够有效地处理序列数据并捕捉 token 之间的复杂关系。 链接:无
2025-04-12
想自学ai训练师
如果您想自学成为 AI 训练师,以下是一些相关的知识和建议: 一、AI 训练的基本概念 训练是指通过大数据训练出一个复杂的神经网络模型。这需要使用大量标记过的数据来训练相应的系统,使其能够适应特定的功能。训练过程需要较高的计算性能,能够处理海量的数据,并具有一定的通用性,以便完成各种各样的学习任务。 二、相关领域的知识 1. 机器学习:机器学习是人工智能的一个分支,是实现人工智能的途径之一,涉及概率论、统计学、逼近论、凸分析、计算复杂性理论等多门学科。 2. 自然语言处理:自然语言(NLP)认知和理解是让电脑把输入的语言变成有意思的符号和关系,然后根据目的再处理。自然语言生成系统则是把计算机数据转化为自然语言,是人工智能和语言学领域的分支学科。 三、学习资源和实践 您可以参考以下的一些资源和实践方式: 1. 参加相关的线上交流会,例如 3 月 26 日的自由讨论活动,其中会分享项目经验、技能以及使用 AI 工具的经验和想法。 2. 了解一些健身的 AI 产品,如 Keep(https://keep.com/)、Fiture(https://www.fiture.com/)、Fitness AI(https://www.fitnessai.com/)、Planfit(https://planfit.ai/)等,虽然这些主要是健身领域的应用,但也能帮助您了解 AI 在不同场景中的应用和创新。 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2025-04-12
怎么用把AI训练成自己的东西?
要将 AI 训练成自己的东西,可以参考以下方法: 1. 像马斯克提到的,对于公开的推文数据可以合理使用,但不能使用私人的东西进行训练。同时,要注重数据的质量和使用方式,高质量的数据对于训练效果至关重要。 2. 张梦飞的方法中,例如部署 LLama Factory 时,需要添加选中“identity”数据集,将训练轮数改成 15 等,并通过一系列操作进行训练和测试。但需要注意的是,训练大模型是复杂的过程,数据集和训练参数都会影响最终效果,需要反复调试和深入学习实践。 3. 在写作方面,我们可以根据自身需求选择人类驱动为主,利用 AI 进行修改完善,或者先由 AI 生成内容再进行修改以符合自己的风格。
2025-04-11
如何训练一个AI 阅读教练
训练一个 AI 可以类比为培养一位职场新人,主要包括以下三个阶段: 1. 规划阶段:明确目标 确定 AI 的具体任务,比如结构化外文精读等。 将任务拆解为可管理的子任务。 设计每个子任务的执行方法。 2. 实施阶段:实战指导 搭建工作流程。 为每个子任务设置清晰的操作指南。 像指导新员工一样,手把手引导 AI 完成任务,并及时验证其输出质量。 3. 优化阶段:持续改进 通过反复测试和调整,不断优化 AI 的性能。 调整工作流程和 Prompt 配置,直到 AI 能稳定输出高质量的结果。 当前大模型在处理多步骤复杂任务时存在明显局限,比如在“数据分析图表、剧情游戏”或“本文结构化外文精读”等任务中,仅依靠单一 Prompt 指令难以稳定执行,现阶段的 AI 更像缺乏独立解决问题能力的职场新人,需要遵循指引和给定的流程才能完成特定任务。如果您已经完全了解上述内容,不妨自己设定一个任务目标,动手构建一个专属于自己的 AI 。
2025-04-11
模型训练的基本名词和方法
以下是关于模型训练的基本名词和方法的介绍: 基本名词: 1. 过拟合&欠拟合:过拟合和欠拟合都是不好的现象,需要加以控制以让模型达到理想效果。解决方法包括调整训练集、正则化和训练参数等,过拟合可减少训练集素材量,欠拟合则增加训练集素材量。 2. 泛化性:泛化性不好的模型难以适应其他风格和多样的创作。可通过跑 lora 模型生图测试判断泛化性,解决办法与过拟合和欠拟合类似,从训练集、正则化、训练参数等方面调整。 3. 正则化:是解决过拟合和欠拟合情况、提高泛化性的手段,给模型加规则和约束,限制优化参数,有效防止过拟合,提高模型适应不同情况的表现和泛化性。 方法: 1. 全面充分采集训练素材:例如在角色训练素材中,应包含各种角度、表情、光线等情况的素材,确保模型具有较好泛化性。 2. 图像预处理:对训练素材进行分辨率调整、裁切操作,并对训练集进行打标签处理。 3. 参数调优:尽量将训练时长控制在半小时左右,过长易导致过拟合,通过调整参数控制时长。 4. 观察学习曲线:通过观察学习曲线来调整训练素材和参数。 5. 过拟合&欠拟合处理:测试训练好的模型,观察过拟合和欠拟合问题,进一步通过调整训练素材和正则化等手段优化。 此外,在模型训练中还需注意: 1. 数据集获取渠道:可通过网上收集、购买、使用无版权问题的如古画等,原则是根据生成图的需求找对应数据集,要清晰、主体元素干净、风格统一。 2. 数据集处理:包括基础处理如裁剪保证清晰和分辨率,更重要的是写标注。 3. 设置模型触发词:可自定义,完整形式可以是一句话,建议以王 flags 模型为主。 4. 统一标注风格与应用场景:例如未来高科技 3D 天然风格,用于互联网首页图像等,并概括主题内容、描述物体特征等。 5. 利用 GPT 辅助描述并人工审核:让 GPT 按要求描述,人工审核修改。 6. 模型训练的准备与流程:完成数据集描述后进入训练流程,选择模型训练分类和数据集,创建并上传数据集压缩包,注意数据名与图片命名一致。选择训练模式和参数,新手选用普通基础模式,训练集质量重要,训练参数中总步数与训练集图片数量相关,触发词设定要避免概念混乱。
2025-04-09
Lora训练
以下是关于 Lora 训练的详细步骤: 创建数据集: 1. 进入厚德云模型训练数据集(https://portal.houdeyun.cn/sd/dataset)。 2. 在数据集一栏中,点击右上角创建数据集。 3. 输入数据集名称。 4. 可以上传包含图片+标签 txt 的 zip 文件,也可以只有图片没有打标文件(之后可在 C 站使用自动打标功能),或者一张一张单独上传照片,但建议提前把图片和标签打包成 zip 上传。 5. Zip 文件里图片名称与标签文件应当匹配,例如:图片名“1.png”,对应的达标文件就叫“1.txt”。 6. 上传 zip 以后等待一段时间。 7. 确认创建数据集。 8. 返回到上一个页面,等待一段时间后上传成功,可以点击详情检查,预览到数据集的图片以及对应的标签。 Lora 训练: 1. 点击 Flux,基础模型会默认是 FLUX 1.0D 版本。 2. 选择数据集,点击右侧箭头,会跳出所有上传过的数据集。 3. 触发词可有可无,取决于数据集是否有触发词。模型效果预览提示词则随机抽取一个数据集中的标签填入即可。 4. 训练参数这里可以调节重复次数与训练轮数,厚德云会自动计算训练步数。如果不知道如何设置,可以默认 20 重复次数和 10 轮训练轮数。 5. 可以按需求选择是否加速,点击开始训练,会显示所需要消耗的算力。 6. 然后等待训练,会显示预览时间和进度条。 7. 训练完成的会显示出每一轮的预览图。 8. 鼠标悬浮到想要的轮次模型,中间会有个生图,点击会自动跳转到使用此 lora 生图的界面。点击下方的下载按钮则会自动下载到本地。 此外,还有一些相关的补充内容: Flux 的 Lora 训练准备: 需要下载几个模型:t5xxl_fp16.safetensors、clip_l.safetensors、ae.safetensors、flux1dev.safetensors。 注意: 1. 不使用的话它们放到哪里都可以,甚至放一起一个文件夹,只要知道“路径”,后面要引用到“路径”。 2. 因为是训练,不是跑图,训练的话,模型就用 flux1dev.safetensors 这个版本,编码器也用 t5xxl_fp16.safetensors 这个版本最好。 下载脚本和安装虚拟环境: 1. 下载脚本: 夸克网盘链接:https://pan.quark.cn/s/ddf85bb2ac59 百度网盘链接:https://pan.baidu.com/s/1pBHPYpQxgTCcbsKYgBi_MQ?pwd=pfsq 提取码:pfsq 2. 下载完解压,在文件中找到 installcnqinglong.ps1 这个文件,右键选择“使用 PowerShell 运行”,新手的话这里就点击“Y”,然后等待 1 2 小时的漫长下载过程,下好了之后最后会提示是否下载 hunyuan 模型,选择 n 不用下载。 SD 训练一套贴纸 LoRA 模型: 1. 在 lora 训练器的根目录下,点击【A 强制更新国内加速】,跑完即可关闭窗口。 2. 双击【A 启动脚本】,请保持终端一直运行,不要关闭。出现下列代码即为启动成功。 3. 滚动至最下点击【LoRA 训练】或者直接点击左侧菜单【LoRA 训练】。
2025-03-30
如何更好地进行提问,使得AI回复的准确性更高?
以下是一些能让您更好地进行提问,从而提高 AI 回复准确性的方法: 1. 明确角色和任务:例如,指定 AI 为某一特定领域的专业人士,并明确其需要完成的具体任务。 2. 清晰阐述任务目标:让 AI 清楚了解您期望得到的结果。 3. 提供详细的上下文和背景信息:包括相关的案例、事实等,帮助 AI 理解问题的来龙去脉。 4. 提出具体且详细的需求和细节性信息:使用清晰、具体的语言,避免模糊不清的表述。 5. 明确限制和不需要的内容:避免 AI 给出不必要或不符合要求的回答。 6. 确定回答的语言风格和形式:如简洁明了、逻辑严谨等。 7. 讲清楚背景和目的:在提问时,梳理清楚背景信息和提问目的,使 AI 更好地理解问题上下文。 8. 学会拆解环节、切分流程:将复杂任务分解成更小、更具体的环节,以便 AI 更精确执行。 9. 了解 AI 的工作原理和限制:有助于更好地设计问题,使其能提供有用答案。 在信息检索和回答生成过程中: 1. 系统会对检索器提供的信息进行评估,筛选出最相关和最可信的内容,并对信息的来源、时效性和相关性进行验证。 2. 消除多个文档或数据源中的冗余内容,防止在生成回答时出现重复或相互矛盾的信息。 3. 分析不同信息片段之间的逻辑和事实关系,构建结构化的知识框架,使信息在语义上更连贯。 4. 将筛选和结构化的信息组织成连贯的上下文环境,包括排序、归类和整合。 5. 必要时进行语义融合,合并意义相近但表达不同的信息片段。 6. 最后,将整合好的上下文信息编码成适合生成器处理的格式,传递给大语言模型,由其生成准确和连贯的答案。
2025-04-04
我想学习ai视频ai生图的相关技能,并且我不想速成,我想了解其中的底层原理以便可以更好的控制生成的内容,我应该如何学习
以下是关于学习 AI 视频和生图相关技能的一些建议: 一、基础概念 1. 模型 Checkpoint:生图必需的基础模型,任何生图操作必须选定一个才能开始。 Lora:低阶自适应模型,可视为 Checkpoint 的小插件,用于精细控制面部、材质、物品等细节。 VAE:编码器,功能类似于滤镜,可调整生图的饱和度,一般选择 840000 这个。 2. 提示词 Prompt 提示词:想要 AI 生成的内容,需要花费功夫学习,可从照抄别人开始。 负向提示词 Negative Prompt:想要 AI 避免产生的内容,同样需要学习,可从照抄开始。 3. 其他概念 ControlNet:控制图片中特定图像,如人物姿态、特定文字、艺术化二维码等,属于高阶技能,可后续学习。 ADetailer:面部修复插件,用于治愈脸部崩坏,是高阶技能。 二、参数设置 1. 迭代步数:AI 调整图片内容的次数。步数越多,调整越精密,出图效果理论上更好,但耗时越长,且并非越多越好。 2. 尺寸:图片生成的尺寸大小,需适中选择,太小生成内容有限,太大 AI 可能放飞自我。 3. 生成批次和每批数量:决定重复生成图的批次和每批次同时生成的图片数量。 4. 提示词引导系数:指图像与 prompt 的匹配程度,数字增大图像更接近提示,但过高会使图像质量下降。 5. 随机数种子:固定后可对图片进行“控制变量”操作,首次生成图时无需关注。 6. 重绘幅度:图生图时用到,幅度越大,输出图与输入图差别越大。 在学习过程中,您可以先从熟悉基础模型、提示词和常见参数设置入手,通过实践和参考他人的经验不断积累知识,逐步掌握更高级的技能和工具。
2025-03-24
作为一名高中语文教师,该学习哪些知识,能够更好地在工作中运用AI
作为一名高中语文教师,为了在工作中更好地运用 AI,您可以学习以下知识: 1. 提示词设计:掌握有效的提示词设计公式,例如 RTFC,以便更精准地向 AI 提出需求。 2. 利用 AI 工具:如用 Metaso 建立案例库,随时询问随时学习。 3. 了解 AI 在教学中的应用技巧:包括用 AI 配字幕、翻译、思维导图等快速总结和学习讲座内容。 4. 掌握 AI 赋能教学设计:以高中语文课程标准为导向,结合学生主体和核心素养,设计教学流程。例如在《再别康桥》的教学设计中,通过创设情境、品鉴特色、融思迁移等环节,融入地理、美术、音乐等多学科知识,借助人工智能协助修改诗歌创作。 5. 学习智能作文批改指导:利用相关工具提升作文批改的效率和质量。 6. 参加相关工作坊:如 AI 进阶工作坊,了解最新 AI 技术与实践案例分享,掌握全球 AI 技术在教育界的新发展和新应用。 同时,建议您参加适合有初步 AI 使用经验、期待了解最新技术进展、渴望分享交流的老师的课程和活动,不断提升自己在 AI 应用方面的能力。
2025-03-24
降本增效的情况下建筑设计院自己开发AI和应用好现有的AI哪个选择更好
在降本增效的情况下,建筑设计院是自己开发 AI 还是应用现有的 AI,需要综合多方面因素来考虑。 现有的 AI 工具已经在很多领域带来了显著的优势,例如: 1. 提高效率:能够快速产生创意效果和设计方案。 2. 丰富设计效果:极大地丰富了设计自由度,实现各种创意。 3. 拓展工作流程:促使设计工作流程重新组合再造,拓展设计师的思维边界。 同时,也有一些专门针对建筑设计的现有 AI 工具,比如: 1. HDAidMaster:云端工具,在建筑、室内和景观设计领域表现出色,搭载自主训练的建筑大模型,软件 UI 和设计成果颜值在线。 2. Maket.ai:面向住宅行业,在户型和室内软装设计方面有 AI 技术探索,能根据输入需求自动生成户型图。 3. ARCHITEChTURES:AI 驱动的三维建筑设计软件,在住宅设计早期阶段可引入标准和规范约束设计结果。 4. Fast AI 人工智能审图平台:形成全自动智能审图流程,能实现建筑全寿命周期内信息的集成与管理。 然而,自己开发 AI 也有其潜在的好处,比如可以更精准地满足设计院的特定需求和业务特点。但开发 AI 需要投入大量的资源和时间,包括技术人才、资金、研发周期等。 综上所述,建筑设计院应根据自身的技术实力、资源状况、业务需求的独特性等因素来权衡选择。如果资源有限且现有工具能满足大部分需求,应用现有的 AI 可能是更好的选择;如果对特定功能有极高的要求且有足够的能力和资源支持,自己开发 AI 也未尝不可。
2025-03-23
比coze更好de平台是?
以下是一些比 Coze 更好的 Agent 构建平台: 1. Microsoft 的 Copilot Studio:主要功能包括外挂数据、定义流程、调用 API 和操作,以及将 Copilot 部署到各种渠道。 2. 文心智能体:百度推出的基于文心大模型的智能体平台,支持开发者根据自身需求打造大模型时代的产品能力。 3. MindOS 的 Agent 平台:允许用户定义 Agent 的个性、动机、知识,以及访问第三方数据和服务或执行设计良好的工作流。 4. 斑头雁:2B 基于企业知识库构建专属 AI Agent 的平台,适用于客服、营销、销售等多种场景,提供多种成熟模板,功能强大且开箱即用。 5. 钉钉 AI 超级助理:依托于钉钉强大的场景和数据优势,提供更深入的环境感知和记忆功能,在处理高频工作场景如销售、客服、行程安排等方面表现出色。 此外,还有以下相关信息: 1. 字节扣子介绍:中文版:https://www.coze.cn/(支持大模型:豆包、通义千问、Moonshot 等);国际英文版:https://coze.com/(支持大模型:ChatGPT4 等)。 2. 腾讯元器介绍:网址:https://yuanqi.tencent.com/(支持大模型:腾讯混元大模型)。字节跳动的 AI Bot 开发平台「扣子」Coze 国内版于 2024 年 2 月 1 日正式上线,腾讯元器于 2024 年 5 月 17 日举办的腾讯云生成式 AI 产业应用峰会上发布。个人感受扣子的新手引导做的比元器好。 3. Poe 推出:Poe Apps 无需编码,可使用平台上的模型创建自己的 AI 应用并发布赚钱,拖拽式创建 AI 应用,类似 Coze,但体验更好,更像是加强版 GPTs,有编程经验的用户还能自定义 HTML 和 JavaScript 进行高级开发。 您可以根据自己的需求选择适合的平台进行进一步探索和应用。
2025-03-20
在国内用什么ai生成ppt更好一些
在国内,以下两款 AI 生成 PPT 的工具值得推荐: 1. 爱设计 PPT: 拥有实力强大的团队,技术过硬且对市场需求有敏锐洞察力,能持续推动产品创新和进步。 成功把握住 AI 与 PPT 结合的市场机遇,迅速开发出产品。 已在国内 AI 生成 PPT 产品中确立市场领先地位,代表了当前国内 AI 辅助 PPT 制作的最高水平,能大大提高制作效率并保证高质量输出。 2. 闪击: 网址:https://ppt.isheji.com/?code=ysslhaqllp&as=invite ,国内网站,不需要魔法。 选择模版,输入大纲和要点(可参考官方使用指南:https://zhuanlan.zhihu.com/p/607583650 ),将大纲转换成适配闪击的语法,点击文本转 PPT 并确定,在线编辑,导出(PPT 需要会员才能导出)。
2025-03-18