Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

具身智能是什么技术?用小学生能理解的话术回答

Answer

小朋友,具身智能呀,是人工智能里的一种很有趣的技术。

它说的是像机器人、虚拟代理这样的智能体,要通过和真实世界或者虚拟环境直接打交道来变得更聪明。

比如说,智能体要有能感觉周围环境的能力,能自己到处走,能拿东西、操作东西,还能学习新本领,适应新环境。

具身智能很在意智能体的“身体”,这个“身体”可以是机器人的样子,也可以是游戏里的虚拟角色。这些“身体”能帮智能体和环境互动,还会影响智能体学习。

像机器人可以通过它的手学会抓东西、摆弄东西,虚拟代理在游戏里能学会解决问题。

研究具身智能要用到好多知识,像机器人学、认知科学、神经科学还有计算机视觉。

在机器人领域,具身智能能让机器人更好地理解和适应我们人类的生活环境,跟我们交流更自然。在虚拟现实、增强现实和游戏里,也能让我们玩得更开心。

不过呢,具身智能还有一些难题要解决,比如怎么设计智能体的身体让它更聪明,怎么让它在复杂的环境里好好学习,还有怎么处理它和人类社会相关的一些问题。

简单说,具身智能就是给聪明的人工智能装上“身体”,让它能和周围环境更好地交流互动。

Content generated by AI large model, please carefully verify (powered by aily)

References

问:具身智能是什么?

具身智能(Embodied Intelligence)是人工智能领域的一个子领域,它强调智能体(如机器人、虚拟代理等)需要通过与物理世界或虚拟环境的直接交互来发展和展现智能。这一概念认为,智能不仅仅是处理信息的能力,还包括能够感知环境、进行自主导航、操作物体、学习和适应环境的能力。具身智能的核心在于智能体的“身体”或“形态”,这些身体可以是物理形态,如机器人的机械结构,也可以是虚拟形态,如在模拟环境中的虚拟角色。这些身体不仅为智能体提供了与环境互动的手段,也影响了智能体的学习和发展。例如,一个机器人通过其机械臂与物体的互动,学习抓取和操纵技能;一个虚拟代理通过在游戏环境中的探索,学习解决问题的策略。具身智能的研究涉及多个学科,包括机器人学、认知科学、神经科学和计算机视觉等。在机器人学中,具身智能关注的是如何设计能够自主行动和适应环境的机器人;在认知科学和神经科学中,研究者探索大脑如何处理与身体相关的信息,以及这些机制如何应用于人造智能系统;在计算机视觉中,研究者致力于开发算法,使智能体能够理解和解释视觉信息,从而进行有效的空间导航和物体识别。具身智能的一个重要应用是在机器人领域,特别是在服务机器人、工业自动化和辅助技术等方面。通过具身智能,机器人可以更好地理解和适应人类的生活环境,提供更加自然和有效的人机交互。此外,具身智能也在虚拟现实、增强现实和游戏设计等领域有着广泛的应用,通过创造更具沉浸感和交互性的体验,丰富了人们的数字生活。尽管具身智能在理论和技术上取得了显著进展,但它仍面临许多挑战。例如,如何设计智能体的身体以最大化其智能表现,如何让智能体在复杂多变的环境中有效学习,以及如何处理智能体与人类社会的伦理和安全问题等。未来的研究将继续探索这些问题,以推动具身智能的发展和应用。

一篇具身智能的最新全面综述!(上)

具身智能,即“具身+智能”,是将机器学习算法适配至物理实体,从而与物理世界交互的人工智能范式。以ChatGPT为代表的“软件智能体”(或称“离身智能体”)使用大模型通过网页端、手机APP与用户进行交互,能够接受语音、文字、图片、视频的多种模态的用户指令,从而实现感知环境、规划、记忆以及工具调用,执行复杂的任务。在这些基础之上,具身智能体则将大模型嵌入到物理实体上,通过机器配备的传感器与人类交流,强调智能体与物理环境之间的交互。通俗一点讲,就是要给人工智能这个聪明的“头脑”装上一副“身体”。这个“身体”可以是一部手机,可以是一台自动驾驶汽车。而人形机器人则是集各类核心尖端技术于一体的载体,是具身智能的代表产品。具身智能的三要素:本体、智能、环境具身智能的三要素:“本体”,即硬件载体;“智能”,即大模型、语音、图像、控制、导航等算法;“环境”,即本体所交互的物理世界。本体、智能、环境的高度耦合才是高级智能的基础。不同环境下的会有不同形态的硬件本体以适应环境。比如室内平地更适用轮式机器人,崎岖不平的地面更适用四足机器人(机器狗)。在具身智能体与环境的交互中,智能算法可以通过本体的传感器以感知环境,做出决策以操控本体执行动作任务,从而影响环境。在智能算法与环境的交互中还可以通过“交互学习”和拟人化思维去学习和适应环境,从而实现智能的增长。具身智能的四个模块:感知-决策-行动-反馈一个具身智能体的行动可以分为“感知-决策-行动-反馈”四个步骤,分别由四个模块完成,并形成一个闭环。

AI-Agent系列(一):智能体起源探究

理解工具:AI Agent有效使用工具的前提是全面了解工具的应用场景和调用方法。没有这种理解,Agent使用工具的过程将变得不可信,也无法真正提高AI Agent的能力。利用LLM强大的zero-shot learning和few-shot learning能力,AI Agent可以通过描述工具功能和参数的zero-shot demonstartion或提供特定工具使用场景和相应方法演示的少量提示来获取工具知识。这些学习方法与人类通过查阅工具手册或观察他人使用工具进行学习的方法类似。在面对复杂任务时,单一工具往往是不够的。因此,AI Agent应首先以适当的方式将复杂任务分解为子任务,然后有效地组织和协调这些子任务,这有赖于LLM的推理和规划能力,当然也包括对工具的理解。使用工具:AI Agent学习使用工具的方法主要包括从demonstartion中学习和从reward中学习(清华有一篇从训练数据中学习的文章)。这包括模仿人类专家的行为,以及了解其行为的后果,并根据从环境和人类获得的反馈做出调整。环境反馈包括行动是否成功完成任务的结果反馈和捕捉行动引起的环境状态变化的中间反馈;人类反馈包括显性评价和隐性行为,如点击链接。具身智能在追求人工通用智能(AGI)的征途中,具身Agent(Embodied Agent)正成为核心的研究范式,它强调将智能系统与物理世界的紧密结合。具身Agent的设计灵感源自人类智能的发展,认为智能不仅仅是对预设数据的处理,更多地来自于与周遭环境的持续互动和反馈。与传统的深度学习模型相比,LLM-based Agent不再局限于处理纯文本信息或调用特定工具执行任务,而是能够主动地感知和理解其所在的物理环境,进而与其互动。这些Agent利用其内部丰富的知识库,进行决策并产生具体行动,以此改变环境,这一系列的行为被称为“具身行动”。

Others are asking
具身智能最核心的技术热点是什么
具身智能最核心的技术热点包括以下方面: 1. 人机混合增强智能标准:规范多通道、多模式和多维度的交互途径、模式、方法和技术要求,如脑机接口、在线知识演化、动态自适应、动态识别、人机协同感知、人机协同决策与控制等。 2. 智能体标准:规范以通用大模型为核心的智能体实例及智能体基本功能、应用架构等技术要求,包括智能体强化学习、多任务分解、推理、提示词工程,智能体数据接口和参数范围,人机协作、智能体自主操作、多智能体分布式一致性等。 3. 群体智能标准:规范群体智能算法的控制、编队、感知、规划、决策、通信等技术要求和评测方法,包括自主控制、协同控制、任务规划、路径规划、协同决策、组网通信等。 4. 跨媒体智能标准:规范文本、图像、视频、音频等多模态数据处理基础、转换分析、融合应用等方面的技术要求,包括数据获取与处理、模态转换、模态对齐、融合与协同、应用扩展等。 5. 具身智能标准:规范多模态主动与交互、自主行为学习、仿真模拟、知识推理、具身导航、群体具身智能等。 具身智能需要具备感知、决策和执行三种核心能力。执行能力是技术难点,涉及硬件设计,具身智能体主要分为移动和操作两大能力。移动方面,各种类型机器人在不同地形下实现鲁棒的移动仍是前沿学术问题。操作方面,现阶段能落地的只有简单抓取,可泛化的通用执行能力是三大核心能力中最短的板。大语言模型(LLM)为具身智能热潮来临提供了机会,其强泛化能力和 zeroshot 能力使不再需要为每个任务手工调校机器人。
2025-03-12
具身智能
具身智能是人工智能领域的一个子领域,以下是关于具身智能的详细介绍: 定义:强调智能体(如机器人、虚拟代理等)通过与物理世界或虚拟环境的直接交互来发展和展现智能。 核心:在于智能体的“身体”或“形态”,其可以是物理形态(如机器人的机械结构)或虚拟形态(如模拟环境中的虚拟角色)。这些身体不仅是互动手段,也影响智能体的学习和发展。 涉及学科:包括机器人学、认知科学、神经科学和计算机视觉等。 机器人学:关注设计能自主行动和适应环境的机器人。 认知科学和神经科学:探索大脑处理与身体相关信息的机制及应用于人造智能系统。 计算机视觉:致力于开发算法,使智能体能够理解和解释视觉信息,进行有效空间导航和物体识别。 应用: 机器人领域:在服务机器人、工业自动化和辅助技术等方面,使机器人更好地理解和适应人类生活环境,提供更自然有效的人机交互。 虚拟现实、增强现实和游戏设计等领域:创造更具沉浸感和交互性的体验。 特点: 三要素:“本体”(硬件载体)、“智能”(大模型、语音、图像、控制、导航等算法)、“环境”(本体所交互的物理世界),三者高度耦合是高级智能的基础。 四个模块:感知决策行动反馈,形成闭环。 面临挑战:如设计智能体身体以最大化智能表现、让智能体在复杂多变环境中有效学习、处理智能体与人类社会的伦理和安全问题等。 尽管具身智能在理论和技术上取得显著进展,但仍有诸多挑战待解决,未来研究将继续探索推动其发展和应用。
2025-03-12
具身智能
具身智能是人工智能领域的一个子领域,以下是关于具身智能的详细介绍: 定义:强调智能体(如机器人、虚拟代理等)通过与物理世界或虚拟环境的直接交互来发展和展现智能。 核心:在于智能体的“身体”或“形态”,其可以是物理形态(如机器人的机械结构)或虚拟形态(如模拟环境中的虚拟角色)。这些身体不仅是互动手段,也影响智能体的学习和发展。 涉及学科:包括机器人学、认知科学、神经科学和计算机视觉等。 机器人学:关注设计能自主行动和适应环境的机器人。 认知科学和神经科学:探索大脑处理与身体相关信息的机制及应用于人造智能系统。 计算机视觉:致力于开发使智能体能够理解和解释视觉信息,进行有效空间导航和物体识别的算法。 应用: 机器人领域:在服务机器人、工业自动化和辅助技术等方面,使机器人更好地理解和适应人类生活环境,提供更自然有效的人机交互。 虚拟现实、增强现实和游戏设计等领域:创造更具沉浸感和交互性的体验。 重要要素和模块: 三要素:“本体”(硬件载体)、“智能”(大模型、语音、图像、控制、导航等算法)、“环境”(本体所交互的物理世界),三者高度耦合是高级智能的基础。 四个模块:感知决策行动反馈,形成一个闭环。 尽管具身智能在理论和技术上取得显著进展,但仍面临诸多挑战,如智能体身体设计、复杂环境中的有效学习、与人类社会的伦理和安全问题等。未来研究将继续探索这些问题以推动其发展和应用。
2025-03-10
具身智能是什么?
具身智能是人工智能领域的一个子领域,指的是智能体(如机器人、虚拟代理等)通过与物理世界或虚拟环境的直接交互来发展和展现智能。 其核心在于智能体的“身体”或“形态”,这些身体可以是物理形态,如机器人的机械结构,也可以是虚拟形态,如在模拟环境中的虚拟角色。身体不仅为智能体提供了与环境互动的手段,也影响其学习和发展。 具身智能的研究涉及多个学科,包括机器人学、认知科学、神经科学和计算机视觉等。在机器人学中,关注如何设计能自主行动和适应环境的机器人;在认知科学和神经科学中,探索大脑处理与身体相关信息的机制及应用于人造智能系统;在计算机视觉中,致力于开发算法让智能体理解和解释视觉信息,进行有效空间导航和物体识别。 具身智能的应用广泛,在机器人领域,特别是服务机器人、工业自动化和辅助技术等方面,能让机器人更好地理解和适应人类生活环境,提供更自然有效的人机交互。在虚拟现实、增强现实和游戏设计等领域,能创造更具沉浸感和交互性的体验。 具身智能有三要素:本体(硬件载体)、智能(大模型、语音、图像、控制、导航等算法)、环境(本体所交互的物理世界),三者高度耦合是高级智能的基础。其行动分为“感知决策行动反馈”四个步骤,分别由四个模块完成并形成闭环。 尽管具身智能取得显著进展,但仍面临诸多挑战,如设计智能体身体以最大化智能表现、让智能体在复杂多变环境中有效学习、处理智能体与人类社会的伦理和安全问题等。
2025-03-10
具身智能软硬件解决方案。
具身智能的软硬件解决方案包括以下方面: 算法层: 技术层级: 任务层级:可细分为任务级、技能级、动作级、基元级、伺服级,通常关注前四个级别。 解决方案层级:通常可拆分为大脑+小脑两个层级。大脑负责人机交互与规划决策,小脑负责运动控制及将语义信息理解转化为动作。 大脑侧:负责人机交互,能通过视觉在语义层面理解场景、任务等并进行决策。大模型的发展对大脑有促进作用,大脑的长期发展高度依赖多模态大模型。如 2024 年 3 月,有鹿机器人发布了基于 LPLM10B 的软硬件结合产品 Master 2000。 整机硬件方案:基于下游场景需求设计运动、感知、计算和通信硬件方案。具身智能厂商倾向于软硬件全流程自主控制,自己制作机体,原因包括机体和数据模式未统一,训练数据与机体构造紧密联系,以及考虑二级供应商是否成熟和整机利润。部分强大厂商如 Tesla 具备制作更底层电机、传感器的能力,软硬件一体化制造能带来更高利润。 智能类型:包括认知智能和物理智能。认知智能涉及思考、规划和决策能力,完全由大脑驱动;物理智能指机器人的感知和与环境的运动互动能力,感知环节由大脑侧算法实现,行动环节由小脑侧算法和硬件配合完成。 发展趋势: 人形化:外形向人类细部特征靠拢,功能具备真实人类运动、灵活和环境判断能力。 成本下降显著:核心零部件成本降低,人形机器人成本及售价呈下降趋势。 构成元素:包括大脑(意图理解、环境感知、规划决策)、小脑(运动控制、语义信息理解转化为动作)、整机硬件方案。
2025-03-07
具身智能是什么?
具身智能是人工智能领域的一个子领域,强调智能体通过与物理世界或虚拟环境的直接交互来发展和展现智能。 其核心在于智能体的“身体”或“形态”,这些身体可以是物理形态如机器人的机械结构,也可以是虚拟形态如模拟环境中的虚拟角色。身体不仅是与环境互动的手段,也影响智能体的学习和发展。 具身智能的研究涉及多个学科,包括机器人学、认知科学、神经科学和计算机视觉等。在机器人学中,关注设计能自主行动和适应环境的机器人;在认知科学和神经科学中,探索大脑处理与身体相关信息的机制及应用于人造智能系统;在计算机视觉中,致力于开发使智能体理解和解释视觉信息的算法。 具身智能在机器人领域有重要应用,特别是服务机器人、工业自动化和辅助技术等方面,能让机器人更好地理解和适应人类生活环境,提供更自然有效的人机交互。在虚拟现实、增强现实和游戏设计等领域也有广泛应用,创造更具沉浸感和交互性的体验。 具身智能的三要素包括“本体”(硬件载体)、“智能”(大模型、语音、图像、控制、导航等算法)、“环境”(本体所交互的物理世界),本体、智能、环境的高度耦合是高级智能的基础。其行动可分为“感知决策行动反馈”四个步骤,形成闭环。 尽管具身智能取得显著进展,但仍面临诸多挑战,如设计智能体身体以最大化智能表现、让智能体在复杂环境中有效学习、处理与人类社会的伦理和安全问题等。未来研究将继续探索这些问题以推动其发展和应用。
2025-03-07
设计一个给小学生介绍ai的ppt
以下是为小学生设计的关于 AI 的 PPT 大纲: 幻灯片 1:封面 标题:走进神奇的 AI 世界 幻灯片 2:引入 互动问题:大家听说过 AI 吗? 引出主题:今天我们来探索 AI 幻灯片 3:什么是 AI? 简单解释:让计算机或机器能像人类一样思考和学习的技术 举例:如智能语音助手、自动驾驶汽车 幻灯片 4:AI 在生活中的应用 展示图片:如智能家居、智能医疗等 简单描述:如何让我们的生活更便捷 幻灯片 5:AI 的有趣之处 播放简短的动画或视频:展示机器人跳舞、画画等 引导思考:AI 还能做哪些有趣的事 幻灯片 6:未来的 AI 想象画面:描绘未来充满 AI 的世界 鼓励发言:大家希望未来有怎样的 AI 产品 幻灯片 7:总结 回顾重点:什么是 AI 以及它的应用和未来 感谢观看 在设计 PPT 时,注意使用生动的图片、简洁的文字和有趣的动画,以吸引小学生的注意力并激发他们的兴趣。
2025-03-24
怎么用ai制定中小学生的学习计划
以下是为中小学生制定学习计划的一些建议: 1. 明确学习目标:确定想要通过 AI 学习达到的具体成果,例如掌握某种编程语言或了解特定的 AI 应用领域。 2. 从基础入手: 学习编程语言,如 Python、JavaScript 等,掌握编程语法、数据结构和算法等基础知识。 了解 AI 的基本概念、发展历程和主要技术,如机器学习、深度学习等。 3. 选择合适的工具和平台: 体验 AI 生成工具,如 ChatGPT、Midjourney 等。 探索面向中小学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 4. 合理安排学习时间: 告知每日需要投入的学习时间。 规划每周用到的学习资源。 5. 增加学习成果评估:根据学生的情况,每周对学习成果进行评估。 6. 参与实践项目:参加学校或社区组织的 AI 相关活动,如编程竞赛、创意设计大赛等,尝试利用 AI 技术解决实际问题。 7. 关注前沿动态:关注 AI 领域的权威媒体和学者,了解最新进展,培养对 AI 的思考和判断能力。 需要注意的是,以上内容由 AI 大模型生成,请仔细甄别。
2025-03-04
希望用AI工具帮助小学生建立学习习惯,管理学习,学习习惯统计管理
目前针对使用 AI 工具帮助小学生建立学习习惯、管理学习以及进行学习习惯统计管理,暂时没有相关的具体内容。但可以考虑以下思路: 1. 利用智能学习软件,这类软件可以根据小学生的学习进度和表现制定个性化的学习计划,并进行学习时间的管理和提醒。 2. 借助具有语音交互功能的 AI 助手,鼓励小学生通过与它交流来分享学习心得和困惑,从而培养良好的学习反思习惯。 3. 运用一些具备学习数据统计分析功能的工具,帮助家长和老师了解小学生的学习行为模式,以便针对性地进行引导和纠正。 需要注意的是,在使用 AI 工具时,要确保其内容适合小学生的年龄和认知水平,同时也要关注使用时间,避免过度依赖。
2025-03-03
如果让你来给小学生设计一门人工智能视频课,12集,你会怎么设计
对于为小学生设计一门 12 集的人工智能视频课,以下是我的设计思路: 第一集:《走进神奇的 AI 世界》 介绍什么是人工智能,通过有趣的例子展示 AI 在日常生活中的应用,激发学生的兴趣。 第二集:《AI 的历史之旅》 讲述人工智能的发展历程,从早期的概念到现代的突破。 第三集:《AI 如何理解我们》 讲解 AI 是如何处理和理解人类输入的信息,如语言、图像等。 第四集:《智能机器人小伙伴》 介绍机器人如何通过 AI 技术实现各种功能和动作。 第五集:《AI 在游戏中的魔法》 展示 AI 在游戏中的应用,如游戏角色的智能行为。 第六集:《AI 与医疗保健》 讲述 AI 在医疗领域的作用,如疾病诊断、医疗影像分析等。 第七集:《AI 与交通出行》 介绍 AI 如何改善交通状况,如智能交通系统。 第八集:《AI 与教育的碰撞》 探讨 AI 在教育中的应用,如个性化学习、智能辅导。 第九集:《AI 绘画的奇妙世界》 让学生了解 AI 绘画的原理和创作过程。 第十集:《AI 音乐的旋律》 介绍 AI 在音乐创作和演奏方面的应用。 第十一集:《AI 的未来展望》 一起畅想未来 AI 可能带来的更多变化和创新。 第十二集:《我和 AI 的故事》 鼓励学生分享自己对 AI 的理解和想象,总结课程内容。 在每一集的设计中,都会采用生动有趣的动画、简单易懂的案例和互动环节,让小学生能够轻松理解和参与。
2025-02-14
如果让你来给小学生设计一门人工智能视频课你会怎么设计
以下是为小学生设计的人工智能视频课: 一、课程内容设计 1. 什么是 AI 设计思路:用学生能理解的语言,与三年级孩子互动,先倾听他们对 AI 的理解,再引出概念,激发兴趣和好奇心。 内容:大家好,今天我们要聊一个很酷的话题——人工智能,简称 AI。你们可能在电视、电脑游戏或电影中见过 AI。其实,人工智能就是让计算机或机器能像我们人类一样思考和学习的技术。 2. AI 的发展历程和重大突破 发展历程:1956 年人工智能被提出,从图灵测试后,科学家们努力让机器更聪明。 重大突破: 1997 年,深蓝在国际象棋比赛中战胜世界冠军。 2016 年,AlphaGo 在围棋比赛中战胜李世石。 2020 年,GPT3 发布,擅长用电脑写文章等语言相关任务。 2022 年,DALLE 发布,能根据描述画出想象中的图画。 说明:未来可补充新出的视频和音乐创作工具等,让孩子理解技术变革越来越快。 3. 玩转 AI——今日应用探索 文字生成图片:AI 的画画技巧 设计思路:事先准备关键词和存好的图片,围绕 AI 绘图的好处展开,包括创意增强、效率提升、降低技能门槛、探索新的艺术形式。 案例: 创意增强:“夜晚的未来城市风景,霓虹灯和飞行汽车”“超现实主义风景,漂浮的岛屿和瀑布云” 效率提升:“现代智能手机设计的快速草图”“新咖啡机概念的快速原型” 降低技能门槛:“简单卡通角色,微笑着,大眼睛”“基础的风景画,夕阳下的宁静湖泊” 探索新的艺术形式:“数字抽象艺术,鲜明的色彩和几何形状”“算法生成的艺术作品,具有分形图案” 互动:让学生共创,每人说一个关键词,5 个左右,放进 MJ 查看实时结果,引导大家的想法天马行空或反差极大,还可展示用 SD 做的作品。 二、课程总结 通过以上课程,让小学生对人工智能有初步的认识和了解,激发他们对科技的兴趣和探索欲望。
2025-02-14
可以推荐给小学生的ai工具
以下是为小学生推荐的一些 AI 工具: 1. 聊天对话类:Kimi、智谱清言等。 2. 图像类:Midjourney 等。 对于小学生来说,使用 AI 工具时需要在家长或老师的指导下进行,并且要注意合理控制使用时间,避免过度依赖。同时,也要关注工具的使用规则和安全问题。
2025-02-04
智能客服有什么特别好的产品形态?
智能客服的产品形态具有多样性,以下为您介绍: 1. 传统智能客服:但在 LLM 时代发展不佳,部分企业如 xxx 欠薪、解散团队或转向出海客服方向。这与智能客服行业的属性有关,其分为智能部分和客服部分,智能部分基于 NLP 技术进行 AI 对话管理,客服部分包括传统客服坐席、内部数据查询台、AI 与 IM 对接等。然而,企业对客服效果极为看重,且智能客服企业难以获取关键数据,导致很多采取本地部署,吃力不讨好且难有积累。 2. 基于 LLM 的智能客服:如 GPT 智能客服,通过将 FAQ 上传到知识库,让其具有客服应答能力。GPTs 作为 GPT 的一种 ID 账号形态,开放门槛低,基本是 0 代码,开发方式包括自然语言(prompt)、知识库(knowledge)、第三方 API 对接(Action),具有对话流畅、多观点融合、答案准确等特点,但不太擅长推理计算。 3. 特定功能的智能客服:例如帮助企业快速建立产品智能客服体系的方案,通过用户意图识别、知识库检索答案、AI 大模型总结输出答案等方式,提供全面的 AI 客服解决方案,提高回答准确率,降低企业商用 AI 客服门槛。还有如自动化处理和分析商品负面评论、为中小型消费品企业提供销售订单管理等特定功能的智能客服。
2025-04-10
我是一个新手,我擅长的是短视频和直播,我想做一个智能体+短视频/直播的一个培训,但是我不懂怎么搭建智能体,我应该从哪里开始学
如果您作为新手,想做智能体+短视频/直播的培训但不懂搭建智能体,可以从以下几个方面开始学习: 1. 按照“五津:DeepSeek+扣子:1分钟生成小红书爆款单词视频”中的指导,创建智能体,输入人设等信息,并放上相关工作流。配置完成后进行测试,但千万不要直接发布。工作流中如【所有视频片段拼接】节点使用的插件 api_token 填的是您的 token,为避免他人调用消耗您的费用,您可以将 api_token 作为工作流最开始的输入,让用户购买后自行输入使用,然后再发布。 2. 参考“元子:WayToAGI 知识库究竟咋用?”中的内容,对于完全没有编程基础但对 AI 有一定概念的小白,可以从工具入门篇(AI Agent)中的“Agent 工具小白的 Coze 之旅”开始,了解相关搭建平台。 3. 学习“智谱 BigModel 共学营第二期:把你的微信变成超级 AI 助理”中的教程,包括注册智谱 Tokens 智谱 AI 开放平台(https://bigmodel.cn/),获取资源包(新注册用户注册即送 2000 万 Tokens,或通过充值/购买多种模型的低价福利资源包,如语言资源包、多模态资源包等,所有资源包购买地址:https://bigmodel.cn/finance/resourcepack ),然后进入【财务台】左侧的【资源包管理】查看自己的资源包,再进入智能体中心我的智能体开始创建智能体。
2025-04-10
我现在想做一个总结我每日复盘的智能体
以下是关于创建总结每日复盘智能体的相关信息: 智普工作流功能及创建流程: 新用户资源包:新用户有 1 元及 5 元的资源包可供购买,能满足使用需求。 工作流功能:具备文章、文件、网页总结,生成图片、视频和文字版日报等功能,通过意图识别跳转节点,使用多个 agent。 工作流创建:在控制台的自动体中心,右键创建智能体,可选择对话型或文本型,对话型多用于多 agent 协作等场景,创建后在空旷画布的左下角添加节点,节点包括 agent、LM、工具、代码、数据提取、分支判断和问答等,agent 通过跳入跳出条件与其他节点交互,LM 通过工作流连线执行功能。 文档获取:文档可在 vtoagi.com 首页的 banner 获取,飞书群也可获取。 版本选择:接入微信时,有云服务器和本地电脑两种版本,可按需选择。 关于姿谱清流工作流及模型配置的讨论: 工作流节点与 agent:工作流中节点和 agent 的连接方式,agent 具有意图识别和跳出条件,可实现任务跳转,所有 agent 平级可互相跳转。 文本存储问题:姿谱清流本身无存储功能,需依靠其他笔记工具存储执行完的文本。 模型配置与调试:介绍了姿谱清流中角色扮演模型的配置方法,包括角色名称、背景、人格等设置,以及单节点调试功能和用户配置。 意图识别与冲突:意图配置冲突可能导致识别错误和乱跳,识别准确率相对较准。 多智能体的记忆:多智能体之间存在记忆,后续会讲到相关参数的使用。 在 cos 主页有新手教程文档,可据此构建智能体。工作流偏向节点调用,可通过 prompt 构建提示词并优化。还能调用多种插件,可添加图像流、触发器和知识库,知识库可上传多种格式内容及在线链接以沉淀知识。
2025-04-10
智能体分为哪几类
智能体主要可以分为以下几类: 1. 简单反应型智能体(Reactive Agents):根据当前的感知输入直接采取行动,不维护内部状态,也不考虑历史信息。例如温控器,它根据温度传感器的输入直接打开或关闭加热器。 2. 基于模型的智能体(Modelbased Agents):维护内部状态,对当前和历史感知输入进行建模,能够推理未来的状态变化,并根据推理结果采取行动。比如自动驾驶汽车,它不仅感知当前环境,还维护和更新周围环境的模型。 3. 目标导向型智能体(Goalbased Agents):除了感知和行动外,还具有明确的目标,能够根据目标评估不同的行动方案,并选择最优的行动。例如机器人导航系统,它有明确的目的地,并计划路线以避免障碍。 4. 效用型智能体(Utilitybased Agents):不仅有目标,还能量化不同状态的效用值,选择效用最大化的行动,评估行动的优劣,权衡利弊。比如金融交易智能体,根据不同市场条件选择最优的交易策略。 5. 学习型智能体(Learning Agents):能够通过与环境的交互不断改进其性能,学习模型、行为策略以及目标函数。例如强化学习智能体,通过与环境互动不断学习最优策略。 此外,在 Menlo Ventures 的观点中,智能体还分为以下三种主要类型: 1. 决策智能体:使用语言模型来遍历预定义的决策树。 2. 轨道智能体:为智能体配备了更高层次的目标,但同时限制了解决空间,要求遵循标准作业程序并使用预先设定的“工具”库。 3. 通用人工智能体:本质上是没有任何数据支架的 for 循环,完全依赖于语言模型的推理能力来进行所有的计划、反思和纠正。
2025-04-10
随着 ChatGPT、Deepseek 等 AI 技术的爆发式发展,人工智能正在加速渗透各行业应用场景,包括茶饮行业。请你对 AI 技术在茶饮行业的影响进行研究分析,并提出 AI 技术可以在连锁奶茶店如何应用的设想。
以下是关于 AI 技术在茶饮行业的影响分析及在连锁奶茶店应用的设想: 影响分析: 1. 提升运营效率:通过自动化流程和智能预测,优化库存管理、员工排班等环节。 2. 改善客户体验:利用智能客服快速响应顾客咨询,提供个性化推荐。 3. 精准营销:基于大数据分析顾客偏好,制定更有针对性的营销策略。 应用设想: 1. 智能点单系统:根据顾客的历史订单和偏好,为其推荐饮品和搭配。 2. 库存管理优化:借助 AI 预测销售趋势,精准控制原材料库存。 3. 员工培训辅助:利用虚拟培训工具,提升员工的服务技能和产品知识。 4. 营销决策支持:通过数据分析,确定最佳的促销活动和推广渠道。 目前的知识库中,相关的具体研究报告主要有: 1. 浙江大学:《DeepSeek 技术溯源及前沿探索朱强》(2025/03/19),介绍了语言模型从基于统计的 Ngram 到 Transformer 的技术演化,以及大模型的发展,如 GPT 系列。 2. 浙江大学:《DeepSeek:回望 AI 三大主义与加强通识教育报告》(2025/03/05),围绕人工智能展开,介绍其发展历程、三大主义、技术进展、应用成果以及教育举措。 3. 清华大学:《气象人工智能技术与应用报告》(2024/12/25),围绕气象人工智能展开,介绍了其发展和应用情况。 如需下载这些研究报告,可。
2025-04-09
想创建一个对话问答形式的课程智能体
以下是创建一个对话问答形式的课程智能体的相关内容: 一、创建智能体 1. 知识库 手动清洗数据:本次创建知识库使用手动清洗数据,上节课程是自动清洗数据,自动清洗数据可能会出现数据不准的情况。 在线知识库:点击创建知识库,创建一个画小二课程的 FAQ 知识库。飞书在线文档中每个问题和答案以分割,选择飞书文档、自定义的自定义,输入后可编辑修改和删除,添加 Bot 后可在调试区测试效果。 本地文档:本地 word 文件,注意拆分内容以提高训练数据准确度。画小二 80 节课程分为 11 个章节,不能一股脑全部放进去训练,应先将 11 章的大章节名称内容放进来,章节内详细内容按固定方式人工标注和处理,然后选择创建知识库自定义清洗数据。 2. 发布应用:点击发布,确保在 Bot 商店中能够搜到,否则获取不到 API。 二、智谱 BigModel 共学营活动分享 活动内容包括使用 BigModel 搭建智能体并接入微信机器人,过程为将调试好的智能体机器人拉入微信群,由老师提问,机器人回答,挑选出色回答整理成问卷,群成员投票,根据得票数确定奖项。一等奖得主分享了对活动的理解和实践,包括从题出发的分析,认为考验机器人对问题的理解和回答准确性,真实对话场景一般为完整句子回复,根据回答真实性和有趣程度评分,可使用弱智吧问题测试提示词生成效果。 三、名字写对联教学——优秀创作者奖,百宝箱智能体 1. 智能体类型的选择:建议选择工作流的对话模式,支持工作流编排和携带历史对话记录,创建后切换为对话模式,注意在调整工作流节点前切换,否则会清空重置。 2. 确认分支情况:根据需求分析有两个特定分支(根据名字和祝福写对联、根据幸运数字写对联)和一个默认分支。 3. 用户意图识别:通过理解用户意图走不同分支,注意将意图介绍写清楚准确。 4. 幸运数字分支:用代码分支获取用户输入数字,匹配知识库并做赏析,代码中有容错机制。 5. 名字写祝福:根据用户输入的名字和祝福信息,提示词生成对应对联并输出,主要是提示词调试。 6. 通用兜底回复:在用户不符合前两个意图时进行友好回复,匹配知识库,结合匹配结果、历史记录和当前输入输出符合对话内容的回复。 7. 知识库:使用大模型生成 100 对对联,好看、经典、有意义。
2025-04-09
阶跃星辰、通义千问、Gemini三个视频理解模型哪个收费更便宜
以下是阶跃星辰、通义千问、Gemini 三个视频理解模型的收费情况: 阶跃星辰:输入价格为 0.005~0.015 元/千 tokens,输出价格为 0.02~0.07 元/千 tokens。 通义千问:Qwenvlplus 模型调用价格为 0.008 元/千 tokens,训练价格为 0.03 元/千 tokens。 Gemini 未提及收费信息。 综上,从已有的信息来看,通义千问的收费相对可能更便宜,但具体还需根据您的使用情况和需求来判断。
2025-04-10
通义千问的视频理解模型怎么使用
通义千问的 Qwen2.5VL 视频理解模型具有以下特点和使用方式: 版本:推出 3B、7B 和 72B 三个尺寸版本。 主要优势: 视觉理解能力:在 13 项权威评测中夺得视觉理解冠军,全面超越 GPT4o 与 Claude3.5。 视频理解能力:支持超 1 小时的视频理解,无需微调即可变身为 AI 视觉智能体,实现多步骤复杂操作,如给指定朋友送祝福、电脑修图、手机订票等。 万物识别:擅长识别常见物体及分析图像中的文本、图表、图标、图形和布局。 精准的视觉定位:采用矩形框和点的多样化方式对通用物体定位,支持层级化定位和规范的 JSON 格式输出。 全面的文字识别和理解:提升 OCR 识别能力,增强多场景、多语言和多方向的文本识别和文本定位能力。 Qwen 特色文档解析:设计了更全面的文档解析格式,称为 QwenVL HTML 格式,能够精准还原文档中的版面布局。 增强的视频理解:引入动态帧率(FPS)训练和绝对时间编码技术,支持小时级别的超长视频理解,具备秒级的事件定位能力。 开源平台: Huggingface:https://huggingface.co/collections/Qwen/qwen25vl6795ffac22b334a837c0f9a5 Modelscope:https://modelscope.cn/collections/Qwen25VL58fbb5d31f1d47 Qwen Chat:https://chat.qwenlm.ai
2025-04-09
目前有哪些AI可以支持对用户上传的视频进行理解分析?
目前以下 AI 可以支持对用户上传的视频进行理解分析: 1. Gemini 2.0 Flash Thinking:是解析视频的不错选择,可在 AIStudio(访问 aistudio.google.com,需海外 IP)上传视频进行解析。 2. MiniMax 视频模型:能准确识别用户上传的图片,生成的视频在形象保持、光影色调、指令响应、表情呈现等方面表现出色,还支持 2000 字提示词以更精准调控。 3. 百炼大模型平台:应用广场里的影视传媒视频理解能力可对视频进行语音转写、视觉语言分析等处理并总结成文,有清晰使用步骤,还能根据偏好调试提示词。
2025-04-09
哪些AI可以支持对镜头的视觉理解
以下 AI 可以支持对镜头的视觉理解: 1. 通义千问的 Qwen2.5VL 模型:具有以下优势: 视觉理解能力:在 13 项权威评测中夺得视觉理解冠军,全面超越 GPT4o 与 Claude3.5。 视频理解能力:支持超 1 小时的视频理解,无需微调即可变身为 AI 视觉智能体,实现多步骤复杂操作。 万物识别:擅长识别常见物体及分析图像中的文本、图表、图标、图形和布局。 精准的视觉定位:采用矩形框和点的多样化方式对通用物体定位,支持层级化定位和规范的 JSON 格式输出。 全面的文字识别和理解:提升 OCR 识别能力,增强多场景、多语言和多方向的文本识别和文本定位能力。 Qwen 特色文档解析:设计了更全面的文档解析格式,称为 QwenVL HTML 格式,能够精准还原文档中的版面布局。 增强的视频理解:引入动态帧率(FPS)训练和绝对时间编码技术,支持小时级别的超长视频理解,具备秒级的事件定位能力。 开源平台: Huggingface:https://huggingface.co/collections/Qwen/qwen25vl6795ffac22b334a837c0f9a5 Modelscope:https://modelscope.cn/collections/Qwen25VL58fbb5d31f1d47 Qwen Chat:https://chat.qwenlm.ai 2. OpenAI 的 GPT4:在 12 月发布的更新中正式上架了“视频理解”功能,可以和用户就便签内容进行讨论。 3. 基于豆包视觉理解模型实现的具有视频通话功能的应用:能够对摄像头传输的实时画面进行分析,精准理解画面中的关键信息,包括图表论文人物表情、动作细节、场景环境等。同时支持高清流畅的视频通话,实现和大模型面对面的即时交流体验。
2025-04-09
我是一个没有技术背景且对AI感兴趣的互联网产品经理,目标是希望理解AI的实现原理并且能够跟开发算法工程师沟通交流,请给我举出AI模型或者机器学习的分类吧。
以下是 AI 模型和机器学习的分类: 1. AI(人工智能):是一个广泛的概念,旨在使计算机系统能够模拟人类智能。 2. 机器学习:是人工智能的一个子领域,让计算机通过数据学习来提高性能。包括以下几种类型: 监督学习:使用有标签的训练数据,算法学习输入和输出之间的映射关系,包括分类和回归任务。 无监督学习:学习的数据没有标签,算法自主发现规律,经典任务如聚类。 强化学习:从反馈中学习,以最大化奖励或最小化损失,类似训练小狗。 3. 深度学习:是机器学习的一个子领域,模拟人脑创建人工神经网络处理数据,包含多个处理层,在图像识别、语音识别和自然语言处理等任务中表现出色。 4. 大语言模型:是深度学习在自然语言处理领域的应用,目标是理解和生成人类语言,如 ChatGPT、文心一言等。同时具有生成式 AI 的特点,能够生成文本、图像、音频和视频等内容。 2017 年 6 月,谷歌团队发表论文《Attention is All You Need》,首次提出了 Transformer 模型,它基于自注意力机制处理序列数据,不依赖循环神经网络或卷积神经网络。生成式 AI 生成的内容称为 AIGC。
2025-03-26
有哪些公司主要做数据处理,比如把文档转化成ai可理解的东西
以下是一些主要从事数据处理,将文档转化为 AI 可理解内容的公司: 在基础模型领域,有 OpenAI、Google、Cohere、AI21、Stability.ai 等公司,它们在构建大型语言模型方面展开竞争。此外,还有新兴的开源选项如 Eleuther。 像 Hugging Face 这种共享神经网络模型的社群,在软件 2.0 时代可能成为智慧的枢纽和人才中心。 还有一些独立应用公司,例如 Jasper(创意文案)、Synthesia(合成语音与视频)等,它们涉及 Creator&Visual Tools、Sales&Marketing、Customer Support、Doctor&Lawyers、Assistants、Code、Testing、Security 等各种行业。
2025-03-25