Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

我是小白,刚看到这个论坛,应该怎么开始 学习

Answer

对于刚接触 AI 领域的小白,以下是一些开始学习的建议:

  1. 选择合适的开始方式:
    • 本地部署:如果您的电脑是 M 芯片的 Mac 电脑(Intel 芯片出图速度非常慢,因此不建议)或者 2060Ti 及以上显卡的 Windows 电脑,可以选择本地部署。强烈建议在配有 N 卡的 Windows 电脑上进行。
    • 在线平台:对于电脑不符合要求的小伙伴可以直接使用在线工具,在线工具分为在线出图和云电脑两种,前者功能可能会受限、后者需要自己手动部署,大家根据实际情况选择即可。
    • 配台电脑:非常不建议一上来就配主机,因为大概率会变成游戏机或者吃灰(土豪请随意)。玩几个月后还对 AI 有兴趣的话再考虑配个主机。主机硬盘要大,显卡预算之内买最好,其他的随意。
  2. 学习基础课程:
    • 先验经验:需要熟练使用文生图、图生图;需要有一定的逻辑思考能力以及推理能力;适合炼丹新人、小白。
    • 课程安排:课程大约 70 - 80%是理论和方法论的内容,大部分练习会在课外跟大家沟通、练习。只有少部分必要内容会在课上演示。
  3. 学习路径:
    • 必学、必看内容是基础课,主要是为了解决环境问题和软件安装不上的问题。
    • 建炉是针对不同炼丹方式提供了不同的炼丹工具的安装教程。
    • 正式的内容部分分为了数据集预处理、模型训练以及模型调试及优化三个部分。

另外,您的 AI 之旅可以从 prompt 开始。在开始时,您可能更多的是临时捏一些 prompt 解决具体的问题,随着学习的深入,可以将 prompt 规范、抽象用以让 AI 拟人。在这个过程中,您需要花一些时间和做一些准备,多参与社区交流,社区中很多门槛问题都已经有了解决方案。

Content generated by AI large model, please carefully verify (powered by aily)

References

谁是人类?!—— 围观人员震颤的瞳孔和激动的心

我原以为,这种涉及代码和大模型能力的东西从来都是阳春白雪,我等小白触碰不得,可如今借由《谁是人类》这个活动,我意识到它和我就隔着几天的发烧努力——一个全程围观并做一点志愿者服务的元子语。我的AI之旅开始于prompt。显而易见,3.5刚出来的时候,对AI生成原理的理解加上prompt写得好,问问题和解决问题的效率是巨大的,当真能解决一些生活中的问题了。然而作为一个小白类型的Chat网页终端用户,更多的是临时捏一些prompt解决具体的问题,将prompt规范、抽象用以让AI拟人,当然试过,却远远做不到。不知道每一个比较小白的小伙伴,是不是都和我有类似的疑虑呢?然而来都来了,自然要参加一下,学习一下也是好的。作为一个围观人群,我虽然没有躬身入局,却因为近距离地作为线上志愿者,惊觉原来这一切其实门槛都在社区里一一解决过,需要的只是愿意花一些时间和做一些准备。在这个过程中,我也直接被点燃了。

必学必看基础 ❗️

根据电脑的硬件情况和自身财力💰选择合适的开始方式本地部署如果你的电脑是M芯片的Mac电脑(Intel芯片出图速度非常慢,因此不建议)或者2060Ti及以上显卡的Windows电脑,可以选择本地部署。强烈建议在配有N卡的Windows电脑上进行在线平台对于电脑不符合要求的小伙伴可以直接使用在线工具,在线工具分为在线出图和云电脑两种,前者功能可能会受限、后者需要自己手动部署,大家根据实际情况选择即可配台电脑❗️非常不建议一上来就配主机,因为大概率会变成游戏机或者吃灰(土豪请随意)。玩几个月后还对AI有兴趣的话再考虑配个主机。主机硬盘要大,显卡预算之内买最好,其他的随意[heading2]课程简述[content]先验经验需要熟练使用文生图、图生图;需要有一定的逻辑思考能力以及推理能力;适合炼丹新人、小白课程安排课程大约70-80%是理论和方法论的内容,大部分练习会在课外跟大家沟通、练习。只有少部分必要内容会在课上演示[heading2]学习路径[content]必学、必看内容是基础课,主要是为了解决环境问题和软件安装不上的问题;建炉是针对不同炼丹方式提供了不同的炼丹工具的安装教程;正式的内容部分分为了数据集预处理、模型训练以及模型调试及优化三个部分

齐码蓝:你(或孩子)还需要学编程吗?AI编程Master GPTs

功能需求:每个离谱生物的页面需要展示图片、头像、文字介绍,并支持文字和语音对话。此外,还需要展示相关的离谱事件。非功能需求:页面加载速度要快,用户界面友好,支持响应式设计,以适应不同设备的屏幕。用户故事:作为一个访客,我希望浏览不同的离谱生物档案,了解它们的背景故事和相关事件,还希望能够和它们进行文字或语音交流。[heading3]3.架构设计与模块化[heading4]架构设计[content]前后端分离:采用前后端分离的架构,前端负责展示界面和用户交互,后端负责处理业务逻辑和数据存取。REST API:后端提供RESTful API,供前端调用,获取生物档案数据和处理语音转换等功能。[heading4]模块化[content]前端模块:生物档案组件:展示离谱生物的图片、头像和文字介绍。事件展示组件:展示与离谱生物相关的事件。对话组件:实现用户与离谱生物之间的文字和语音交流功能。后端模块:生物档案API:处理生物档案数据的增删查改。事件API:处理事件数据的增删查改。语音处理API:调用外部语音处理服务,实现语音和文字的相互转换。接下来,根据你的需要,我们可以深入讨论开发的具体细节,比如如何设计数据库模型、如何实现前后端的具体功能等。你希望从哪个部分开始讨论呢?我是小白,请直接给我指导如何继续搭建完整的网站对话ID:[7b3a8b2f3b1ad9e67b8ef5a3bf28b1a2]既然你是初学者,那么我们将采取一步步的方法,首先设置你的开发环境,然后逐步开发前端和后端,最后部署你的网站。我们将从最基础的部分开始。

Others are asking
小白应该从哪里开始学习AI
对于小白学习 AI,建议如下: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛(比如图像、音乐、视频等),根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 此外,《雪梅 May 的 AI 学习日记》也可供参考: 1. 适合纯 AI 小白,可先看左边的目录。 2. 学习模式是输入→模仿→自发创造。 3. 学习内容可去 waytoAGI 社区发现自己感兴趣的 AI 领域,学习最新的内容。 4. 学习时间不是每天依次进行,有空的时候学习。 5. 保持良好的学习状态,能学多少算多少。 6. 学习资源的内容都是免费开源的。 记住,学习 AI 是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,您将逐渐建立起自己的 AI 知识体系,并能够在这一领域取得自己的成就。完整的学习路径建议参考「通往 AGI 之路」的布鲁姆分类法,设计自己的学习路径。
2025-03-05
你是一个小白学习制作一个ai动画
作为小白参与制作 AI 动画短片,您可以参考以下步骤和心得: 一、前期准备 1. 特别感谢共创活动组织者「AJ、娜娜、猫叔、三思、王贝等」,以及 5 组组长「阿强」的指导和帮助。 2. 了解 SOP(标准操作程序)和工作流的重要性,它们是确保项目顺利进行的关键。 二、具体流程 1. 项目规划:确定短片主题和目标观众,制定详细的制作计划。 2. 剧本创作:编写故事脚本,设计角色和场景以及创意。分享剧本创作资料如下: https://waytoagi.feishu.cn/wiki/G11fwW8bmiVLe6kYLgYc2iGin6e 捏剧本 Bot(捏剧本离谱村专用 https://www.coze.cn/store/bot/7367669913697239052?panel=1&bid=6cs144r404016 3. 分镜头脚本:根据脚本制作分镜头脚本,确定每个镜头的画面和动作。 4. 资源准备:准备动画制作所需的素材,包括背景、角色和音效。 5. 画面图片制作:利用 AI 出图工具,比如通过 ChatGPT、MJ、SD 等工具快速生成高质量的图片。 6. 视频制作:利用 AI 工具制作动画,通过 RUNWAY、Luma、Dreamina 等平台快速生成高质量的动画。 7. 后期剪辑:添加音效、配音和字幕,进行最终的剪辑和合成。 8. 发布和推广:将完成的动画短片发布到各大平台,并进行推广和宣传。 三、个人经验分享 1. 负责的内容:在项目中负责“刺猬菠萝”角色的图片和视频制作,在他人指导下逐渐掌握基本技巧,并快速入门了 MJ 和 RunWayAI 工具来提高效率。 2. 学习实践:为了顺利完成任务,花时间学习和实践。首先,WaytoAGI 社群中有很多入门资料,可以快速了解动画制作的基本流程和技术。其次,积极参与团队讨论,向有经验的大佬们请教。 3. 快速入门 MJ 和 RunWay 心得:MJ 和 RunWay 是两个非常强大的 AI 工具,分别用于角色图片生成和动画制作。通过反复实践和摸索,逐渐掌握使用方法。 MidJourney 角色一致性: 角色一致性:使用cref 后接角色图片的 URL,可以在创作中保持角色形象的一致性。可以使用cw 来调整参考的强度,范围从 100 到 0。默认设置是 100,会使用面部、头发和衣服;强度为 0 时,只专注于面部,适合更换服装或发型等。 风格一致性:使用sref 后接风格参考图像的 URL,MidJourney 会生成与这些参考图风格一致的图像。可以添加多个风格参考链接,并通过::后跟权重数字来设置不同风格的相对重要性,例如:urlA::2 urlB::3。通过sw 设置样式的总权重,100 为默认值,0 为关闭值,1000 为最大值。可以结合使用垫图和 sref,垫图主要影响画面的构图和元素,而 sref 主要影响画风。 RunWay 的笔刷控制 5 月份参与制作的 AI 动画短片《奥运前夜》6.1 在广州电视台播放,作为设计小白感到非常自豪。
2025-03-05
一个ai小白,想要学习ai相关知识,请帮忙推荐学校路径和方法
对于 AI 小白,以下是学习 AI 的学校路径和方法: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括人工智能的定义、主要分支(如机器学习、深度学习、自然语言处理等)及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前应用和未来发展趋势。 2. 开始 AI 学习之旅: 在「」中,能找到为初学者设计的系列课程,引导了解生成式 AI 等基础知识,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,还有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,可根据兴趣选择特定模块深入学习。 掌握提示词的技巧,它上手容易且有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库有很多实践后的作品和文章分享,欢迎实践后分享。 5. 体验 AI 产品: 与现有的 AI 产品如 ChatGPT、Kimi Chat、智谱、文心一言等聊天机器人互动,了解其工作原理和交互方式,获得对 AI 实际应用表现的第一手体验,激发对 AI 潜力的认识。 此外,还可以参考以下资源: 学习路径方面,有很多高质量学习内容,如李弘毅老师的生成式 AI 导论、吴达的生成式 AI 入门视频等供有时间深入学习的人使用。 部分同学通过观看李弘毅的导论、文达的相关信息并整理成学习笔记,在整理过程中能学到更多知识,还能与大家交流互动。 觉得系统学习枯燥的话,可以等待社区共创内容,通过共创做小项目来反向推动学习。 介绍了 A16Z 推荐的内容从 5 篇扩展到 6 篇,包括 GPT 相关知识、Transformer 模型运作原理,及大语言模型词语接龙原理等基础知识。 推荐看 open AI 的官方 Cookbook,小琪姐做了中文精读翻译,也可查看 cloud 的相关内容。 历史脉络类资料:整理了 open AI 的发展时间线和万字长文回顾等。
2025-03-05
我是小白,学习ai第一步怎么开始
对于小白来说,学习 AI 的第一步可以从以下几个方面入手: 1. 了解 AI 基本概念:建议阅读「」部分,熟悉 AI 的术语和基础概念,包括人工智能的定义、主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。同时,浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅:在「」中,能找到为初学者设计的课程,特别推荐李宏毅老师的课程。还可以通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并争取获得证书。 3. 选择感兴趣的模块深入学习:AI 领域广泛,比如图像、音乐、视频等,您可以根据自己的兴趣选择特定的模块进行深入学习。同时,一定要掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试:理论学习之后,实践是巩固知识的关键。尝试使用各种产品做出您的作品,在知识库中有很多大家实践后的作品、文章分享,欢迎您实践后也进行分享。 5. 体验 AI 产品:与现有的 AI 产品进行互动是学习 AI 的另一种有效方式。尝试使用如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 以下是一些个人的 AI 学习经历供您参考: 二师兄在 2024 年 2 月过年后,在七彩虹的售后群中,因老哥分享用 AI 绘画的心得,要了 SD 秋叶安装包,下载了教学视频,迈出了 AI 学习的第一步。之后他在 3 月啃完 SD 的所有教程并开始炼丹,4 月与小伙伴探讨 AI 变现的途径,5 月因工作变动开启了无硬件支持的 AI 学习之路,并加入 Prompt battle 社群,开始了 Midjourney 的学习。 元子语的 AI 之旅开始于 prompt,在作为《谁是人类》活动的线上志愿者过程中,意识到学习 AI 的门槛在社区里已被解决,从而被点燃了学习的热情。
2025-03-05
请起草一份小白学习AI辅助修图的入门到精通的教程,提供学习大纲,包括从基本玩法到高级卡bug玩法,常见红海赛道,常见问题,注意事项,常见误区,避坑指南等等
以下是为您提供的小白学习 AI 辅助修图从入门到精通的教程大纲: 一、基础知识与基本玩法 1. 了解 AI 辅助修图的概念和基本原理。 2. 熟悉常见的 AI 修图工具和软件。 二、常见问题与注意事项 1. 风格局限性:如全是二次元风格,缺少适合特定需求的风格。 2. 图像叙事性不足:画出来的多为美少女看镜头,缺乏叙事内容。 3. 素材局限性:已有素材单一,图生图可行性低,训练泛化性差。 三、常见误区与避坑指南 1. 避免盲目依赖初始的 Embedding、CKPT 等方法,不断尝试和改进。 2. 注意训练集中人物朝向固定等问题,采取相应处理措施,如镜像处理。 四、从入门到精通的进阶玩法 1. 掌握不同的训练方法,如 Lora 等,以获得更理想的效果。 2. 学会引导 AI 画出具有前景后景区分明显的图像,如制作引导图。 五、高级卡 bug 玩法 探索一些非常规但有效的技巧和方法,以突破常规限制,实现更出色的修图效果。但需注意,此部分玩法可能存在一定风险和不确定性。 六、常见红海赛道 分析当前 AI 辅助修图在不同领域的竞争激烈程度和应用热点。 在学习过程中,还需了解以下 AI 相关的技术原理和概念: 1. 生成式 AI 生成的内容称为 AIGC。 2. 相关技术名词: AI 即人工智能。 机器学习包括监督学习、无监督学习、强化学习,监督学习有标签,无监督学习无标签,强化学习从反馈中学习。 深度学习参照人脑神经网络,神经网络可用于多种学习方式。 生成式 AI 可生成多种内容形式。 LLM 为大语言模型,不同模型有不同擅长的任务。 3. 技术里程碑:2017 年 6 月谷歌团队发表的《Attention is All You Need》提出了 Transformer 模型。
2025-03-05
请起草一份小白学习AI应用(包括app和网站)的入门到精通的教程,提供学习大纲,包括从基本玩法到高级卡bug玩法,常见红海赛道,常见问题,注意事项,常见误区,避坑指南等等
以下是一份小白学习 AI 应用(包括 app 和网站)的入门到精通的教程,涵盖学习大纲、常见问题等方面: 一、学习大纲 1. 了解 AI 基本概念 阅读相关资料,熟悉 AI 的术语和基础概念,包括人工智能的定义、主要分支(机器学习、深度学习、自然语言处理等)及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前应用和未来发展趋势。 2. 开始 AI 学习之旅 参考「」中的初学者课程,了解生成式 AI 等基础知识,推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)按照自己的节奏学习,并争取获得证书。 3. 选择感兴趣的模块深入学习 AI 领域广泛,包括图像、音乐、视频等,根据自身兴趣选择特定模块深入学习。 掌握提示词技巧,因其上手容易且实用。 4. 实践和尝试 理论学习后进行实践,巩固知识,尝试使用各种产品创作作品。 分享实践后的经验和成果。 5. 体验 AI 产品 与 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人互动,了解其工作原理和交互方式,获得实际应用体验。 二、常见红海赛道 目前,AI 在自然语言处理、图像识别、智能推荐等领域竞争较为激烈。 三、常见问题 1. 对复杂应用的需求理解不准确,导致产品出错。 2. 技术组件的配置和整合可能遇到困难。 四、注意事项 1. 注重基础知识的学习,打牢根基。 2. 实践过程中要耐心,遇到问题多尝试解决。 五、常见误区 1. 认为 AI 学习短期内就能精通,忽略了长期积累和实践的重要性。 2. 过度依赖现成的模型和工具,缺乏对原理的深入理解。 六、避坑指南 1. 在选择学习资源时,要注意其权威性和适用性。 2. 开发 AI 应用时,要充分考虑用户需求和实际场景,避免盲目跟风。 希望以上内容对您有所帮助,祝您在 AI 学习的道路上取得成功!
2025-03-05
给我推荐几个论坛
以下为您推荐一些论坛: 文本类 Prompt 网站: Learning Prompt:授人以渔,非常详尽的 Prompt 学习资源,包括 ChatGPT 和 MidJourney,网址: FlowGPT:国外做的最大的 prompt 站,内容超全面,更新快,网址: LangChain Hub:提示词管理工具,LangChain 推出了 LangChain Hub,一个提示词上传、浏览、拉取和管理的工具,网址: 微软 Prompt Flow:微软发布开源的 LLM 开发工具集 Prompt flow,它简化了基于 LLM 的人工智能应用程序的端到端开发周期,从构思、原型设计、测试、评估到生产部署和监控,对于简单工作流非常实用,网址: PromptPort(支持中文):AI Prompt 百科辞典,其中 prompts 是聚合了市场上大部分优质的 prompt 的词库,快速的寻找到用户需求 prompt,网址: PromptKnit:The best playground for prompt designers,网址: ChatGPT Shortcut:ChatGPT 提示词网站,提供了非常多使用模板,简单修改即可指定输出,网址: ClickPrompt:轻松查看、分享和一键运行模型,创建 Prompt 并与其他人分享,网址: Prompt Extend:让 AI 帮你自动拓展 Prompt,网址: 图像类 Prompt 网站: NovelAI tag 生成器:设计类 Prompt 提词生成器,网址: 魔咒百科词典:魔法导论必备工具,简单易用的 AI 绘画 tag 生成器,网址: KREA:设计 AI 的 Prompt 集合站,create better prompts,网址: Public Prompts:免费的 prompt 合集,收集高质量的提示词,网址: AcceleratorI Prompt:AI 词汇加速器,加速 Prompt 书写,通过按钮帮助优化和填充提示词,网址:
2025-01-29
给我写一段AI产品经理板块的介绍,一小段话,用于在公司内部的科技论坛上
在公司内部的科技论坛上,为您介绍 AI 产品经理板块: AI 产品经理可大致分为三个层级: 1. 入门级:能通过 WaytoAGI 等开源网站或课程了解 AI 概念,使用 AI 产品并动手实践应用搭建。 2. 研究级:有技术研究和商业化研究两条路径,能根据需求场景选择解决方案,或利用 Hugging face 等工具验证想法。 3. 落地应用级:有成功落地应用案例并产生商业化价值。 传统互联网 PM 也有类似的三个层级: 1. 负责功能模块与执行细节。 2. 负责整体系统与产品架构。 3. 熟悉行业竞争格局与商业运营策略。 对 AI 产品经理的要求是懂得技术框架,关注场景、痛点和价值。同时,为您列举一些岗位技能要求,如本科及以上学历,计算机科学等相关专业背景,熟悉多种 AI 工具的使用及原理,具备创新思维等。我们身边也有相关案例,如枫 share、行远等都是从事相关工作的产品经理。
2025-01-23
AI 圆桌论坛,讨论者是通信公司技术专家,数字业务专家,初创企业智慧城市专家,听众是对AI了解相对一般的观众,可以讨论哪些话题
以下是一些适合在您所描述的 AI 圆桌论坛中讨论的话题: 1. AI 在通信领域的应用与挑战,例如如何提升通信网络的智能化、优化频谱资源分配等。 2. 数字业务中 AI 的创新应用和潜在风险,比如个性化推荐系统的优化、数据隐私保护等。 3. 初创企业在智慧城市建设中利用 AI 的机遇和困难,像是如何获取数据资源、应对技术人才短缺等。 4. 探讨具身智能在不同领域的发展前景,如机器人、教育等。 5. 大模型如何为具身智能带来变革,以及相关的技术突破和应用案例。 6. 分析 AI 对传统行业的冲击与重塑,以及如何应对这种变化。 7. 研究 AI 在教育领域的创新模式,如个性化学习、智能辅导等。 8. 讨论 AI 技术的监管政策和伦理道德问题。 9. 分享在不同场景下(如出海业务、创新教育等)AI 的应用经验和成果。 10. 展望 AI 未来的发展趋势及其对社会经济的影响。
2024-10-20
怎么用你来学习
以下是关于如何用 AI 学习的相关内容: 新手如何学习 AI: 1. 了解 AI 基本概念:建议阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。同时浏览入门文章,了解 AI 的历史、当前应用和未来发展趋势。 2. 开始 AI 学习之旅:在「」中,能找到为初学者设计的课程,特别推荐李宏毅老师的课程。还可以通过在线教育平台(如 Coursera、edX、Udacity)按自己节奏学习,并争取获得证书。 3. 选择感兴趣的模块深入学习:AI 领域广泛,比如图像、音乐、视频等,可根据兴趣选择特定模块深入学习,同时掌握提示词技巧。 4. 实践和尝试:理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。知识库中有很多实践后的作品和文章分享。 5. 体验 AI 产品:与现有的 AI 产品(如 ChatGPT、Kimi Chat、智谱、文心一言等)互动,了解其工作原理和交互方式。 如何用 AI 进行英语学习和数学学习: 英语学习: 1. 智能辅助工具:利用 AI 写作助手(如 Grammarly)进行写作和语法纠错,改进英语表达和写作能力。 2. 语音识别和发音练习:使用语音识别应用(如 Call Annie)进行口语练习和发音纠正,获取实时反馈和建议。 3. 自适应学习平台:使用自适应学习平台(如 Duolingo),利用 AI 技术量身定制学习计划,提供个性化学习内容和练习。 4. 智能导师和对话机器人:利用智能对话机器人(如 ChatGPT)进行英语会话练习和对话模拟,提高交流能力和语感。 数学学习: 1. 自适应学习系统:使用自适应学习系统(如 Khan Academy),结合 AI 技术提供个性化学习路径和练习题,精准推荐。 2. 智能题库和作业辅助:利用智能题库和作业辅助工具(如 Photomath),通过图像识别和数学推理技术提供数学问题解答和解题步骤。 3. 虚拟教学助手:使用虚拟教学助手(如 Socratic),利用 AI 技术解答数学问题、提供教学视频和答疑服务。 4. 交互式学习平台:参与交互式学习平台(如 Wolfram Alpha)的数学学习课程和实践项目,利用 AI 技术进行数学建模和问题求解。 通过结合 AI 技术和传统学习方法,能更高效、更个性化地进行英语和数学学习,并取得更好效果。但请注意内容由 AI 大模型生成,请仔细甄别。
2025-03-05
深度学习模型图
以下是为您提供的关于深度学习模型图的相关内容: 腾讯研究院的 AI 年度关键词报告: 基于全年研究积累的三十余万字 AI 进展数据库,精选 50 个年度关键词,覆盖大模型技术的八大领域,包括图像处理、视频生成、3D 生成、编程助手、Agent、端侧智能、具身智能和基础模型。通过“快思考”与“慢思考”两种维度进行分析,“快思考”采用人机协同方式完成印象卡片,“慢思考”深入分析技术发展的底层逻辑。 DiT 架构: 结合扩散模型和 Transformer 的架构,用于高质量图像生成的深度学习模型。其核心观察包括 Transformer 从文本扩展至其它、DiT 架构带来图像生成质的飞跃、Scaling Law 在图像领域开始生效。 深度学习模型原理的通俗解释: 将深度学习要处理的信息比作水流,处理数据的深度学习网络是由管道和阀门组成的庞大水管网络。网络入口和出口有许多管道开口,且有多层,每层有调节阀。根据不同任务,层数和调节阀数量可变化。如识别汉字,将图片数字组成的水流灌入网络,根据出口水流情况调节调节阀,直至符合预期要求,训练好的模型可识别新的图片。 AI 技术原理与框架的小白学习笔记: 1. 概念:生成式 AI 生成的内容叫 AIGC。 2. 相关技术名词及关系: AI 即人工智能。 机器学习包括监督学习、无监督学习、强化学习,监督学习有标签,无监督学习无标签,强化学习从反馈学习。 深度学习参照人脑有神经网络和神经元,神经网络可用于多种学习方式。 生成式 AI 可生成多种内容形式,LLM 是大语言模型。 3. 技术里程碑:2017 年 6 月,谷歌团队发表论文《Attention is All You Need》,提出 Transformer 模型,基于自注意力机制处理序列数据,无需依赖 RNN 或 CNN。
2025-03-05
深度学习模型图
以下是为您提供的关于深度学习模型图的相关内容: 腾讯研究院的相关报告: 基于全年研究积累的三十余万字 AI 进展数据库,精选 50 个年度关键词,覆盖大模型技术的八大领域,包括图像处理、视频生成、3D 生成、编程助手、Agent、端侧智能、具身智能和基础模型。通过“快思考”与“慢思考”两种维度进行分析,“快思考”采用人机协同方式完成印象卡片,“慢思考”深入分析技术发展的底层逻辑。 DiT 架构: 结合扩散模型和 Transformer 的架构,用于高质量图像生成的深度学习模型。其核心观察包括 Transformer 从文本扩展至其它、DiT 架构带来图像生成质的飞跃、Scaling Law 在图像领域开始生效。 深度学习模型原理的通俗解释: 将深度学习要处理的信息比作水流,处理数据的深度学习网络是由管道和阀门组成的庞大水管网络。网络有多层,每层有调节阀,根据不同任务,层数和调节阀数量有不同组合。比如识别汉字,将图片的数字组成水流灌入网络,根据出口水流情况调节调节阀,直到符合预期要求,训练好的模型可识别新的图片。 AI 相关技术概念与关系: 1. 生成式 AI 生成的内容叫 AIGC。 2. 相关技术名词: AI 即人工智能。 机器学习包括监督学习、无监督学习、强化学习,监督学习有标签,无监督学习无标签,强化学习从反馈学习。 深度学习参照人脑有神经网络和神经元,神经网络可用于多种学习方式。 生成式 AI 可生成多种内容形式,LLM 是大语言模型,大语言模型的任务不止生成。 3. 技术里程碑:2017 年 6 月,谷歌团队发表论文《Attention is All You Need》,提出 Transformer 模型,基于自注意力机制处理序列数据。
2025-03-05
从哪里开始学习ai应用
以下是一些学习 AI 应用的途径和建议: 1. 可以通过“90 分钟从 0 开始打造你的第一个 Coze 应用”来学习,了解 Code AI 应用开发教学,包括其背景、现状以及以证件照为例的应用案例,重点熟悉桌面网页版的用户界面,学习操作界面、业务逻辑和用户界面,包括布局、搭建工作流、用户界面及调试发布。 2. 考虑学习微软的 AI 初学者入门课程,例如: 了解人工智能的商业应用案例,可以学习《面向商业用户的人工智能学习》、《人工智能商学院》。 学习经典机器学习,可参考《机器学习入门课程》。 若要使用 Azure 认知服务创建实用的人工智能应用,建议从《视觉》、《自然语言处理》、《使用 Azure OpenAI 服务的生成式人工智能》等课程开始。 3. 遵循布鲁姆分类法学习路径: 应用方面:深入了解 Prompt,选择适合自己的 AI 对话、绘画和语音产品,每天使用并用来解决实际问题或提升效率。 分析方面:大量阅读各类文章、视频以及行业报告,理解各知识之间的关系。
2025-03-05
如何看到人类与AI
人类与 AI 的关系具有多面性: 人类是工具的创造者,具有与生俱来的理解和创造驱动力,不断创造出更强大的工具,如电力、晶体管、计算机、互联网,AGI 也是人类进步的又一工具。长期来看,人类创新推动生活各方面繁荣改善,未来经济增长令人期待,十年后每个人的成就可能超越现在最具影响力的个人。 在这个时代,人类需要保持创造热情,这是与 AI 在动机上的最大差异。人类要提供立意与想法,具备抽象化和具象化能力,善于叙事和引导,并对 AI 做出的选择进行关键决策,还要深刻理解 AI 系统的工作方式与边界。AI 不再是威胁,而是伙伴,能帮助人类发挥潜力。 人类的独特价值在于能为 AI 的创造注入灵魂,避免 AI 对人类文化进行“高斯模糊”,导致独特风格被平均掉。当人类积极使用 AI 时,能将独特性留在共创作品中,保留个体独特性的世界对人类才有意义。
2025-02-13
我想学习ai提示词,但是我看到最新的deepseek好像不用提示词也可以写出很好的文案,那我还需要学习提示词吗
学习 AI 提示词是有必要的。提示词是给大语言模型的输入文本,用于指定模型应执行的任务和生成的输出,能“提示”模型做什么。设计高质量提示词需根据目标任务和模型能力精心设计,良好的提示词可让模型正确理解需求并给出符合预期的结果。 了解大模型的特性以及具备清晰表述自己需求和任务的能力,才能用好这个工具。 不过也有人持反对观点,认为像打字和写作一样,方法论不是关键,不断尝试和大模型交互就是最佳方法。但在与大模型交互时,用 Markdown 格式清晰表达问题有助于模型更好地理解用户意图,其具有结构清晰、格式化强调、适用性广等优点。 像 DeepSeek 这样的推理型大模型,更懂人话,不需要用户提供详细的步骤指令或特定的提示词模板,用自然语言描述真实场景和具体需求即可。还可以通过一些方式让 DeepSeek 的回答更符合需求,如让其“说人话”、激发深度思考、进行文风转换等。 总之,尽管有些模型可能不太依赖提示词,但学习提示词仍有助于您更好地与各类模型进行交互,并更有效地获得满意的结果。
2025-01-28
可开源的AI工具是什么意思,我可以看到她的代码吗
可开源的 AI 工具是指其源代码可以被公开获取和使用的人工智能工具。这意味着您有机会查看和研究其代码的实现方式。 以下为您列举一些常见的可开源的 AI 工具: 1. CodeGeeX:由智谱 AI 推出的开源免费 AI 编程助手,基于 130 亿参数的预训练大模型,能快速生成代码,提升开发效率。 2. :一个带 Web 界面简单易用的声音克隆工具。可使用任何人类音色,将一段文字合成为使用该音色说话的声音,或者将一个声音使用该音色转换为另一个声音。 3. :一个开源的音频、音乐和语音生成整合工具包。 4. :一键部署私人 GPT/LLM 的聊天机器人。支持语音合成、多模态和可扩展的插件系统,可以联网、画图、爬虫等。 5. :能够利用爬虫,自动抓取与整合指定 URL 地址中的各种信息,并生成一个 output.json 的数据文件。将其喂给 ChatGPT,便可快速定制您的专属 GPT,打造个人知识库或者智能助理。 6. :给 AI 看一眼截屏,便能直接生成代码。该项目可借助 GPT4 Vision 的能力,直接给您将屏幕截图转换为 HTML/Tailwind CSS,并利用 DALLE 3 的图像生成能力,生成外观相似的图像。 7. :可在命令行终端,直接调用与展示各种大模型能力。实现了视频和照片编辑、系统配置更改、自动生成并运行 Demo 源码,AI 一对一聊天问答等功能。 需要注意的是,不同的开源 AI 工具在功能和适用场景上可能会有所不同,您可以根据自己的需求选择最适合您的工具。
2025-01-20
李飞飞最近出的agent综述文章哪里可以看到
以下是李飞飞相关文章的获取渠道: 《》 《》
2025-01-17
我想看到国内在coze平台上的一些AI agent的开放源,怎么才能看到
以下是一些国内的 Agent 构建平台及 Coze 平台的相关信息: Agent 构建平台: Coze:是新一代一站式 AI Bot 开发平台,集成丰富插件工具,涵盖从基础文本处理到高级机器学习功能,还有众多符合平民生活化的插件,如新闻资讯、天气预报、出行必备、生活便利等方面的插件。 Microsoft 的 Copilot Studio:主要功能包括外挂数据、定义流程、调用 API 和操作,以及将 Copilot 部署到各种渠道。 文心智能体:百度推出的基于文心大模型的智能体平台,支持开发者根据需求打造产品能力。 MindOS 的 Agent 平台:允许用户定义 Agent 的个性、动机、知识,以及访问第三方数据和服务或执行工作流。 斑头雁:2B 基于企业知识库构建专属 AI Agent 的平台,适用于多种场景,提供多种成熟模板。 钉钉 AI 超级助理:依托钉钉强大的场景和数据优势,在处理高频工作场景方面表现出色。 要查看 Coze 平台上的 AI agent 开源内容,您可以通过以下途径尝试:在相关的技术社区、开源代码托管平台(如 GitHub 等)上进行搜索,或者关注 Coze 平台的官方网站及开发者论坛获取相关信息。但需注意,开源内容的获取可能受到平台规定和开发者授权的限制。
2025-01-12
我想看到在coze平台上的一些AI agent的开放源,怎么才能看到
在 Coze 平台上,以下是一些 AI Agent 的开源项目: 此外,以下是一些常见的 Agent 构建平台: Coze:新一代的一站式 AI Bot 开发平台,集成丰富插件工具,适用于构建各类问答 Bot。 Mircosoft 的 Copilot Studio:主要功能包括外挂数据、定义流程、调用 API 和操作,以及将 Copilot 部署到各种渠道。 文心智能体:百度推出的基于文心大模型的智能体平台,支持开发者根据需求打造产品能力。 MindOS 的 Agent 平台:允许用户定义 Agent 的个性、动机、知识,以及访问第三方数据和服务或执行工作流。 斑头雁:2B 基于企业知识库构建专属 AI Agent 的平台,适用于客服、营销、销售等场景。 钉钉 AI 超级助理:依托钉钉强大的场景和数据优势,在处理高频工作场景如销售、客服、行程安排等方面表现出色。
2025-01-12