Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

AI入门和学习路径

Answer

对于新手学习 AI,以下是一份详细的学习路径指南:

  1. 了解 AI 基本概念:
    • 阅读「从这里启程」部分,熟悉 AI 的术语和基础概念,包括人工智能的定义、主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。
    • 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。
  2. 开始 AI 学习之旅:
    • 在「入门:AI 学习路径」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。
    • 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。
  3. 选择感兴趣的模块深入学习:
    • AI 领域广泛,比如图像、音乐、视频等,可根据自己的兴趣选择特定的模块进行深入学习。
    • 掌握提示词的技巧,它上手容易且很有用。
  4. 实践和尝试:
    • 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出自己的作品。
    • 在知识库中有很多大家实践后的作品、文章分享,欢迎实践后的分享。
  5. 体验 AI 产品:
    • 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。

此外,还可以通过以下方式辅助学习:

  • 了解 AI 相关名词解释,如 AGI、AIGC、agent、prompt 等,建议通过与 AI 对话或李继刚老师的课程来理解。
  • 参考经典必读文章,如介绍 GPT 运作原理、Transformer 模型、扩散模型等的文章,以及软件 2.0 时代相关内容。
  • 初学者入门推荐看 open AI 的官方 Cookbook,小琪姐做了中文精读翻译,也可查看 cloud 的相关内容。
  • 查看历史脉络类资料,如整理的 open AI 的发展时间线和万字长文回顾等。
Content generated by AI large model, please carefully verify (powered by aily)

References

问:新手如何学习 AI?

了解AI基本概念:首先,建议阅读「[从这里启程](https://waytoagi.feishu.cn/wiki/PFXnwBTsEiGwGGk2QQFcdTWrnlb?table=blkjooAlLFNtvKJ2)」部分,熟悉AI的术语和基础概念。了解什么是人工智能,它的主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。浏览入门文章,这些文章通常会介绍AI的历史、当前的应用和未来的发展趋势。开始AI学习之旅:在「[入门:AI学习路径](https://waytoagi.feishu.cn/wiki/ZYtkwJQSJiLa5rkMF5scEN4Onhd?table=tblWqPFOvA24Jv6X&view=veweFm2l9w)」中,你将找到一系列为初学者设计的课程。这些课程将引导你了解生成式AI等基础知识,特别推荐李宏毅老师的课程。通过在线教育平台(如Coursera、edX、Udacity)上的课程,你可以按照自己的节奏学习,并有机会获得证书。选择感兴趣的模块深入学习:AI领域广泛(比如图像、音乐、视频等),你可以根据自己的兴趣选择特定的模块进行深入学习。我建议你一定要掌握提示词的技巧,它上手容易且很有用。实践和尝试:理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出你的作品。在知识库提供了很多大家实践后的作品、文章分享,欢迎你实践后的分享。体验AI产品:与现有的AI产品进行互动是学习AI的另一种有效方式。尝试使用如ChatGPT、Kimi Chat、智谱、文心一言等AI聊天机器人,了解它们的工作原理和交互方式。通过与这些AI产品的对话,你可以获得对AI在实际应用中表现的第一手体验,并激发你对AI潜力的认识。

问:新手如何学习 AI?

学习人工智能(AI)是一个既刺激又富有挑战的旅程,它将带领你进入一个充满创新和发现的世界。如果你想开始学习AI,这里有一份详细的学习路径指南,可以帮助你从基础概念到实际应用,逐步建立起你的AI知识体系。

01-通往AGI之路知识库使用指南

[heading2]总结关于AI知识库使用及AIPO活动的介绍:讨论了AI知识库的使用情况、AIPO活动的发起背景、内容安排及相关资源等。AIPO线下活动及AI相关探讨:讨论了AIPO线下活动的规则和玩法,以及AI在科技发展中的重要地位和相关研究方向。way to AGI社区活动与知识库介绍:讨论了way to AGI社区活动的安排、材料准备以及知识库的使用和相关内容更新等情况。关于AI知识库及学习路径的介绍时代杂志评选的领军人物:去年时代杂志评出了百位领军人物。AI相关名词解释:包括AGI、AIGC、agent、prompt等,建议通过与AI对话或李继刚老师的课程来理解。知识库的信息来源:有赛博蝉星公众号、国外优质博主的blog或Twitter等,推荐大家订阅获取最新信息并投稿。社区共创项目:如AIPU、CONFIUI生态大会,每月有切磋大会等活动,还发起了新活动AIPO。学习路径:有李弘毅老师的生成式AI导论等高质量学习内容,可系统化学习或通过社区共创活动反推学习,鼓励整理学习笔记并分享交流。经典必读文章:如介绍GPT运作原理、Transformer模型、扩散模型等的文章,还包括软件2.0时代相关内容。初学者入门推荐:推荐看open AI的官方Cookbook,小琪姐做了中文精读翻译,也可查看cloud的相关内容。历史脉络类资料:整理了open AI的发展时间线和万字长文回顾等。

Others are asking
AI生成思维导图
以下是一些与思维导图相关的 AI 工具: 1. GitMind:免费的跨平台思维导图软件,可通过 AI 自动生成,支持多种模式,如提问、回答、自动生成等。 2. ProcessOn:国内的思维导图+AIGC 工具,能利用 AI 生成思维导图。 3. AmyMind:轻量级在线 AI 思维导图工具,无需注册登录,支持自动生成节点。 4. Xmind Copilot:Xmind 推出的基于 GPT 的 AI 思维导图助手,可一键拓展思路,生成文章大纲。 5. TreeMind:“AI 人工智能”思维导图工具,输入需求即可由 AI 自动完成生成。 6. EdrawMind:提供一系列 AI 工具,包括 AI 驱动的头脑风暴功能,有助于提升生产力。 此外,还有一些相关的应用案例,如 ChatMind 可利用 AI 自动生成思维导图,输入问题、文章、数据即可,能导出图片与 Markdown 文档两种格式。在读书会活动中,也可以通过如 kimichat 让 AI 拆解书籍内容生成 markdown,再粘贴到在线思维导图 Markmap 中一键生成思维导图并微调。
2025-03-03
有哪些自动生成宣传海报的ai
以下是一些自动生成宣传海报的 AI 工具及相关方法: 1. 某些活动中开发的 AI 可以在提供配方的同时自动生成海报,例如鸡尾酒配方搭配生成的私人订制海报。 2. 国内的 AIGC 绘图平台,如无界 AI 可以用于快速制作海报底图并完成主题海报排版。大致流程如下: 确定海报主题后,借助 ChatGPT 等文本类 AI 工具协助完成文案。 选择想要完成的风格意向,根据文案和风格灵活调整画面布局。 使用无界 AI 输入关键词,生成并挑选一张满意的海报底图。 将上述素材进行合理排版,得到成品。排版同样可以参考 AIGC 海报成果。 3. 在无界 AI 中,还可以通过图生图的方式生成海报。首先准备一张真实照片作为样图,然后找到图生图功能,添加关键词,如果要改变画面内容,可调整相关参数和增加修饰词。
2025-03-03
AI 生成海报有哪些好用的工具
以下是一些好用的 AI 生成海报工具: 1. Canva(可画):https://www.canva.cn/ 这是一个非常受欢迎的在线设计工具,提供大量模板和设计元素,用户通过简单拖放操作即可创建海报,其 AI 功能可帮助选择合适的颜色搭配和字体样式。 2. 稿定设计:https://www.gaoding.com/ 稿定智能设计工具采用先进的人工智能技术,自动分析和生成设计方案,稍作调整即可完成完美设计。 3. VistaCreate:https://create.vista.com/ 这是一个简单易用的设计平台,提供大量设计模板和元素,用户可使用 AI 工具创建个性化海报,其智能建议功能可帮助快速找到合适的设计元素。 4. Microsoft Designer:https://designer.microsoft.com/ 通过简单拖放界面,用户可快速创建演示文稿、社交媒体帖子等视觉内容,还集成丰富模板库和自动图像编辑功能,如智能布局和文字优化,大大简化设计流程。 另外,使用无界 AI 也可以快速生成海报。网址:https://www.wujieai.cc/ 其做图逻辑类似于 SD,优势在于国内网络即可稳定使用,有免费出图点数,支持中文关键词输入,无需额外下载风格模型,可直接取用。 用 AI 快速做一张满意的海报,大致流程如下: 1. 需求场景:例如想在社交平台发布内容时,为避免网上图片质量差、易撞图等问题,可自己制作。 2. 大致流程: 主题与文案:确定海报主题后,可借助 ChatGPT 等文本类 AI 工具协助完成文案。 风格与布局:选择想要完成的风格意向,背景不一定是空白的,可根据文案和风格灵活调整画面布局。 生成与筛选:使用无界 AI,输入关键词,生成并挑选一张满意的海报底图。 配文与排版:将上述素材进行合理排版,得到成品。排版同样可以参考 AIGC 海报成果。 在使用无界 AI 生成海报时,例如制作朋友圈 po 图,画幅比例可选择 1:1,使用皮克斯卡通模型,关键词类别可包括场景、氛围、人物、造型、情绪、道具、构图、画面等方面。
2025-03-03
ai大模型有哪些常用参数
以下是关于 AI 大模型常用参数的相关内容: 1. 架构方面: Encoderonly:适用于自然语言理解任务,如分类和情感分析,代表模型是 BERT。 Encoderdecoder:结合 Transformer 架构的 encoder 和 decoder 来理解和生成内容,用例包括翻译和摘要,代表是谷歌的 T5。 Decoderonly:更擅长自然语言生成任务,众多 AI 助手采用此结构,如 ChatGPT。 2. 规模方面: 预训练数据量大,往往来自互联网上的论文、代码、公开网页等,一般用 TB 级别数据进行预训练。 参数众多,如 Open 在 2020 年发布的 GPT3 就已达到 170B 的参数。参数指的是神经网络的输入权重和输出阈值的总和。假定一个神经元有 9 个输入权重和 1 个输出阈值,就有 10 个参数。当有 100 亿个这样的神经元时,就形成千亿级参数的大模型。 3. 模型部署方面: 在 LLM 中,Token 是输入的基本单元。由于大模型参数多,如 GPT2 有 1.5B 参数,每个参数用 float32 表示需 6GB 内存,更先进的模型如 LLAMA 有 65B 参数则需 260G 内存(还不考虑词汇表)。因此实际部署时会进行模型压缩。 在训练 LLM 中,CPU 与内存之间的传输速度往往是系统瓶颈,核心数反而不是大问题,减小内存使用是首要优化点。使用内存占用更小的数据类型是直接方式,如 16 位浮点数可将内存使用减倍。目前有几种相互竞争的 16 位标准,英伟达在其最新一代硬件中引入了对 bfloat16 的支持。
2025-03-03
帮我 找下AI排版的应用
以下是一些常见的 AI 排版应用: 1. Grammarly:不仅是语法和拼写检查工具,还提供排版功能,可改进文档整体风格和流畅性。 2. QuillBot:AI 驱动的写作和排版工具,能改进文本清晰度和流畅性,保持原意。 3. Latex:常用于学术论文排版的软件,使用标记语言描述文档格式,有许多 AI 辅助的编辑器和插件简化排版过程。 4. PandaDoc:文档自动化平台,使用 AI 帮助创建、格式化和自动化文档生成,适合商业和技术文档。 5. Wordtune:AI 写作助手,重新表述和改进文本,使其更清晰专业,保持原始意图。 6. Overleaf:在线 Latex 编辑器,提供丰富模板和协作工具,适合学术写作和排版。 选择合适的 AI 排版工具取决于您的具体需求,如文档类型、出版标准和个人偏好。对于学术论文,Latex 和 Overleaf 是受欢迎的选择,对于一般文章和商业文档,Grammarly 和 PandaDoc 等工具可能更适用。 此外,在配图方面,AI 能够给出配图的建议。您可以让 AI 分析文章内容,给出配图建议和关键词,然后利用这些信息在免费图库中快速找到合适的无版权图片,这样不仅提高了配图效率,还能避免版权风险。
2025-03-03
openAI的deep research有哪些缺陷
OpenAI 的 Deep Research 存在以下一些缺陷: 1. 具有滞后性,在某些信息上无法做到及时更新。 2. 存在信息混乱的问题,无法完全替代人类的深度思考。
2025-03-03
AI小白应该如何开始入门AI
对于 AI 小白入门 AI,以下是一些建议: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 参考「」,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,可根据自身兴趣选择特定模块深入学习。 掌握提示词的技巧,其上手容易且很有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库分享实践后的作品和文章。 5. 体验 AI 产品: 与如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人互动,了解其工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验。 此外,您还可以参考《雪梅 May 的 AI 学习日记》,其中提到: 1. 适合纯 AI 小白,可先看目录,作者从一开始的到处看到走在学习轨道上。 2. 学习模式是输入→模仿→自发创造,如果对费曼学习法没自信,可尝试这种模式。 3. 学习内容因 AI 节奏快可能不适用,可去 waytoAGI 社区发现自己感兴趣的领域,学习最新内容。 4. 学习时间不是每天依次进行,有空时学习即可。 5. 保持好的学习状态,能学多少算多少。 6. 学习资源免费开源。 另外,有人的 AI 之旅开始于 prompt,3.5 刚出来时,写好 prompt 能提高问问题和解决问题的效率,虽然将 prompt 规范、抽象用以让 AI 拟人较难,但参加相关活动和学习也有收获。
2025-03-02
智能体入门
以下是关于智能体入门的相关内容: 讲师介绍: 韦恩是智能体创业者、WayToAGI 共建者、微软提示词工程师、多平台 Agent 开发者、企业级 AI Agent 定制专家,荣获多家 AI 开发平台的比赛奖项,拥有 12 年程序开发背景,是多家企业的 AI 落地顾问。其承接业务包括 1v1 辅导、智能体培训、智能体定制开发、企业 AI 项目落地。 课程计划: 1. DAY1:入门,搭建证件照应用,需要有一定的智能体搭建基础。 2. DAY2:进阶,邮票收藏馆搭建,需要有第一天的 AI 应用搭建基础。 课程收获: 1. 全面认识扣子的 AI 应用的底层逻辑。 2. 解决 AI 应用核心卡点,如工具栏、表单使用、加载动图、界面布局等。 3. 收获一个价值千元的 AI 应用——证件照。 智能体特点: 1. 强大的学习能力,能够通过大量的数据进行学习,从而获得对语言、图像等多种信息的理解和处理能力。 2. 灵活性,可以适应不同的任务和环境,表现出较高的灵活性和适应性。 3. 泛化能力,能够将学到的知识泛化到新的情境中,解决之前未见过的类似问题。 智能体的核心在于如何有效地控制和利用大型模型,以达到设定的目标,这通常涉及到精确的提示词设计,提示词的设计直接影响到智能体的表现和输出结果。
2025-02-28
AI入门途径
以下是为新手提供的 AI 入门途径: 1. 了解 AI 基本概念:建议阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。同时浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅:在「」中,有一系列为初学者设计的课程,特别推荐李宏毅老师的课程。您还可以通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习:AI 领域广泛,比如图像、音乐、视频等,您可以根据自己的兴趣选择特定的模块进行深入学习。同时,掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试:理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 5. 体验 AI 产品:与现有的 AI 产品进行互动是学习 AI 的另一种有效方式。尝试使用如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 此外,对于通过 AI 开发应用的同学,必读 OpenAI API 文档()。 对于使用 AI 应用的同学,以下是一些入门文章: 《ChatGPT 中,G、P、T 分别是什么意思?》:GPT 分别代表生成式、预训练和转换器。 《大白话聊 ChatGPT》:逐字稿: 《AI 的时代已经到来》:中文译稿: 《万物摩尔定律》:
2025-02-28
如何对AI进行基础入门学习,具体步骤是什么
以下是对 AI 进行基础入门学习的具体步骤: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,可根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库提供了很多大家实践后的作品、文章分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 对于中学生学习 AI,建议如下: 1. 从编程语言入手学习: 可以从 Python、JavaScript 等编程语言开始学习,学习编程语法、数据结构、算法等基础知识。 2. 尝试使用 AI 工具和平台: 可以使用 ChatGPT、Midjourney 等 AI 生成工具,体验 AI 的应用场景。 探索一些面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. 学习 AI 基础知识: 了解 AI 的基本概念、发展历程、主要技术如机器学习、深度学习等。 学习 AI 在教育、医疗、金融等领域的应用案例。 4. 参与 AI 相关的实践项目: 参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动。 尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 5. 关注 AI 发展的前沿动态: 关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展。 思考 AI 技术对未来社会的影响,培养对 AI 的思考和判断能力。
2025-02-28
多维表格入门
以下是关于多维表格入门的相关内容: 智浦清流工作流与多维表格:元子将介绍多维表格的使用,CT 会介绍如何将 code 连进多维表格。 多维表格创建问卷:在飞书云文档中通过点击加号新建问卷,可用于收集信息。 多维表格与 Excel 对比:Excel 处理数据有一定门槛,而多维表格有丰富插件,可与 AI 协作处理数据,更方便易用。 多维表格的应用场景:可提取网页和电话等信息,留存透视所有信息,还能实现微信收集信息自动存入多维表格等功能。 智普工作流接入:逻辑上智普工作流可接入多维表格,但目前没有直接可用插件,可能需要自行开发。 多维表格的主要构成:包括输入(框子里能装的数据类型)、数据处理(重点,有插件、AI、自动写公式等)、视图(透视功能)、看板(可视化)、工作流(自动化)、和飞书联动。 飞书多维表格字段捷径中接入 COS 的 agent 能力及相关话题分享:ct 分享了如何将 cos 中的 bot 导入飞书多维表格的字段捷径,包括发布 bot 到飞书多维表格、配置相关内容、注意发布范围等操作,还展示了多个案例。
2025-02-28
角色指令设计入门
以下是关于角色指令设计入门的相关内容: SD 角色设计: 绘制一致性多角度头像: 大模型:majicmixRealistic_v6.safetensors 正向提示词:,auburn hair,eyes open,cinematic lighting,Hyperrealism,depth of field,photography,ultra highres,photorealistic,8k,hyperrealism,studio lighting,photography 负向提示词:EasyNegative,canvasframe,canvas frame,eyes shut,wink,blurry,hands,closed eyes,,lowres,sig,signature,watermark,username,bad,immature,cartoon,anime,3d,painting,b&w 参数设置:迭代步数 50,采样方法 DPM++2M Karras,尺寸 1328×800px MJ 手册·快速入门: 角色人物公式:人物姓名(命名)+描述词(重要描述词和人物特征描述词)+风格+官方命令词 3D 公式:主体+描述词(重要描述词和物体特征描述词)+风格+灯光+官方命令词 插画公式:主题描述词语+风格(风格名称或画家)+描述+颜色灯光+官方命令 特定公式: 连续场景变化公式: 1)角色/场景公式:上传图片(喂图)+人物描写(融入其他场景需要关键词 white background,结合场景后换成 walking in a futuristic cyberpunk city)+场景风格描写+官方命令 2)木偶公式:人物图片+场景+人物+动作+风格+官方命令 3)等距粘土公式: 1. 等距+物体+max emoji(表情符号),soft(柔和)lighting soft(柔和光线)pastel colors/pastel background(背景)+3Dicon+clay(粘土)+blender 3d+背景颜色=等距粘土物体 2. 安子布莱斯娃娃/也可以换成其他知道的娃娃名称+灯光/颜色/背景/材质+clay(粘土)+良奈吉友画风/或者其他名人风格=人 4)3D 图标公式(未测试,可用):喂图(1~3 张相似的风格)+描述的 icon(和喂图一致的关键词)+颜色(和喂图颜色一致的)+渲染词+官方命令 通用公式:角色/物体描述+背景描述+灯光风格+官方命令 Midjourney V6 更新角色一致性命令“cref”: 角色参考(或cref)将帮助您在不同图像中获得大致相同的角色,“角色”是指任何类人物形象。cref 参数允许我们根据我们通过 URL 提供的现有角色图像来创建大致相似的角色。 角色属性对于cref 参数效果良好的包括显著的标志性特征,如蓝绿色卷曲头发、粉红色太阳镜、及膝风衣、绿色背包;效果不佳的包括细小的细节,如一个银色吊坠项链,上面有八个小金字塔形宝石,一件左袖缺失的皮夹克,背后写着“ZOOM”,夹克是袖子缺失的设计,两侧夹克缘处有无限符号剃掉的发型。 准确的使用方法可参考频道说明,地址链接:https://discord.com/channels/662267976984297473/1216877089286787222
2025-02-27
自学AI路径
以下是新手自学 AI 的路径: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前应用和未来发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,如图像、音乐、视频等,可根据兴趣选择特定模块深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解其工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 记住,学习 AI 是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,您将逐渐建立起自己的 AI 知识体系,并能够在这一领域取得成就。完整的学习路径建议参考「通往 AGI 之路」的布鲁姆分类法,设计自己的学习路径。
2025-03-02
一名扬州大学汉语言文学师范专业的大一在读生,无创业经验,如何在ai帮助下在未来几年寻找创业方向和努力路径
对于一名扬州大学汉语言文学师范专业的大一在读生,无创业经验,在未来几年借助 AI 寻找创业方向和努力路径,可以参考以下建议: 首先,了解不同的发展路径特点。在学术研究方面,要培养适应能力,保持对研究的热爱以应对长期缺乏即时反馈的挑战。创业如同“当海盗”,充满刺激和不确定性,需要快速学习、适应市场和承担风险,虽能直接面对社会,但可能带来巨大压力并影响生活质量。在大公司工作需确保个人目标与公司一致,创业公司有生存压力,而打工人有稳定收入和学习机会,但可能限制思维。 其次,明确选择路径的逻辑。无论选择哪种路径,强烈的内在动机是长期成功的关键,动机可能源于内心欲望或对失败的恐惧,要直面并理解它们,将其转化为积极向上的动机,确保符合个人价值观。确定积极动机后,具有学术价值的问题可考虑读博,有商业价值的问题可尝试创业,至少有成长价值的问题可从打工开始。 最后,为持续提升自我,可以采用从导师或上级的角度每周总结工作的实用方法。分析未达成目标的原因,如果是懒惰,要直面并解决,比如找学习伙伴相互监督;如果是能力不足,可以考虑转向擅长领域或增加学习时间。 对于您来说,可以结合自身的兴趣和优势,思考在汉语言文学师范领域中是否存在具有商业价值的问题,利用 AI 技术进行市场调研和分析,探索可能的创业方向。同时,也可以通过打工或参与相关项目积累经验。
2025-02-27
我做一个小白,请帮我规划一个学习路径,让我快速掌握AI工具使用
以下是为您规划的快速掌握 AI 工具使用的学习路径: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括人工智能的定义、主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,学习生成式 AI 等基础知识,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,如图像、音乐、视频等,您可以根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 通过与这些 AI 产品的对话,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 此外,还有以下几点建议: 1. 多看教程,多实践:通过学习教程和反复实践,可以快速掌握 AI 工具的使用方法。 2. 积极参与社群交流:加入相关社群,向有经验的朋友请教,可以获得很多宝贵的经验和建议。 3. 保持好奇心和探索精神:AI 技术发展迅速,不断学习和探索新技术,可以让您在这个领域中保持竞争力。 希望以上学习路径和建议对您有所帮助!
2025-02-27
我想知道ai学习路径
以下是为您提供的 AI 学习路径: 一、了解 AI 基本概念 建议阅读「」部分,熟悉 AI 的术语和基础概念,包括人工智能的定义、主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。同时,浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 二、开始 AI 学习之旅 在「」中,您可以找到为初学者设计的课程,特别推荐李宏毅老师的课程。您还可以通过在线教育平台(如 Coursera、edX、Udacity)按照自己的节奏学习,并争取获得证书。 三、选择感兴趣的模块深入学习 AI 领域广泛,涵盖图像、音乐、视频等。您可以根据自身兴趣选择特定模块深入学习,比如掌握提示词的技巧,这上手容易且实用。 四、实践和尝试 理论学习后,实践是巩固知识的关键。您可以尝试使用各种产品进行创作,知识库中也有很多实践后的作品和文章分享,欢迎您在实践后进行分享。 五、体验 AI 产品 与现有的 AI 产品互动,如 ChatGPT、Kimi Chat、智谱、文心一言等聊天机器人,了解其工作原理和交互方式,获得对 AI 实际应用表现的第一手体验。 六、技术研究方向 1. 数学基础:线性代数、概率论、优化理论等。 2. 机器学习基础:监督学习、无监督学习、强化学习等。 3. 深度学习:神经网络、卷积网络、递归网络、注意力机制等。 4. 自然语言处理:语言模型、文本分类、机器翻译等。 5. 计算机视觉:图像分类、目标检测、语义分割等。 6. 前沿领域:大模型、多模态 AI、自监督学习、小样本学习等。 7. 科研实践:论文阅读、模型实现、实验设计等。 七、应用方向 1. 编程基础:Python、C++等。 2. 机器学习基础:监督学习、无监督学习等。 3. 深度学习框架:TensorFlow、PyTorch 等。 4. 应用领域:自然语言处理、计算机视觉、推荐系统等。 5. 数据处理:数据采集、清洗、特征工程等。 6. 模型部署:模型优化、模型服务等。 7. 行业实践:项目实战、案例分析等。 无论是技术研究还是应用实践,数学和编程基础都是必不可少的。同时需要紧跟前沿技术发展动态,并结合实际问题进行实践锻炼。 希望以上内容对您有所帮助。
2025-02-26
AI学习路径
以下是为新手提供的 AI 学习路径: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,如图像、音乐、视频等,可根据兴趣选择特定模块深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解其工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 另外,如果您偏向技术研究方向,学习路径包括: 1. 数学基础:线性代数、概率论、优化理论等。 2. 机器学习基础:监督学习、无监督学习、强化学习等。 3. 深度学习:神经网络、卷积网络、递归网络、注意力机制等。 4. 自然语言处理:语言模型、文本分类、机器翻译等。 5. 计算机视觉:图像分类、目标检测、语义分割等。 6. 前沿领域:大模型、多模态 AI、自监督学习、小样本学习等。 7. 科研实践:论文阅读、模型实现、实验设计等。 如果您偏向应用方向,学习路径包括: 1. 编程基础:Python、C++等。 2. 机器学习基础:监督学习、无监督学习等。 3. 深度学习框架:TensorFlow、PyTorch 等。 4. 应用领域:自然语言处理、计算机视觉、推荐系统等。 5. 数据处理:数据采集、清洗、特征工程等。 6. 模型部署:模型优化、模型服务等。 7. 行业实践:项目实战、案例分析等。 无论是技术研究还是应用实践,数学和编程基础都是必不可少的。同时需要紧跟前沿技术发展动态,并结合实际问题进行实践锻炼。 记住,学习 AI 是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,您将逐渐建立起自己的 AI 知识体系,并能够在这一领域取得成就。完整的学习路径建议参考「通往 AGI 之路」的布鲁姆分类法,设计自己的学习路径。
2025-02-26
金融行业落地大模型的路径
以下是金融行业落地大模型的相关路径: 1. 从整体行业情况来看: 2024 年被称为国内大模型落地元年,国内大模型项目增长迅速,中标项目数量和金额大幅增长。 大模型中标项目数前五的行业包括金融。 厂商方面,百度在金融行业的中标数量和金额排名领先。 2. 具体应用案例: 彭博发布了金融领域的大模型 BloombergGPT,并应用于其所在的垂直领域。 3. 行业人士观点: 通用模型适用不同产业,垂直模型类似于单领域专家,垂直大模型的发展有助于提升各领域模型性能。 商汤科技联合创始人杨帆认为,当模型足够大时,可能加速商业化落地,带来更好的技术能力,缩短产业应用周期。 360 公司创始人周鸿祎表示,大模型是工业革命级的生产力工具,能赋能百行千业。 4. 相关赛事推动: 举办「2024 金融行业·大模型挑战赛」,整合公开金融数据,打造多轮问答评测赛题,提供基础数据表,参赛选手可采用 GLM4 系列模型 API 并运用多种技术手段完成赛题,有多个单位提供支持。
2025-02-24
怎么学习AI基础知识
以下是学习 AI 基础知识的方法: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括人工智能的定义、主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 对于中学生学习 AI,建议如下: 1. 从编程语言入手学习: 可以从 Python、JavaScript 等编程语言开始学习,学习编程语法、数据结构、算法等基础知识,为后续的 AI 学习打下基础。 2. 尝试使用 AI 工具和平台: 可以使用 ChatGPT、Midjourney 等 AI 生成工具,体验 AI 的应用场景。 探索一些面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. 学习 AI 基础知识: 了解 AI 的基本概念、发展历程、主要技术如机器学习、深度学习等。 学习 AI 在教育、医疗、金融等领域的应用案例。 4. 参与 AI 相关的实践项目: 可以参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动。 尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 5. 关注 AI 发展的前沿动态: 关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展。 思考 AI 技术对未来社会的影响,培养对 AI 的思考和判断能力。 如果您不会代码但希望在 20 分钟上手 Python + AI,可以尝试了解以下内容作为基础: 1. AI 背景知识: 基础理论:了解人工智能、机器学习、深度学习的定义及其之间的关系。 历史发展:简要回顾 AI 的发展历程和重要里程碑。 2. 数学基础: 统计学基础:熟悉均值、中位数、方差等统计概念。 线性代数:了解向量、矩阵等线性代数基本概念。 概率论:基础的概率论知识,如条件概率、贝叶斯定理。 3. 算法和模型: 监督学习:了解常用算法,如线性回归、决策树、支持向量机(SVM)。 无监督学习:熟悉聚类、降维等算法。 强化学习:简介强化学习的基本概念。 4. 评估和调优: 性能评估:了解如何评估模型性能,包括交叉验证、精确度、召回率等。 模型调优:学习如何使用网格搜索等技术优化模型参数。 5. 神经网络基础: 网络结构:理解神经网络的基本结构,包括前馈网络、卷积神经网络(CNN)、循环神经网络(RNN)。 激活函数:了解常用的激活函数,如 ReLU、Sigmoid、Tanh。
2025-03-03
学习ai
新手学习 AI 可以参考以下步骤: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,如图像、音乐、视频等,可根据兴趣选择特定模块深入学习。 掌握提示词的技巧,其上手容易且很有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解其工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 对于中学生学习 AI,建议如下: 1. 从编程语言入手学习: 可以从 Python、JavaScript 等编程语言开始,学习编程语法、数据结构、算法等基础知识,为后续的 AI 学习打下基础。 2. 尝试使用 AI 工具和平台: 可以使用 ChatGPT、Midjourney 等 AI 生成工具,体验 AI 的应用场景。 探索一些面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. 学习 AI 基础知识: 了解 AI 的基本概念、发展历程、主要技术如机器学习、深度学习等。 学习 AI 在教育、医疗、金融等领域的应用案例。 4. 参与 AI 相关的实践项目: 参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动。 尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 5. 关注 AI 发展的前沿动态: 关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展。 思考 AI 技术对未来社会的影响,培养对 AI 的思考和判断能力。 记住,学习 AI 是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,您将逐渐建立起自己的 AI 知识体系,并能够在这一领域取得成就。完整的学习路径建议参考「通往 AGI 之路」的布鲁姆分类法,设计自己的学习路径。
2025-03-03
希望用AI工具帮助小学生建立学习习惯,管理学习,学习习惯统计管理
目前针对使用 AI 工具帮助小学生建立学习习惯、管理学习以及进行学习习惯统计管理,暂时没有相关的具体内容。但可以考虑以下思路: 1. 利用智能学习软件,这类软件可以根据小学生的学习进度和表现制定个性化的学习计划,并进行学习时间的管理和提醒。 2. 借助具有语音交互功能的 AI 助手,鼓励小学生通过与它交流来分享学习心得和困惑,从而培养良好的学习反思习惯。 3. 运用一些具备学习数据统计分析功能的工具,帮助家长和老师了解小学生的学习行为模式,以便针对性地进行引导和纠正。 需要注意的是,在使用 AI 工具时,要确保其内容适合小学生的年龄和认知水平,同时也要关注使用时间,避免过度依赖。
2025-03-03
开发转AI产品经理,需要学习哪些东西,请推荐资料库的内容给我让我学习
如果您从开发转型为 AI 产品经理,以下是一些您需要学习的内容和推荐的学习资料: 1. 技术原理方面: 思维链:谷歌在 2022 年的一篇论文提到思维链可以显著提升大语言模型在复杂推理的能力(即有推理步骤),即使不用小样本提示,也可以在问题后面加一句【请你分步骤思考】。 RAG(检索增强生成):外部知识库切分成段落后转成向量,存在向量数据库。用户提问并查找到向量数据库后,段落信息会和原本的问题一块传给 AI;可搭建企业知识库和个人知识库。 PAL(程序辅助语言模型):2022 年一篇论文中提出;比如对于语言模型的计算问题,核心在于不让 AI 直接生成计算结果,而是借助其他工具比如 Python 解释器作为计算工具。 ReAct:2022 年一篇《React:在语言模型中协同推理与行动》的论文提出了 ReAct 框架,即 reason 与 action 结合,核心在于让模型动态推理并采取行动与外界环境互动。比如用搜索引擎对关键字进行搜索,观察行动得到的结果。可借助 LangChain 等框架简化构建流程。 2. 个人总结:很多大佬发言表示要关注或直接阅读技术论文,比如产品经理转型 AI 产品经理,需要懂技术脉络。但小白直接看技术论文有难度,虽然现在可以让 AI 辅助阅读,不过还是要完成一定的知识储备。林粒粒呀的这期视频是一个很好的科普入门。 3. 视频二:技术框架与关于未来的想象。之前对安克创新的印象可能是卖充电宝和安防设备,但看了这期访谈,被 CEO 阳萌的认知震撼,很多观点有启发,强烈建议看原访谈视频。其中提到 Transformer 是仿生算法的阶段性实现,10 年、20 年后大家将不再用 TA 。
2025-03-03
我是AI小白,我应该如何学习AI,从而提升自己工作领域效率。
对于 AI 小白来说,想要通过学习 AI 提升工作领域的效率,可以按照以下步骤进行: 1. 了解 AI 基本概念: 建议阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,您可以找到一系列为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,您可以根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 通过与这些 AI 产品的对话,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 此外,AI 工作流是给每个环节找最合适的 AI 工具,不同的 AI 工具配合起来效果更好。虽然当前 AI 可能不够完美,但提前学习 AI 工作流可以提前布局,抢占先机。未来会出现更强大的 AI 工具,熟练掌握 AI 工作流的人能迅速应用新工具提升效率,而未学习的人则会落后。学习 AI 工作流不仅能提升当下工作效率,也能在未来占据有利位置。
2025-03-03
我是AI小白,我应该如何学习AI。从而自己工作领域效率。
对于 AI 小白来说,以下是一些学习 AI 以提高工作领域效率的建议: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,您可以根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 通过与这些 AI 产品的对话,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 此外,了解 AI 工作流也很重要。AI 工作流就是要给每个环节找最合适的 AI 工具,不同的 AI 工具配合起来,效果比单独用一个工具好得多。虽然当前的 AI 可能不够完美,但提前学习 AI 工作流可以提前布局,抢占先机。未来会出现更强大的 AI 工具,熟练掌握 AI 工作流的人能迅速将其应用到工作中,提升效率。
2025-03-03