Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

怎么学习AI基础知识

Answer

以下是学习 AI 基础知识的方法:

  1. 了解 AI 基本概念:
    • 阅读「从这里启程」部分,熟悉 AI 的术语和基础概念,包括人工智能的定义、主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。
    • 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。
  2. 开始 AI 学习之旅:
    • 在「入门:AI 学习路径」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。
    • 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。
  3. 选择感兴趣的模块深入学习:
    • AI 领域广泛,比如图像、音乐、视频等,根据自己的兴趣选择特定的模块进行深入学习。
    • 掌握提示词的技巧,它上手容易且很有用。
  4. 实践和尝试:
    • 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出作品。
    • 在知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。
  5. 体验 AI 产品:
    • 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。

对于中学生学习 AI,建议如下:

  1. 从编程语言入手学习:
    • 可以从 Python、JavaScript 等编程语言开始学习,学习编程语法、数据结构、算法等基础知识,为后续的 AI 学习打下基础。
  2. 尝试使用 AI 工具和平台:
    • 可以使用 ChatGPT、Midjourney 等 AI 生成工具,体验 AI 的应用场景。
    • 探索一些面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。
  3. 学习 AI 基础知识:
    • 了解 AI 的基本概念、发展历程、主要技术如机器学习、深度学习等。
    • 学习 AI 在教育、医疗、金融等领域的应用案例。
  4. 参与 AI 相关的实践项目:
    • 可以参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动。
    • 尝试利用 AI 技术解决生活中的实际问题,培养动手能力。
  5. 关注 AI 发展的前沿动态:
    • 关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展。
    • 思考 AI 技术对未来社会的影响,培养对 AI 的思考和判断能力。

如果您不会代码但希望在 20 分钟上手 Python + AI,可以尝试了解以下内容作为基础:

  1. AI 背景知识:
    • 基础理论:了解人工智能、机器学习、深度学习的定义及其之间的关系。
    • 历史发展:简要回顾 AI 的发展历程和重要里程碑。
  2. 数学基础:
    • 统计学基础:熟悉均值、中位数、方差等统计概念。
    • 线性代数:了解向量、矩阵等线性代数基本概念。
    • 概率论:基础的概率论知识,如条件概率、贝叶斯定理。
  3. 算法和模型:
    • 监督学习:了解常用算法,如线性回归、决策树、支持向量机(SVM)。
    • 无监督学习:熟悉聚类、降维等算法。
    • 强化学习:简介强化学习的基本概念。
  4. 评估和调优:
    • 性能评估:了解如何评估模型性能,包括交叉验证、精确度、召回率等。
    • 模型调优:学习如何使用网格搜索等技术优化模型参数。
  5. 神经网络基础:
    • 网络结构:理解神经网络的基本结构,包括前馈网络、卷积神经网络(CNN)、循环神经网络(RNN)。
    • 激活函数:了解常用的激活函数,如 ReLU、Sigmoid、Tanh。
Content generated by AI large model, please carefully verify (powered by aily)

References

问:新手如何学习 AI?

了解AI基本概念:首先,建议阅读「[从这里启程](https://waytoagi.feishu.cn/wiki/PFXnwBTsEiGwGGk2QQFcdTWrnlb?table=blkjooAlLFNtvKJ2)」部分,熟悉AI的术语和基础概念。了解什么是人工智能,它的主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。浏览入门文章,这些文章通常会介绍AI的历史、当前的应用和未来的发展趋势。开始AI学习之旅:在「[入门:AI学习路径](https://waytoagi.feishu.cn/wiki/ZYtkwJQSJiLa5rkMF5scEN4Onhd?table=tblWqPFOvA24Jv6X&view=veweFm2l9w)」中,你将找到一系列为初学者设计的课程。这些课程将引导你了解生成式AI等基础知识,特别推荐李宏毅老师的课程。通过在线教育平台(如Coursera、edX、Udacity)上的课程,你可以按照自己的节奏学习,并有机会获得证书。选择感兴趣的模块深入学习:AI领域广泛(比如图像、音乐、视频等),你可以根据自己的兴趣选择特定的模块进行深入学习。我建议你一定要掌握提示词的技巧,它上手容易且很有用。实践和尝试:理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出你的作品。在知识库提供了很多大家实践后的作品、文章分享,欢迎你实践后的分享。体验AI产品:与现有的AI产品进行互动是学习AI的另一种有效方式。尝试使用如ChatGPT、Kimi Chat、智谱、文心一言等AI聊天机器人,了解它们的工作原理和交互方式。通过与这些AI产品的对话,你可以获得对AI在实际应用中表现的第一手体验,并激发你对AI潜力的认识。

问:中学生如何开始学习 AI,有哪些好用的工具或者平台?

我总结了以下中学生学习AI的建议:1.从编程语言入手学习可以从Python、JavaScript等编程语言开始学习,这些是AI和机器学习的基础。学习编程语法、数据结构、算法等基础知识,为后续的AI学习打下基础。2.尝试使用AI工具和平台可以使用ChatGPT、Midjourney等AI生成工具,体验AI的应用场景。探索一些面向中学生的AI教育平台,如百度的"文心智能体平台"、Coze智能体平台等。3.学习AI基础知识了解AI的基本概念、发展历程、主要技术如机器学习、深度学习等。学习AI在教育、医疗、金融等领域的应用案例。4.参与AI相关的实践项目可以参加学校或社区组织的AI编程竞赛、创意设计大赛等活动。尝试利用AI技术解决生活中的实际问题,培养动手能力。5.关注AI发展的前沿动态关注AI领域的权威媒体和学者,了解AI技术的最新进展。思考AI技术对未来社会的影响,培养对AI的思考和判断能力。总之,中学生可以从编程基础、工具体验、知识学习、实践项目等多个方面入手,全面系统地学习AI知识和技能,为未来的AI发展做好准备。内容由AI大模型生成,请仔细甄别

写给不会代码的你:20分钟上手 Python + AI

[heading3]如果希望继续精进...对于AI,可以尝试了解以下内容,作为基础AI背景知识基础理论:了解人工智能、机器学习、深度学习的定义及其之间的关系。历史发展:简要回顾AI的发展历程和重要里程碑。数学基础统计学基础:熟悉均值、中位数、方差等统计概念。线性代数:了解向量、矩阵等线性代数基本概念。概率论:基础的概率论知识,如条件概率、贝叶斯定理。算法和模型监督学习:了解常用算法,如线性回归、决策树、支持向量机(SVM)。无监督学习:熟悉聚类、降维等算法。强化学习:简介强化学习的基本概念。评估和调优性能评估:了解如何评估模型性能,包括交叉验证、精确度、召回率等。模型调优:学习如何使用网格搜索等技术优化模型参数。神经网络基础网络结构:理解神经网络的基本结构,包括前馈网络、卷积神经网络(CNN)、循环神经网络(RNN)。激活函数:了解常用的激活函数,如ReLU、Sigmoid、Tanh。

Others are asking
AI生成产品原型 html
以下是利用 AI 生成产品原型 HTML 的相关内容: 1. 网页上与 AI 交互编程的一般流程: 讨论需求:明确项目目标和用户需求,确保团队对产品方向有一致的理解。 确定关键功能:根据需求确定产品最核心的功能,确保能实现最基本的用户价值。 AI 生成产品草图:利用 AI 快速生成界面草图,帮助团队更好地理解产品的外观和交互。 列出功能列表:明确产品所需的功能模块,并逐一列出。 选择一个功能:每次专注完成一个功能,确保质量与效率。 向 AI 描述功能:详细描述功能需求,AI 会根据描述生成代码。 AI 编写代码:AI 根据需求编写代码,减少开发者的重复性劳动。 测试代码:测试生成的代码,确保正常运行。 向 AI 提出问题:若功能不正常,将问题反馈给 AI 进行调整。 功能完成:功能通过测试后标记为完成。 还有功能吗:若还有未完成的功能,继续开发下一个功能。 发布初始版本:所有核心功能完成后发布初始版本,以获取用户体验反馈。 2. 项目开发案例: Trae 生成天气 HTML 项目:通过复制粘贴等操作利用 Trae 生成天气相关的 HTML 项目,可调整背景颜色等,生成后可在文件夹中打开并用浏览器查看。 开发游戏案例:直接让智普生成羊、狼、锤子、栅栏、胜利图片、失败图片等元素,生成 HTML 大框架并验证元素摆放位置,对生成的 CSS 结构中的 position 定位模式进行人工调整。 3. 项目开发与部署流程: 初始化设计文档,用脚本生成项目目录,让 Trae 生成代码,提交代码到 GitHub,打包镜像部署到服务器。 需要注意的是,AI 生成的内容可能有 90%能用,但剩下的 10%可能需要有经验的人或专家进行人工调整。AI 只是辅助,自身学习还是很有必要的。
2025-04-12
Ai生成UI
以下是关于 AI 生成 UI 的相关内容: 使用 Midjourney 生成 UI 界面: 页面指令:指定生成某个页面(如首页、登录页等),只需添加页面指令描述,如“landing page”可生成社交平台的登录页设计,“Profile Page”可生成人力资源类产品的个人资料页。 应用场景:Midjourney 产出的设计图视觉效果佳,适合在 APP 设计的初始阶段,如头脑风暴和风格探索中提供灵感和创意。但目前直接用于落地开发仍有距离,不过随着技术迭代,这个距离会逐渐缩短。 多模态 4O 在 UI 设计中的应用: 可以先借助 AI 生成设计概要概念,应用于 Web 应用创建和 UI 页面设计,也能直接生成 UI 界面。 Midjourney 商业实战案例中的 UI 设计: 如数据图标、B 端图标设计、音乐软件 UI 设计等。但部分生成的 UI 设计存在不规范、文字乱的情况,只能作为风格参考。网上已有很多 AI 生成的 UI 设计软件开始内测。
2025-04-12
我想要自学AI相关的知识,但不知道从哪里开始,需要一个行动方案,我未来想做一个ai产品经理
以下是为您提供的自学 AI 知识并成为 AI 产品经理的行动方案: 1. 应用方面: 深入了解 Prompt,选择适合自己的 AI 对话、绘画和语音产品,每天使用并用于解决实际问题或提升效率。 2. 分析方面: 大量阅读各类文章、视频以及行业报告,理解各知识之间的关系。 3. 掌握相关技能: 了解目前 AI 提示词工程师岗位的招聘技能要求,例如: 本科及以上学历,计算机科学、人工智能、机器学习相关专业背景。 熟悉 ChatGPT、Llama、Claude 等 AI 工具的使用及原理,并具有实际应用经验。 熟练掌握 ChatGPT、Midjourney 等 AI 工具的使用及原理。 负责制定和执行 AI 项目,如 Prompt 设计平台化方法和模板化方法。 了解并熟悉 Prompt Engineering,包括常见的 Prompt 优化策略(例如 CoT、Fewshot 等)。 对数据驱动的决策有深入的理解,能够基于数据分析做出决策。 具有创新思维,能够基于业务需求提出并实践 AI first 的解决方案。 对 AI 技术与算法领域抱有强烈的好奇心,并能付诸实践。 对 AIGC 领域有深入的理解与实际工作经验,保持对 AI 技术前沿的关注。 具备一定的编程和算法研究能力,能应用新的 AI 技术和算法于对话模型生成。 具有一定的编程基础,熟练使用 Python、Git 等工具。 4. 了解产品经理工作: 调研市场、思考需求、转化需求、思考解决方案、设计解决方案、分配任务、进行测试、实现解决方案。 像善用提示词工程的人一样,将需求抽象再具象成产品。 总之,要成为 AI 产品经理,需要不断学习和实践,适应行业的发展和变化。
2025-04-12
我的提示词【什么是ai】
AI 是一种模仿人类思维、能够理解自然语言并输出自然语言的存在。对于不具备理工科背景的人来说,可将其视为一个黑箱,不必深究其理解方式,只需知道它能处理自然语言。AI 类似于传统道教中的驱神役鬼拘灵遣将,通过特定的文字和程式引用已有资源,驱使某种能在一定程度上理解人类文字的异类达成预设效果,且都可能出现突破界限的情况。即便 AI 技术有巨大发展,其生态位仍是似人而非人的存在。从人类文明传说和古老哲人的智慧中,能找到与这种似人非人存在相处的原则,比如在想让其实现愿望时,要通过清晰的语言文字压缩其自由度,包括明确告知任务、边界、目标、实现路径方法以及提供所需的正确知识。
2025-04-12
AI写作
以下是关于 AI 写作的相关内容: 一、陈财猫的观点 1. AI+内容创作是现阶段最好的赛道,基于对大模型发展现状的观察和对“开车”“写作”两类任务的对比,认为该赛道有完美的产品模型匹配和产品市场匹配,且天花板高。 2. AI 写作的实践成果包括营销和小说、短剧创作,开发了智能营销矩阵平台,参与喜马拉雅短故事和短剧写作课程,捣鼓出小财鼠程序版 agent。 3. 好文字能引起人的生理共鸣与情绪,AI 因预训练数据量大能学会引发共鸣,从而写出好文字。 4. 用 AI 写出好文字的方法包括选好模型,评估模型的文风和语言能力、是否有过度道德说教与正面描述趋势、in context learning 能力和遵循复杂指令的能力;克服平庸,平衡“控制”与“松绑”;显式归纳想要的文本特征,通过 prompt 中的描述与词语映射到预训练数据中的特定类型文本,往 prompt 里塞例子。 5. 对 AI 创作的看法是 AI 创作的内容有灵魂,只要读者有灵魂,文本就有灵魂;有人讨厌 AI 是因其未改变多数人生活,或自身是受害者。作者期望 AI 能力进一步提升,改变每个人的生活。 二、3 月 10 日 AI 资讯中的相关内容 Muse 是专门为小说创作训练的 AI 模型工具,可实现在线的小说续写修改,创意头脑风暴以及同时基于画布形式的故事创作,可免费试用。 三、AI 写作变现指南 1. 项目启动:确定目标客户群体,如大学生、职场人士、自媒体从业者等;选择合适的 AI 写作工具,以满足不同客户的需求。 2. 准备阶段:学习并实践 AI 写作技术,通过书籍、在线课程等资源提升写作技能;构建团队,培养和扩充团队成员,以提高运营效率。 3. 商业模式构建:确定服务内容,如提供论文、报告、文案等直接写作服务;制定质量控制标准,确保写作内容满足客户要求。 4. 运营与推广:在淘宝等电商平台上开设店铺,展示并销售写作服务;建立写作培训社群,分享写作技巧和 AI 应用经验,提升品牌影响力;通过社交媒体和线下活动进行品牌和社群建设;与绘画团队、其他写作工作室等合作,共同开发新项目。 5. 项目优化与发展:持续关注 AI 技术进展,提升服务质量和效率;根据市场需求,拓展新的服务和产品;收集客户反馈,不断优化和改进服务。 这份指导强调了 AI 技术在写作服务中的应用,以及如何通过团队建设、质量控制、客户反馈和市场拓展来提升整个业务的竞争力和盈利能力。同时,也提出了与艺术、自媒体等其他领域的合作可能性,以开发衍生项目,进一步扩大业务范围和市场份额。
2025-04-11
AI写作
以下是关于 AI 写作的相关内容: 一、陈财猫的观点 作者陈财猫从自身经历出发,分享了以下关于用 AI 写出比人更好的文字的思考和实践: 1. AI+内容创作是现阶段最好的赛道:基于对大模型发展现状的观察和对“开车”“写作”两类任务的对比,认为该赛道有完美的产品模型匹配和产品市场匹配,且天花板高。 2. AI 写作的实践成果:业务包含营销和小说、短剧创作,开发了智能营销矩阵平台,参与喜马拉雅短故事和短剧写作课程,捣鼓出小财鼠程序版 agent。 3. 定义好文字:好文字能引起人的生理共鸣与情绪,AI 因预训练数据量大能学会引发共鸣,从而写出好文字。 4. 用 AI 写出好文字的方法: 选好模型,评估模型的文风和语言能力、是否有过度道德说教与正面描述趋势、in context learning 能力和遵循复杂指令的能力。 克服平庸,平衡“控制”与“松绑”。 显式归纳想要的文本特征,通过 prompt 中的描述与词语映射到预训练数据中的特定类型文本,往 prompt 里塞例子。 5. 对 AI 创作的看法:AI 创作的内容有灵魂,只要读者有灵魂,文本就有灵魂;有人讨厌 AI 是因其未改变多数人生活,或自身是受害者。作者期望 AI 能力进一步提升,改变每个人的生活。 二、3 月 10 日 AI 资讯汇总中的相关内容 1. 【AI 写作】 Muse:专门为小说创作训练的 AI 模型工具,可实现在线的小说续写修改,创意头脑风暴以及同时基于画布形式的故事创作。可免费试用。 三、AI 写作变现指南 1. 项目启动: 确定目标客户群体,如大学生、职场人士、自媒体从业者等。 选择合适的 AI 写作工具,以满足不同客户的需求。 2. 准备阶段: 学习并实践 AI 写作技术,通过书籍、在线课程等资源提升写作技能。 构建团队,培养和扩充团队成员,以提高运营效率。 3. 商业模式构建: 确定服务内容,如提供论文、报告、文案等直接写作服务。 制定质量控制标准,确保写作内容满足客户要求。 4. 运营与推广: 在淘宝等电商平台上开设店铺,展示并销售写作服务。 建立写作培训社群,分享写作技巧和 AI 应用经验,提升品牌影响力。 通过社交媒体和线下活动进行品牌和社群建设。 与绘画团队、其他写作工作室等合作,共同开发新项目。 5. 项目优化与发展: 持续关注 AI 技术进展,提升服务质量和效率。 根据市场需求,拓展新的服务和产品。 收集客户反馈,不断优化和改进服务。 这份指导强调了 AI 技术在写作服务中的应用,以及如何通过团队建设、质量控制、客户反馈和市场拓展来提升整个业务的竞争力和盈利能力。同时,也提出了与艺术、自媒体等其他领域的合作可能性,以开发衍生项目,进一步扩大业务范围和市场份额。
2025-04-11
AI的基础知识了解
以下是关于 AI 基础知识的介绍: AI 背景知识: 基础理论:明确人工智能、机器学习、深度学习的定义以及它们之间的关系。 历史发展:简要回顾 AI 的发展历程和重要里程碑。 数学基础: 统计学基础:熟悉均值、中位数、方差等统计概念。 线性代数:了解向量、矩阵等基本概念。 概率论:掌握基础的概率论知识,如条件概率、贝叶斯定理。 算法和模型: 监督学习:了解常用算法,如线性回归、决策树、支持向量机(SVM)。 无监督学习:熟悉聚类、降维等算法。 强化学习:了解其基本概念。 评估和调优: 性能评估:知道如何评估模型性能,包括交叉验证、精确度、召回率等。 模型调优:学习使用网格搜索等技术优化模型参数。 神经网络基础: 网络结构:理解包括前馈网络、卷积神经网络(CNN)、循环神经网络(RNN)等基本结构。 激活函数:了解常用的激活函数,如 ReLU、Sigmoid、Tanh。 对于新手学习 AI,建议: 了解 AI 基本概念:阅读「」部分,熟悉术语和基础概念,了解其主要分支及联系,浏览入门文章。 开始学习之旅:在「」中找到为初学者设计的课程,推荐李宏毅老师的课程,通过在线教育平台按自己节奏学习并获取证书。 选择感兴趣的模块深入学习:AI 领域广泛,可根据兴趣选择特定模块,如掌握提示词技巧。 实践和尝试:理论学习后进行实践,尝试使用各种产品并分享作品。 体验 AI 产品:与如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人互动,了解其工作原理和交互方式。
2025-04-09
作为一个产品经理,我现在要设计一个企业内的销售培训智能体,我手里有产品知识、销售基础知识,我该怎么设计,是只做rag还是做多智能体协同?
以下是为您设计企业内销售培训智能体的一些建议: 首先,了解多智能体模式的设置。它包括全局设置和多个代理之间的编排协调两个核心部分。全局设置涵盖角色设定与回复逻辑、记忆管理以及对话体验等,其中人物设定与回复逻辑应侧重于角色塑造。在智能体的交互流程设计上,要形成完整的互动链条,当用户意图未满足跳转条件时,保持与当前智能体的沟通。设计多轮协作的智能体时,应将其交互设计为闭环结构,以确保用户能自由切换。 其次,动手实践制作智能体。对于 Chat GPT 版本,可按以下步骤:点击“浏览 GPTs”按钮,点击“Create”按钮创建,使用自然语言对话或手工设置进行具体配置,然后调试并发布。对于 Chat GLM 版本,点击“创建智能体”按钮,输入智能体描述,可粘贴准备好的提示词模板,其配置可自动生成,可根据需求调整并上传本地文件作为知识库。 然后,考虑多智能体协同的概念。在处理复杂任务时,单智能体可能面临提示词修改和逻辑不清晰的问题。多智能体协作如吴恩达所举例,每个智能体被赋予不同身份,互相合作对话,能模拟现实工作场景,成为复杂系统,但可能存在效率不高的情况。 最后,您可以根据实际情况选择是采用 RAG 还是多智能体协同。如果任务相对简单,RAG 可能足够;若任务复杂,涉及多个环节和角色的协作,多智能体协同可能更合适。您还可以通过具体的例子,如旅游场景中负责景点推荐、路线规划和食宿安排的三个智能体,来更好地理解和设计。
2025-03-16
我是AI小白,希望到这里学习AI基础知识
以下是为您整理的 AI 基础知识学习内容: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括人工智能、机器学习、深度学习的定义及其之间的关系,以及其主要分支和联系。 浏览入门文章,了解 AI 的历史、当前应用和未来发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,如图像、音乐、视频等,可根据兴趣选择特定模块深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解其工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 6. 数学基础: 统计学基础:熟悉均值、中位数、方差等统计概念。 线性代数:了解向量、矩阵等线性代数基本概念。 概率论:基础的概率论知识,如条件概率、贝叶斯定理。 7. 算法和模型: 监督学习:了解常用算法,如线性回归、决策树、支持向量机(SVM)。 无监督学习:熟悉聚类、降维等算法。 强化学习:简介强化学习的基本概念。 8. 评估和调优: 性能评估:了解如何评估模型性能,包括交叉验证、精确度、召回率等。 模型调优:学习如何使用网格搜索等技术优化模型参数。 9. 神经网络基础: 网络结构:理解神经网络的基本结构,包括前馈网络、卷积神经网络(CNN)、循环神经网络(RNN)。 激活函数:了解常用的激活函数,如 ReLU、Sigmoid、Tanh。
2025-02-12
对于编程纯小白,如果我想使用cursor之类的AI软件进行编程,实现自己的一些想法,那么我需要具备哪些编程或者计算机方面的基础知识
对于编程纯小白,如果想使用 Cursor 之类的 AI 软件进行编程实现自己的想法,需要具备以下编程或计算机方面的基础知识: 1. 下载 Cursor:访问 https://www.cursor.com/ 进行下载。 2. 注册账号:可以使用自己的邮箱(如 google、github、163、qq 邮箱)直接登录,接受二维码登录。 3. 安装中文包插件。 4. 在设置中进行 Rule for AI 配置。 5. 清晰表达需求:例如做一个贪吃蛇游戏,在网页中玩。需要明确游戏的规则和逻辑,如游戏界面是在矩形网格上进行,玩家控制蛇的移动方向(上、下、左、右),游戏界面上会随机出现食物,蛇吃到食物身体增长,存在撞墙或撞自己的死亡条件,吃到食物可得分,游戏难度会递增,游戏结束时能看到得分等。 对于纯小白,如果需求远比 AI 直出的内容复杂,无法一次性直出,那就需要耐下性子,在 AI 的帮助下一步一步来,并在这个过程中学会一点点编程。
2025-02-08
大模型的基础知识
大模型的基础知识包括以下方面: 知识类型: 内置知识:又可细分为常识知识、专业知识和语言知识。常识知识涵盖日常生活中的事实和逻辑规则;专业知识涉及特定领域的详细信息;语言知识包含语法规则、句型结构、语境含义及文化背景等。 模型架构: encoderonly:适用于自然语言理解任务,如分类和情感分析,代表模型是 BERT。 encoderdecoder:同时结合 Transformer 架构的 encoder 和 decoder 来理解和生成内容,代表是 Google 的 T5。 decoderonly:更擅长自然语言生成任务,众多 AI 助手采用此架构。 大模型的特点: 预训练数据量大,往往来自互联网,包括论文、代码和公开网页等,通常用 TB 级别的数据进行预训练。 参数众多,如 Open 在 2020 年发布的 GPT3 就已达到 170B 的参数。 数字化与 embedding:为让计算机理解 Token 之间的联系,需将 Token 表示成稠密矩阵向量,即 embedding,常见算法有基于统计的 Word2Vec、GloVe,基于深度网络的 CNN、RNN/LSTM,基于神经网络的 BERT、Doc2Vec 等。以 Transform 为代表的大模型采用自注意力机制来学习不同 token 之间的依赖关系,生成高质量 embedding。大模型的“大”主要指用于表达 token 之间关系的参数多,如 GPT3 拥有 1750 亿参数。
2025-02-07
你觉得作为一个普通不懂得程序的人来说,在面对未来的AI时代,需要学习编程的基础知识吗?系统性的学习Python或者你觉得学习Python哪些主要知识注音对了。
对于普通不懂得程序的人来说,在面对未来的 AI 时代,学习编程的基础知识是有一定必要的。如果想系统性地学习 Python,以下是一些需要重点关注的主要知识: 1. Python 基础: 基本语法:了解 Python 的基本语法规则,如变量命名、缩进等。 数据类型:熟悉字符串(String)、整数(Integer)、浮点数(Float)、列表(List)、元组(Tuple)、字典(Dictionary)等基本数据类型。 控制流:学会使用条件语句(if)、循环语句(for 和 while)来控制程序执行流程。 2. 函数: 定义和调用函数:学习如何定义自己的函数以及调用现有的函数。 参数和返回值:理解函数接收参数和返回结果的方式。 作用域和命名空间:了解局部变量和全局变量的概念及工作方式。 3. 模块和包: 导入模块:学习如何导入 Python 标准库中的模块或第三方库。 使用包:理解如何安装和使用 Python 包来扩展程序功能。 4. 面向对象编程(OOP): 类和对象:了解类的定义和实例化等基本概念。 属性和方法:学习为类定义属性和方法,并通过对象调用。 继承和多态:了解类之间的继承关系及实现多态的方法。 5. 异常处理: 理解异常:了解异常的概念及在 Python 中的工作原理。 异常处理:学会使用 try 和 except 语句处理程序中可能出现的错误。 6. 文件操作: 文件读写:学习如何打开文件、读取文件内容和写入文件。 文件与路径操作:理解如何使用 Python 处理文件路径及列举目录下的文件。 对于中学生学习 AI,建议如下: 1. 从编程语言入手学习:可以从 Python、JavaScript 等编程语言开始,学习编程语法、数据结构、算法等基础知识。 2. 尝试使用 AI 工具和平台:使用 ChatGPT、Midjourney 等 AI 生成工具体验应用场景,探索如百度的“文心智能体平台”、Coze 智能体平台等面向中学生的教育平台。 3. 学习 AI 基础知识:了解 AI 的基本概念、发展历程、主要技术(如机器学习、深度学习),学习其在教育、医疗、金融等领域的应用案例。 4. 参与 AI 相关的实践项目:参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动,尝试利用 AI 技术解决实际问题,培养动手能力。 5. 关注 AI 发展的前沿动态:关注权威媒体和学者,了解最新进展,思考 AI 技术对未来社会的影响,培养思考和判断能力。 总之,中学生可以从编程基础、工具体验、知识学习、实践项目等多方面入手,全面系统地学习 AI 知识和技能,为未来的 AI 发展做好准备。但需注意,以上内容由 AI 大模型生成,请仔细甄别。
2025-01-24
AL学习内容
以下为适合小白学习 AI 技术原理与建立框架的内容推荐: 1. 上篇文章介绍了 WaytoAGI 和学习研究 AI 的原因,解决了 Why 的问题。 2. 本次重点推荐两个对个人有重大帮助的视频,旨在解决 What 和 How 的问题: (女神)主讲,和某知识 up 主 Genji 一起制作的免费公益课,干货满满,新手友好,能带你 50 分钟速通 AI 大模型原理。 ,某知识 up 主老石谈芯专访安克创新 CEO 阳萌的视频,一共两期,此次推荐的是第二期。两期内容都值得观看,访谈非常硬核。
2025-04-11
如何学习AI
以下是新手学习 AI 的方法: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,如图像、音乐、视频等,可根据兴趣选择特定模块深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解其工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 对于中学生学习 AI,建议如下: 1. 从编程语言入手学习: 可以从 Python、JavaScript 等编程语言开始,学习编程语法、数据结构、算法等基础知识,为后续的 AI 学习打下基础。 2. 尝试使用 AI 工具和平台: 可以使用 ChatGPT、Midjourney 等 AI 生成工具,体验 AI 的应用场景。 探索一些面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. 学习 AI 基础知识: 了解 AI 的基本概念、发展历程、主要技术如机器学习、深度学习等。 学习 AI 在教育、医疗、金融等领域的应用案例。 4. 参与 AI 相关的实践项目: 参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动。 尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 5. 关注 AI 发展的前沿动态: 关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展。 思考 AI 技术对未来社会的影响,培养对 AI 的思考和判断能力。 记住,学习 AI 是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,您将逐渐建立起自己的 AI 知识体系,并能够在这一领域取得成就。完整的学习路径建议参考「通往 AGI 之路」的布鲁姆分类法,设计自己的学习路径。
2025-04-11
我是一个接触这个知识库的新手,请你根据知识库给我做一个学习计划。
以下是为您制定的新手学习 AI 的计划: 一、了解 AI 基本概念 1. 阅读「」部分,熟悉 AI 的术语和基础概念,包括人工智能的主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 2. 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 二、开始 AI 学习之旅 1. 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 2. 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 三、选择感兴趣的模块深入学习 AI 领域广泛,比如图像、音乐、视频等,您可以根据自己的兴趣选择特定的模块进行深入学习。建议一定要掌握提示词的技巧,它上手容易且很有用。 四、实践和尝试 1. 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。 2. 在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 五、体验 AI 产品 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。通过与这些 AI 产品的对话,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。
2025-04-11
我现在是一个完完全全的新手,我现在想要从0开始学习ai,请你协助我,我该怎么做
对于完全的新手想要从 0 开始学习 AI,建议您按照以下步骤进行: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括人工智能的定义、主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,您可以找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,您可以根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 通过与这些 AI 产品的对话,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 记住,学习 AI 是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,您将逐渐建立起自己的 AI 知识体系,并能够在这一领域取得自己的成就。完整的学习路径建议参考「通往 AGI 之路」的布鲁姆分类法,设计自己的学习路径。
2025-04-11
我应该如何开始0-1学习AI绘画?当前最好用的工具是什么?
以下是一些关于 0 1 学习 AI 绘画的建议和当前好用的工具: 您可以通过观看相关视频教程来入门,比如: “10 分钟教会你如何手把手撰写提示语,全网最细 ChatGPT 对话指南,保姆级教程!” ,视频使用到的 AI 工具包括 AI 提示语,平台链接: 。 “零基础 AI 绘画入门,Midjourney、Stable Diffusion,小白速成,一站式使用和最强入门教程” ,视频使用到的 AI 工具包括 AI 提示语,一个无需魔法上网的 AI 绘画工具,平台链接: 。 目前,Midjourney 和 Stable Diffusion 是比较受欢迎的 AI 绘画工具。
2025-04-10
学习WaytoAGI的最佳路径是什么
学习 WaytoAGI 的最佳路径包括以下几个方面: 1. 了解最新的 AI 技术:WaytoAGI 像免费的“技术期刊”,能让您了解最新动态,还能教授实用技能,且开源免费。 2. 线上共学:通过线上共学方式,手把手教您应用 AI 技术,无论您是小白还是有一定基础,都能找到适合自己的学习路径。 3. 找到志同道合的队友:如果您想创业、做副业,或者只是想找对 AI 感兴趣的伙伴一起做事,WaytoAGI 是很好的平台。 使用 WaytoAGI 的方法: 1. 点开链接就能看:无需注册和花钱,直接点击链接:点击。 2. 想看啥就看啥:比如想学 AI 绘画,就去看“AI 绘画”部分;想找 AI 工具,就去“工具推荐”部分,内容分类清晰。 3. 有问题还能问:看了还有不懂的,或者想跟别人交流,可以加入社群讨论。 此外,WaytoAGI 还有整活区,这里不是系统性学习的地方,而是一起做有趣事情的游乐场。在这里,您不用证明想法“有什么用”,可以尽情发挥对 AI 最天马行空的想象,鼓励把 AI 玩出新花样。
2025-04-10