Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

我做一个小白,请帮我规划一个学习路径,让我快速掌握AI工具使用

Answer

以下是为您规划的快速掌握 AI 工具使用的学习路径:

  1. 了解 AI 基本概念:
    • 阅读「从这里启程」部分,熟悉 AI 的术语和基础概念,包括人工智能的定义、主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。
    • 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。
  2. 开始 AI 学习之旅:
    • 在「入门:AI 学习路径」中,找到为初学者设计的课程,学习生成式 AI 等基础知识,特别推荐李宏毅老师的课程。
    • 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。
  3. 选择感兴趣的模块深入学习:
    • AI 领域广泛,如图像、音乐、视频等,您可以根据自己的兴趣选择特定的模块进行深入学习。
    • 掌握提示词的技巧,它上手容易且很有用。
  4. 实践和尝试:
    • 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。
    • 在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。
  5. 体验 AI 产品:
    • 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。
    • 通过与这些 AI 产品的对话,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。

此外,还有以下几点建议:

  1. 多看教程,多实践:通过学习教程和反复实践,可以快速掌握 AI 工具的使用方法。
  2. 积极参与社群交流:加入相关社群,向有经验的朋友请教,可以获得很多宝贵的经验和建议。
  3. 保持好奇心和探索精神:AI 技术发展迅速,不断学习和探索新技术,可以让您在这个领域中保持竞争力。

希望以上学习路径和建议对您有所帮助!

Content generated by AI large model, please carefully verify (powered by aily)

References

SOP+AI:作为小白,我是如何参与制作AI动画短片的?

1、多看教程,多实践:通过学习教程和反复实践,可以快速掌握AI工具的使用方法。2、积极参与社群交流:加入相关社群,向有经验的朋友请教,可以获得很多宝贵的经验和建议。3、保持好奇心和探索精神:AI技术发展迅速,不断学习和探索新技术,可以让你在这个领域中保持竞争力。[heading4]AI时代对视频内容创作的影响:[content]AI技术的快速发展,对视频内容创作产生了深远的影响。它不仅提高了制作效率,还大大降低了制作成本,使更多人能够参与到视频创作中来。对于设计小白来说,这是一个前所未有的好机会,可以通过学习和实践,快速提升自己的创作能力。总的来说,这次参与《奥运前夜》的制作让我收获颇丰,感谢WaytoAGI、感谢开源、感谢一群为爱发电的小伙伴!希望我的经验能给大家带来一些启发和帮助。🌟欢迎关注JessieZTalk,在AIGC的路上共同成长,个人/企业有AI咨询需求,欢迎链接我~

问:新手如何学习 AI?

了解AI基本概念:首先,建议阅读「[从这里启程](https://waytoagi.feishu.cn/wiki/PFXnwBTsEiGwGGk2QQFcdTWrnlb?table=blkjooAlLFNtvKJ2)」部分,熟悉AI的术语和基础概念。了解什么是人工智能,它的主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。浏览入门文章,这些文章通常会介绍AI的历史、当前的应用和未来的发展趋势。开始AI学习之旅:在「[入门:AI学习路径](https://waytoagi.feishu.cn/wiki/ZYtkwJQSJiLa5rkMF5scEN4Onhd?table=tblWqPFOvA24Jv6X&view=veweFm2l9w)」中,你将找到一系列为初学者设计的课程。这些课程将引导你了解生成式AI等基础知识,特别推荐李宏毅老师的课程。通过在线教育平台(如Coursera、edX、Udacity)上的课程,你可以按照自己的节奏学习,并有机会获得证书。选择感兴趣的模块深入学习:AI领域广泛(比如图像、音乐、视频等),你可以根据自己的兴趣选择特定的模块进行深入学习。我建议你一定要掌握提示词的技巧,它上手容易且很有用。实践和尝试:理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出你的作品。在知识库提供了很多大家实践后的作品、文章分享,欢迎你实践后的分享。体验AI产品:与现有的AI产品进行互动是学习AI的另一种有效方式。尝试使用如ChatGPT、Kimi Chat、智谱、文心一言等AI聊天机器人,了解它们的工作原理和交互方式。通过与这些AI产品的对话,你可以获得对AI在实际应用中表现的第一手体验,并激发你对AI潜力的认识。

SOP+AI:作为小白,我是如何参与制作AI动画短片的?

接下来,我来分享一下我参与设计的具体内容以及学习心得:[heading3]1、我分到的共创内容是什么?[content]在这个项目中,我负责的是“刺猬菠萝”角色的图片和视频制作。虽然之前没有相关经验,但在阿强的指导下,我逐渐掌握了基本技巧,并快速入门了MJ和RunWayAI工具来提高效率。以下是我基于剧本“刺猬菠萝”出国的各种图片,我最喜欢的是“大眼萌菠萝刺猬”,但考虑到整部片子的一致性,最终选择了最下方的菠萝刺猬形象。[heading3]2、为了做好这件事,我干了什么?[content]为了能够顺利完成任务,我花了不少时间学习和实践。首先,WaytoAGI社群中有很多入门资料,可以快速了解了动画制作的基本流程和技术。其次,我积极参与团队讨论,向有经验的大佬们积极请教,大佬指点一下,胜过阅读N篇学习资料😎,我墙裂建议,大家多多参与「共创活动」,不仅能够快速学习,还能收获一帮积极热情的小伙伴!

Others are asking
AI 渲染在游戏领域有什么应用
AI 渲染在游戏领域的应用包括以下方面: 1. 游戏场景创建:可用于生成逼真的游戏场景,如地形、建筑、风景等,提高开发效率。 2. 角色形象设计:帮助设计独特且丰富的角色外观。 3. 纹理贴图:为游戏中的物体和角色提供更精细的纹理。 4. 降低成本:例如美术方面,AI 管线和 AI 绘画可降低近 50%的成本。 5. 辅助策划:AIGC 工具能帮助策划先形成粗糙的美术想法,节省与美术同事沟通的时间成本。 6. 程序方面:AI 可分析他人代码,迅速同步关键信息,处理未遵守统一标准的代码,提升系统鲁棒性,降低开发成本。
2025-02-27
ai生成cad图
以下是关于 AI 生成 CAD 图的相关信息: 获取 AI 生成 CAD 图资料的途径: 1. 学术论文:通过 Google Scholar、IEEE Xplore、ScienceDirect 等学术数据库搜索相关研究成果。 2. 专业书籍:查找 AI 在 CAD 领域相关的专业书籍,了解应用和案例。 3. 在线课程和教程:参加 Coursera、edX、Udacity 等平台上的 AI 和 CAD 相关课程,在 YouTube 等视频平台上查找教程和演示视频。 4. 技术论坛和社区:加入如 Stack Overflow、Reddit 的 r/AI 和 r/CAD 等,与专业人士交流学习,关注相关博客和新闻网站了解最新动态。 5. 开源项目和代码库:探索 GitHub 等开源平台上的 AI 和 CAD 相关项目,例如 OpenAI 的 GPT3、AutoGPT 等在 CAD 设计中的应用。 6. 企业案例研究:研究 Autodesk、Siemens 等公司在 AI 在 CAD 设计中的应用案例。 可用于生成 CAD 图的 AI 工具: 1. CADtools 12:Adobe Illustrator 插件,提供 92 个绘图和编辑工具。 2. Autodesk Fusion 360:集成 AI 功能的云端 3D CAD/CAM 软件,可创建复杂几何形状和优化设计。 3. nTopology:基于 AI 的设计软件,能创建复杂 CAD 模型,包括拓扑优化等。 4. ParaMatters CogniCAD:基于 AI 的 CAD 软件,可根据输入的设计目标和约束条件自动生成 3D 模型。 5. 主流 CAD 软件的生成设计工具:如 Autodesk 系列、SolidWorks 等,能根据输入自动产生多种设计方案。 此外,AdamCAD 也是一款通过简单语言描述生成复杂 CAD 图纸、支持直接 3D 打印的工具,适用于多种设计需求。
2025-02-27
请从知识库搜索相关自资料:AI与环境艺术设计:AI帮助生成设计灵感、AI优化空间布局、AI分析环境因素等
以下是关于 AI 生成 CAD 图的相关资料: 1. 学术论文:通过 Google Scholar、IEEE Xplore、ScienceDirect 等学术数据库搜索相关的学术论文,以了解 AI 在 CAD 领域的应用和研究成果。 2. 专业书籍:查找与 AI 在 CAD 领域相关的专业书籍,从中了解 AI 在 CAD 设计中的应用和案例。 3. 在线课程和教程:参加 Coursera、edX、Udacity 等平台上的 AI 和 CAD 相关课程。在 YouTube 等视频平台上查找教程和演示视频,了解 AI 在 CAD 设计中的应用。 4. 技术论坛和社区:加入如 Stack Overflow、Reddit 的 r/AI 和 r/CAD 等相关的技术论坛和社区,与其他专业人士交流和学习。同时关注 AI 和 CAD 相关的博客和新闻网站,了解最新的技术动态和应用案例。 5. 开源项目和代码库:在 GitHub 等开源平台上探索 AI 和 CAD 相关项目,例如 OpenAI 的 GPT3、AutoGPT 等 AI 模型在 CAD 设计中的应用,了解 AI 在 CAD 设计中的应用和实现。 6. 企业案例研究:研究 Autodesk、Siemens 等公司在 AI 在 CAD 设计中的应用案例,了解 AI 技术在实际项目中的应用和效果。 在学习和研究 AI 生成 CAD 图的过程中,了解相关的基础知识和技术细节非常重要。通过阅读学术论文、参加在线课程、观看教程视频和交流学习,您可以逐步掌握 AI 在 CAD 领域的应用和实现。随着 AI 技术的不断发展,AI 在 CAD 设计中的应用将会越来越广泛,为设计师和工程师提供更多的辅助和支持。
2025-02-27
请推荐相关的学习资料: AI与新媒体设计:AI视频编辑、AI社交媒体内容创作、ai虚拟现实与增强现实设计等。
以下是为您推荐的关于 AI 与新媒体设计(如 AI 视频编辑、AI 社交媒体内容创作、AI 虚拟现实与增强现实设计等)的学习资料: 了解 AI 基本概念:建议阅读「」部分,熟悉 AI 的术语和基础概念,包括人工智能的定义、主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。同时,浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 开始 AI 学习之旅:在「」中,您将找到一系列为初学者设计的课程,特别推荐李宏毅老师的课程。您还可以通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 选择感兴趣的模块深入学习:AI 领域广泛,比如图像、音乐、视频等,您可以根据自己的兴趣选择特定的模块进行深入学习。建议您一定要掌握提示词的技巧,它上手容易且很有用。 实践和尝试:理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 体验 AI 产品:与现有的 AI 产品进行互动是学习 AI 的另一种有效方式。尝试使用如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 此外,对于 filMarathon 全球 AI 电影马拉松大赛参赛引导中的学习资料: 音效创作指导: 语音合成: 剧本创作:人力为主: 图片生成:AI 作图绘画: 视频生成:AI 视频生成: 音频生成:AI 音乐创作: 剪辑工具:剪映剪辑:
2025-02-27
请推荐相关的学习资料: AI与新媒体设计:探索AI如何影响视频编辑、社交媒体内容创作、虚拟现实与增强现实设计等。
以下是关于学习“AI 与新媒体设计”的相关资料推荐: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括人工智能的定义、主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,能找到一系列为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛(比如图像、音乐、视频等),可根据自己的兴趣选择特定的模块进行深入学习,建议掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出作品。在知识库提供了很多大家实践后的作品、文章分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式,通过对话获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。
2025-02-27
请推荐相关的资源:AI与新媒体设计:探索AI如何影响视频编辑、社交媒体内容创作、虚拟现实与增强现实设计等。
很抱歉,目前没有相关的具体资源可以推荐给您。但您可以通过以下途径获取相关信息: 1. 学术数据库:如 Web of Science、Scopus 等,搜索相关的研究论文。 2. 在线教育平台:例如 Coursera、EdX 等,可能有相关的课程。 3. 专业论坛和社区:如知乎、V2EX 等,与同行交流获取资源推荐。 4. 相关的行业报告网站:如艾瑞咨询、易观智库等。
2025-02-27
小白需要从哪里开始学习ai呢
对于小白学习 AI,建议如下: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 参考「」,其中有一系列为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,可根据自身兴趣选择特定模块深入学习。 掌握提示词的技巧,其上手容易且很有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。 知识库中有很多大家实践后的作品、文章分享,欢迎实践后分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解其工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 此外,还可以参考以下经验: 像《雪梅 May 的 AI 学习日记》中提到的学习模式,即输入→模仿→自发创造。 注意学习资源的时效性,可去 waytoAGI 社区发现自己感兴趣的 AI 领域,学习最新内容。 保持良好的学习状态,不必有心理压力,能学多少算多少。 利用免费开源的学习资源。
2025-02-27
我是一名AI工具使用小白,渴望快速掌握AI工具,在电子表格制作、ppt制作、公文写作、文案写作等方面提升应用能力,请问应该学习哪些入门课程。
以下是一些适合您入门学习的 AI 课程: 1. 工具入门篇(AI Tools): 数据工具多维表格小白之旅:适合 Excel 重度使用者、手动数据处理使用者、文件工作者。通过表格+AI 进行信息整理、提效、打标签,满足 80%数据处理需求。 文章链接: 视频链接: 2. 工具入门篇(AI Code): 编程工具Cursor 的小白试用反馈:适合 0 编程经验、觉得编程离我们很遥远的小白。通过 AI 工具对编程祛魅,降低技术壁垒。 文章链接: 3. 工具入门篇(AI Music): 音乐工具Suno 的小白探索笔记:适合 0 乐理知识、觉得作词作曲和我们毫不相关成本巨大的小白。AI 赋能音乐创作,无需乐理知识即可参与音乐制作。 文章链接: 此外,还有以下相关内容供您参考: 1. 关于 AI 视频制作的交流与答疑: 视频流表格制作:在知识库的 AI 视频专栏中有相关教程和模板。 Copy UI 社区:微推有专门研究 Copy UI 的社区,相关内容有趣但本次未展开讲。 SD 类图片作用:国内大厂很卷,一般需求吉梦等产品可完成,特殊精细要求才用 SD,不了解可在微推加 AI 会话中找。 图片视角转移:使用 P 模型,上传图片并告知镜头移动方向和相关内容。 PNG 与背景融合:Recraft 产品目前不太擅长 PNG 与背景的特别好的融合,可通过合并方式处理。 保证文字不崩:使用吉梦的 2.1 模型效果较好。 新手 AI 视频制作:纯小白参与项目时,项目组会做好部分准备工作,上手难度不高,专注出图和出视频,用好相关技术。 关于利用 AI 工具创作北京宣传片相关问题的探讨。 AI 工具使用思路:对于如何利用 AI 工具创作,建议直接上手尝试,通过试错和与 AI 交流获取反馈,遇到具体问题再向社区请教。 素材处理方法:若有故宫相关照片素材,可采用导入参考图生图、让实拍素材动起来等方式,还可通过抠图、融图等操作将素材与虚拟背景融合。 创作需先构思:创作时不能仅考虑如何连接已有素材,而应先构思剧本和想要表达的内容,再合理运用素材。 2. 入门工具推荐: Kimi 智能助手:Chatgpt 的国产平替,实际上手体验最好,推荐新手用 Kimi 入门学习和体验 AI。不用科学🕸️、不用付费、支持实时联网。是国内最早支持 20 万字无损上下文的 AI,也是目前对长文理解做的最好的 Ai 产品。能一次搜索几十个数据来源,无广告,能定向指定搜索源。 PC 端: 移动端 Android/ios: 您还可以通过「飞书」这款工具,浏览其社区的精选课程、先进客户实践。下载飞书:
2025-02-26
小白如何用ai开始学习图片设计
对于小白如何用 AI 开始学习图片设计,以下是一些建议: 1. 图像流搭建 创建第一个图像流:由于文本类型大语言模型无法直接生成图片,需要通过【技能】部分的图像流为文本大模型提供图像生成能力。为 bot 加入图像流时,要设定图像流名称以及描述(名称只能是英文)。 了解图像流节点的意义:图像流编辑界面左侧的工具栏集合了所有可能用到的功能,大致可分为智能处理工具(如“智能生成”“智能抠图”“画质提升”等)、基础编辑工具(如画板、裁剪、调整、添加文字等)和风格处理类工具(如风格迁移、背景替换等)。从基础编辑工具开始尝试,熟悉后再探索其他功能。右侧类似画布,可拖拽左侧工具或点击“+”拖放各种工具模块,工具之间可连接形成工作流程。 根据需求进行图像流设计:例如生成海报功能,在总结故事后,将完整的故事作为输入,对输入的故事进行一轮提示词优化,从自然语言转变为更符合文生图大模型的提示词,将优化后的提示词输入生图大模型,调整生图的基础风格和信息,输出最终的配图海报。 测试图像流。 2. 利用即梦 AI 生成海报 提示词:皮克斯风格,三宫格漫画:一只小狗,坐在办公桌前,文字“KPI 达标了吗?”。一只小狗,拿着一个写满计划的大本子,微微皱着眉头,文字“OKR 写好了吗?”。一只小狗坐在电脑前,文字“PPT 做好了吗?”。 实操教程: 打开即梦 AI:https://jimeng.jianying.com/aitool/home 。 点击 AI 作图中的图片生成。 填写绘图提示词,选择生图模型 2.1,点击立刻生成。 3. 进阶技巧和关键词 图片内容一般分为二维插画以及三维立体两种主要表现形式。 主题描述:可以描述场景、故事、元素、物体或人物细节、搭配等。描述场景中的人物时,最好独立描述,不要用一长串文字,否则 AI 可能识别不到。 设计风格:可找风格类关键词参考或垫图/喂图,让 AI 根据给出的图片风格结合主题描述生成图片。对于某些材质的描述,关键词的运用有很多门道,需要针对某一种风格单独进行“咒语测试”。
2025-02-26
零代码基础的业务小白如何搭建自己的AI自动化工作流,方便提升效率
对于零代码基础的业务小白搭建自己的 AI 自动化工作流以提升效率,您可以参考以下步骤: 1. 利用 Comfyui 界面: 打开 Comfyui 界面后,右键点击,找到 Comfyui LLM party 的目录。 您可以学习手动连接节点来实现最简单的 AI 女友工作流,也可以将工作流文件拖拽到 Comfyui 界面中一键复刻提示词工程实验。 2. 启动 ollama: 从 ollama 的 github 仓库找到对应版本并下载。 启动 ollama 后,在 cmd 中输入 ollama run gemma2 将自动下载 gemma2 模型到本地并启动。将 ollama 的默认 base URL=http://127.0.0.1:11434/v1/以及 api_key=ollama 填入 LLM 加载器节点即可调用 ollama 中的模型进行实验。 如果 ollama 连接不上,很可能是代理服务器的问题,请将 127.0.0.1:11434 添加到不使用代理服务器的列表中。 3. 对于图片相关的工作流,比如 0 基础手搓 AI 拍立得: 上传输入图片。 理解图片信息,提取图片中的文本内容信息。 进行场景提示词优化/图像风格化处理。 返回文本/图像结果。 为了简化流程,可以选择 Coze 平台实现零代码版本的工作流。搭建流程时,主要关注以下几个步骤: 上传图片:将本地图片转换为在线 OSS 存储的 URL,以便在平台中进行调用。 插件封装:将图片理解大模型和图片 OCR 封装为工作流插件,实现便捷调用,如果市场里面有可以直接使用。 4. Coze 的工作流是一种可视化的方式,允许用户组合各种功能模块,如插件、大语言模型、代码块等,从而实现复杂和稳定的业务流程编排。具体来说: 工作流由多个节点组成,包括 Start 节点和 End 节点。用户可以在这些节点之间添加各种功能模块,构建出所需的业务流程。 工作流支持丰富的功能模块,包括调用大语言模型进行文本生成、调用插件进行数据处理等。用户可以根据需求灵活组合这些模块。 工作流的创建和编辑都可以通过可视化的拖拽界面完成,无需编写代码。这大大降低了工作流搭建的门槛。 创建好的工作流可以直接集成到 Coze 的聊天机器人中使用,实现复杂的业务逻辑。 总的来说,Coze 的工作流为用户提供了一种可视化、低代码的方式,来快速搭建满足业务需求的 AI 应用和服务。这极大地降低了开发门槛,让更多人可以利用 AI 技术来提升工作效率。但请注意,上述内容由 AI 大模型生成,请仔细甄别。
2025-02-26
我是一个ai零基础小白,你需要基于当前知识库内容,帮我规划学习该知识库的学习计划,请详细明确
以下是为您规划的学习 AI 的详细计划: 一、基础概念学习 1. 阅读「」部分,熟悉 AI 的术语和基础概念,包括人工智能的定义、主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 2. 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 二、正式学习 1. 在「」中找到为初学者设计的课程,特别推荐李宏毅老师的课程,学习生成式 AI 等基础知识。 2. 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 三、选择感兴趣的模块深入学习 AI 领域广泛,包括图像、音乐、视频等。您可以根据自己的兴趣选择特定的模块进行深入学习。同时,一定要掌握提示词的技巧,它上手容易且很有用。 四、实践和尝试 1. 理论学习之后,实践是巩固知识的关键。尝试使用各种产品做出您的作品。 2. 在知识库中查看大家实践后的作品、文章分享,并在自己实践后也进行分享。 五、体验 AI 产品 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。通过与这些 AI 产品的对话,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 此外,知识库中还提到了以下内容: 1. 博主会精美地解释六大策略,小七姐在社区带来共学课程并有直播分享及回放,像喂饭教程般帮助理解 prompt。每个板块下有共学快闪,社区老师会带着大家动手操作并讲解思路,还提到官方最佳 prompt 有 6 个实践办法,看熟任意一个即可。 2. 智能体由大语言模型衍生而来,因提示词不太可控才有此进阶。还讲述了智能体进阶案例拆解,推荐景淮老师的相关成果。然后阐述扣子、千帆百炼属于智能体范畴,扣子更偏 ToC 应用,所以有专门讲解扣子相关内容。 3. 学习 AI agent 可能较痛苦,建议先吃透 prompt 再看相关内容。官方文档内容很全面,包含市面上 cos 的教程等。社区小伙伴参加 cos 比赛常拿大奖,有共学活动,获奖小伙伴会分享经验。cos 平台可用于工作生产,有很多功能,感兴趣可体验其官网,能进行对话感受功能。 4. 关于 AI 知识库使用及 AIPO 活动的介绍:讨论了 AI 知识库的使用情况、AIPO 活动的发起背景、内容安排及相关资源等。 5. AIPO 线下活动及 AI 相关探讨:讨论了 AIPO 线下活动的规则和玩法,以及 AI 在科技发展中的重要地位和相关研究方向。 6. way to AGI 社区活动与知识库介绍:讨论了 way to AGI 社区活动的安排、材料准备以及知识库的使用和相关内容更新等情况。 7. AI 相关名词解释:包括 AGI、AIGC、agent、prompt 等,建议通过与 AI 对话或李继刚老师的课程来理解。 8. 知识库的信息来源:有赛博蝉星公众号、国外优质博主的 blog 或 Twitter 等,推荐大家订阅获取最新信息并投稿。 9. 社区共创项目:如 AIPU、CONFIUI 生态大会,每月有切磋大会等活动,还发起了新活动 AIPO。 10. 学习路径:有李弘毅老师的生成式 AI 导论等高质量学习内容,可系统化学习或通过社区共创活动反推学习,鼓励整理学习笔记并分享交流。 11. 经典必读文章:如介绍 GPT 运作原理、Transformer 模型、扩散模型等的文章,还包括软件 2.0 时代相关内容。 12. 初学者入门推荐:推荐看 open AI 的官方 Cookbook,小琪姐做了中文精读翻译,也可查看 cloud 的相关内容。 13. 历史脉络类资料:整理了 open AI 的发展时间线和万字长文回顾等。 您可以根据自己的需求和兴趣,有针对性地深入学习这些内容。
2025-02-24
我是一个ai小白,想要从头开始学ai,请帮我列一个学习计划
以下是为您制定的从零基础开始学习 AI 的计划: 一、了解 AI 基本概念 1. 阅读「」部分,熟悉 AI 的术语和基础概念,包括人工智能的定义、主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 2. 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 二、开始 AI 学习之旅 1. 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 2. 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 三、选择感兴趣的模块深入学习 AI 领域广泛,比如图像、音乐、视频等,您可以根据自己的兴趣选择特定的模块进行深入学习。同时,建议您掌握提示词的技巧,它上手容易且很有用。 四、实践和尝试 理论学习之后,实践是巩固知识的关键。尝试使用各种产品做出您的作品,在知识库中也有很多大家实践后的作品、文章分享,欢迎您实践后进行分享。 五、体验 AI 产品 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 六、设计自己的学习路径 完整的学习路径建议参考「通往 AGI 之路」的布鲁姆分类法。 七、参考他人学习经验 您可以参考《雪梅 May 的 AI 学习日记》,了解作者从零基础到逐渐掌握 AI 的过程和方法。但需要注意,其中的学习内容可能因 AI 发展而有所变化,您可以在 waytoAGI 社区发现自己感兴趣的 AI 领域,学习最新的内容。 记住,学习 AI 是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,您将逐渐建立起自己的 AI 知识体系,并能够在这一领域取得成就。
2025-02-24
一名扬州大学汉语言文学师范专业的大一在读生,无创业经验,如何在ai帮助下在未来几年寻找创业方向和努力路径
对于一名扬州大学汉语言文学师范专业的大一在读生,无创业经验,在未来几年借助 AI 寻找创业方向和努力路径,可以参考以下建议: 首先,了解不同的发展路径特点。在学术研究方面,要培养适应能力,保持对研究的热爱以应对长期缺乏即时反馈的挑战。创业如同“当海盗”,充满刺激和不确定性,需要快速学习、适应市场和承担风险,虽能直接面对社会,但可能带来巨大压力并影响生活质量。在大公司工作需确保个人目标与公司一致,创业公司有生存压力,而打工人有稳定收入和学习机会,但可能限制思维。 其次,明确选择路径的逻辑。无论选择哪种路径,强烈的内在动机是长期成功的关键,动机可能源于内心欲望或对失败的恐惧,要直面并理解它们,将其转化为积极向上的动机,确保符合个人价值观。确定积极动机后,具有学术价值的问题可考虑读博,有商业价值的问题可尝试创业,至少有成长价值的问题可从打工开始。 最后,为持续提升自我,可以采用从导师或上级的角度每周总结工作的实用方法。分析未达成目标的原因,如果是懒惰,要直面并解决,比如找学习伙伴相互监督;如果是能力不足,可以考虑转向擅长领域或增加学习时间。 对于您来说,可以结合自身的兴趣和优势,思考在汉语言文学师范领域中是否存在具有商业价值的问题,利用 AI 技术进行市场调研和分析,探索可能的创业方向。同时,也可以通过打工或参与相关项目积累经验。
2025-02-27
我想知道ai学习路径
以下是为您提供的 AI 学习路径: 一、了解 AI 基本概念 建议阅读「」部分,熟悉 AI 的术语和基础概念,包括人工智能的定义、主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。同时,浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 二、开始 AI 学习之旅 在「」中,您可以找到为初学者设计的课程,特别推荐李宏毅老师的课程。您还可以通过在线教育平台(如 Coursera、edX、Udacity)按照自己的节奏学习,并争取获得证书。 三、选择感兴趣的模块深入学习 AI 领域广泛,涵盖图像、音乐、视频等。您可以根据自身兴趣选择特定模块深入学习,比如掌握提示词的技巧,这上手容易且实用。 四、实践和尝试 理论学习后,实践是巩固知识的关键。您可以尝试使用各种产品进行创作,知识库中也有很多实践后的作品和文章分享,欢迎您在实践后进行分享。 五、体验 AI 产品 与现有的 AI 产品互动,如 ChatGPT、Kimi Chat、智谱、文心一言等聊天机器人,了解其工作原理和交互方式,获得对 AI 实际应用表现的第一手体验。 六、技术研究方向 1. 数学基础:线性代数、概率论、优化理论等。 2. 机器学习基础:监督学习、无监督学习、强化学习等。 3. 深度学习:神经网络、卷积网络、递归网络、注意力机制等。 4. 自然语言处理:语言模型、文本分类、机器翻译等。 5. 计算机视觉:图像分类、目标检测、语义分割等。 6. 前沿领域:大模型、多模态 AI、自监督学习、小样本学习等。 7. 科研实践:论文阅读、模型实现、实验设计等。 七、应用方向 1. 编程基础:Python、C++等。 2. 机器学习基础:监督学习、无监督学习等。 3. 深度学习框架:TensorFlow、PyTorch 等。 4. 应用领域:自然语言处理、计算机视觉、推荐系统等。 5. 数据处理:数据采集、清洗、特征工程等。 6. 模型部署:模型优化、模型服务等。 7. 行业实践:项目实战、案例分析等。 无论是技术研究还是应用实践,数学和编程基础都是必不可少的。同时需要紧跟前沿技术发展动态,并结合实际问题进行实践锻炼。 希望以上内容对您有所帮助。
2025-02-26
AI学习路径
以下是为新手提供的 AI 学习路径: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,如图像、音乐、视频等,可根据兴趣选择特定模块深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解其工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 另外,如果您偏向技术研究方向,学习路径包括: 1. 数学基础:线性代数、概率论、优化理论等。 2. 机器学习基础:监督学习、无监督学习、强化学习等。 3. 深度学习:神经网络、卷积网络、递归网络、注意力机制等。 4. 自然语言处理:语言模型、文本分类、机器翻译等。 5. 计算机视觉:图像分类、目标检测、语义分割等。 6. 前沿领域:大模型、多模态 AI、自监督学习、小样本学习等。 7. 科研实践:论文阅读、模型实现、实验设计等。 如果您偏向应用方向,学习路径包括: 1. 编程基础:Python、C++等。 2. 机器学习基础:监督学习、无监督学习等。 3. 深度学习框架:TensorFlow、PyTorch 等。 4. 应用领域:自然语言处理、计算机视觉、推荐系统等。 5. 数据处理:数据采集、清洗、特征工程等。 6. 模型部署:模型优化、模型服务等。 7. 行业实践:项目实战、案例分析等。 无论是技术研究还是应用实践,数学和编程基础都是必不可少的。同时需要紧跟前沿技术发展动态,并结合实际问题进行实践锻炼。 记住,学习 AI 是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,您将逐渐建立起自己的 AI 知识体系,并能够在这一领域取得成就。完整的学习路径建议参考「通往 AGI 之路」的布鲁姆分类法,设计自己的学习路径。
2025-02-26
金融行业落地大模型的路径
以下是金融行业落地大模型的相关路径: 1. 从整体行业情况来看: 2024 年被称为国内大模型落地元年,国内大模型项目增长迅速,中标项目数量和金额大幅增长。 大模型中标项目数前五的行业包括金融。 厂商方面,百度在金融行业的中标数量和金额排名领先。 2. 具体应用案例: 彭博发布了金融领域的大模型 BloombergGPT,并应用于其所在的垂直领域。 3. 行业人士观点: 通用模型适用不同产业,垂直模型类似于单领域专家,垂直大模型的发展有助于提升各领域模型性能。 商汤科技联合创始人杨帆认为,当模型足够大时,可能加速商业化落地,带来更好的技术能力,缩短产业应用周期。 360 公司创始人周鸿祎表示,大模型是工业革命级的生产力工具,能赋能百行千业。 4. 相关赛事推动: 举办「2024 金融行业·大模型挑战赛」,整合公开金融数据,打造多轮问答评测赛题,提供基础数据表,参赛选手可采用 GLM4 系列模型 API 并运用多种技术手段完成赛题,有多个单位提供支持。
2025-02-24
AI学习路径
以下是为新手提供的 AI 学习路径: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,如图像、音乐、视频等,可根据兴趣选择特定模块深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。 可在知识库分享实践后的作品和文章。 5. 体验 AI 产品: 与现有的 AI 产品如 ChatGPT、Kimi Chat、智谱、文心一言等聊天机器人互动,了解其工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验。 如果您的学习路径偏向技术研究方向,您需要: 1. 掌握数学基础,如线性代数、概率论、优化理论等。 2. 学习机器学习基础,包括监督学习、无监督学习、强化学习等。 3. 深入研究深度学习,如神经网络、卷积网络、递归网络、注意力机制等。 4. 钻研自然语言处理,如语言模型、文本分类、机器翻译等。 5. 探索计算机视觉,如图像分类、目标检测、语义分割等。 6. 关注前沿领域,如大模型、多模态 AI、自监督学习、小样本学习等。 7. 进行科研实践,包括论文阅读、模型实现、实验设计等。 如果您的学习路径偏向应用方向,您需要: 1. 具备编程基础,如 Python、C++等。 2. 学习机器学习基础,如监督学习、无监督学习等。 3. 掌握深度学习框架,如 TensorFlow、PyTorch 等。 4. 深入应用领域,如自然语言处理、计算机视觉、推荐系统等。 5. 学会数据处理,包括数据采集、清洗、特征工程等。 6. 掌握模型部署,如模型优化、模型服务等。 7. 进行行业实践,包括项目实战、案例分析等。 记住,学习 AI 是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,您将逐渐建立起自己的 AI 知识体系,并能够在这一领域取得自己的成就。完整的学习路径建议参考「通往 AGI 之路」的布鲁姆分类法,设计自己的学习路径。同时,请注意内容由 AI 大模型生成,请仔细甄别。
2025-02-23
ai产品经理学习路径
以下是为您提供的 AI 产品经理学习路径: 1. 入门级: 可以通过 WaytoAGI 等开源网站或一些课程来了解 AI 的概念。 学会使用 AI 产品,并尝试动手实践应用搭建。对应的画像可能是喜欢听小宇宙 APP 的播客或浏览 AI 相关的文章。 2. 研究级: 有两个路径,一个是技术研究路径,一个是商业化研究路径。 这个阶段对应的画像可能是对某一领域有认知,可以根据需求场景选择解决方案,或利用 Hugging face 等工具手搓出一些 AI 应用来验证想法。 3. 落地应用: 这一阶段的画像就是有一些成功落地应用的案例,如产生商业化价值。 对应传统互联网 PM 也有三个层级: 负责功能模块与执行细节。 负责整体系统与产品架构。 熟悉行业竞争格局与商业运营策略。 总结来说,对 AI 产品经理要求懂得技术框架,不一定要了解技术细节,而是对技术边界有认知,最好能知道一些优化手段和新技术的发展。AI 是工具和手段,产品经理要关注的还是场景、痛点、价值。
2025-02-22
aigc智能体技能提升 ,需要掌握哪些知识
要提升 AIGC 智能体技能,需要掌握以下知识: 1. 对 AI 及提示词工程有清晰的理解。 2. 掌握 Python 语言,以便能搓更多智能体。 3. 了解向量数据库,如 Milvus 等。 4. 熟悉 Web 框架,如 FastAPI 框架,掌握流传输、负载限流等相关技术,实现与前端或业务后端的接口对接。 5. 学会提出具体且有详细背景信息的问题,以从 ChatGPT 等模型获得更精准的答案。 6. 不断积累行业领域知识,达到能较好操纵 AI 完成复杂任务的程度。
2025-02-26
Ai工具英文不熟悉,怎么提升自己,快速掌握,可替代的中文ai工具推荐
如果您对 AI 工具的英文不熟悉,想要快速掌握并寻找可替代的中文 AI 工具,以下是一些建议和推荐: 提升英语能力以更好地掌握 AI 工具: 多进行英语阅读,包括 AI 相关的文章和文档。 参加英语培训课程或学习在线教程。 中文 AI 工具推荐: 秘塔写作猫(https://xiezuocat.com/):是 AI 写作伴侣,能推敲用语、斟酌文法、改写文风,还能实时同步翻译。支持全文改写,一键修改,实时纠错并给出修改建议,智能分析文章属性并打分。 笔灵 AI 写作(https://ibiling.cn/):是智能写作助手,能应对多种写作需求,支持一键改写/续写/扩写,智能锤炼打磨文字。 腾讯 Effidit 写作(https://effidit.qq.com/):由腾讯 AI Lab 开发的创作助手,能提升写作效率和创作体验。 此外,使用 AI 学习一门外语可以通过以下方法和工具: 方法: 利用语言学习应用,根据个性化体验和进度调整练习内容。 借助 AI 对话助手模拟对话练习,提高交流能力。 工具: 语言学习应用: Duolingo:使用 AI 个性化学习体验,提供词汇、语法、听力和口语练习。下载应用,选择语言,按课程指引学习。 Babbel:结合 AI 技术提供个性化课程和练习,注重实际交流技能。注册账户,选择课程,按学习计划学习。 Rosetta Stone:使用动态沉浸法,通过 AI 分析进度提供练习和反馈。注册并选择语言,使用多种练习模式学习。 AI 对话助手: ChatGPT:可模拟对话练习,询问语法、词汇等问题,模拟交流场景。在聊天界面选择目标语言进行对话。 Google Assistant:支持多种语言,可进行日常对话和词汇学习。设置目标语言,通过语音或文本输入互动。 另外,Trae Win+Mac 版已全量上线,标配 Claude3.5sonnet 模型免费不限量,编辑器所有功能原生支持中文,是一款对中文用户友好的 AI 编程工具。
2025-02-19
我是一个有23年软件系统开发和设计经验的架构师,但是对AI还没有系统化了解过,请问我该如何开始?如何在短时间内掌握AI的使用、原理以及二次开发?
以下是为您提供的在短时间内系统化学习 AI 的建议: 一、了解 AI 基本概念 首先,建议阅读「」部分,熟悉 AI 的术语和基础概念。了解什么是人工智能,它的主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。同时,浏览入门文章,这些文章通常会介绍 AI 的历史、当前的应用和未来的发展趋势。 二、开始 AI 学习之旅 在「」中,您将找到一系列为初学者设计的课程。这些课程将引导您了解生成式 AI 等基础知识,特别推荐李宏毅老师的课程。您还可以通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 三、选择感兴趣的模块深入学习 AI 领域广泛(比如图像、音乐、视频等),您可以根据自己的兴趣选择特定的模块进行深入学习。我建议您一定要掌握提示词的技巧,它上手容易且很有用。 四、实践和尝试 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 五、体验 AI 产品 与现有的 AI 产品进行互动是学习 AI 的另一种有效方式。尝试使用如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。通过与这些 AI 产品的对话,您可以获得对 AI 在实际应用中表现的第一手体验,并激发您对 AI 潜力的认识。 如果希望继续精进,对于 AI,可以尝试了解以下内容作为基础: 1. AI 背景知识 (1)基础理论:了解人工智能、机器学习、深度学习的定义及其之间的关系。 (2)历史发展:简要回顾 AI 的发展历程和重要里程碑。 2. 数学基础 (1)统计学基础:熟悉均值、中位数、方差等统计概念。 (2)线性代数:了解向量、矩阵等线性代数基本概念。 (3)概率论:基础的概率论知识,如条件概率、贝叶斯定理。 3. 算法和模型 (1)监督学习:了解常用算法,如线性回归、决策树、支持向量机(SVM)。 (2)无监督学习:熟悉聚类、降维等算法。 (3)强化学习:简介强化学习的基本概念。 4. 评估和调优 (1)性能评估:了解如何评估模型性能,包括交叉验证、精确度、召回率等。 (2)模型调优:学习如何使用网格搜索等技术优化模型参数。 5. 神经网络基础 (1)网络结构:理解神经网络的基本结构,包括前馈网络、卷积神经网络(CNN)、循环神经网络(RNN)。 (2)激活函数:了解常用的激活函数,如 ReLU、Sigmoid、Tanh。 此外,以证件照为例,Code AI 应用开发教学中,智能体开发从最初的 chatbot 只有对话框,到有了更多交互方式,因用户需求扣子推出了 AI 应用,其低代码或零代码的工作流等场景做得较好。但 AI CODING 虽强,目前适用于小场景和产品的第一个版本,复杂应用可能导致需求理解错误从而使产品出错。在创建 AI 应用时,要学习操作界面、业务逻辑和用户界面,包括布局、搭建工作流、用户界面及调试发布,重点熟悉桌面网页版的用户界面。
2025-02-17
一、学习内容 1. AI工具的操作:了解并掌握至少一种AI工具的基本操作,如智能代码、流程管理、智能报表、数据分析、图像识别、文字生成等。 2. AI工具在本职工作的应用:思考并提出AI工具如何帮助你更高效地完成本职工作,包括但不限于提高工作效率、优化工作流程、节约成本、提升交付质量等。 3. AI工具在非本职工作的潜力推演:探索AI工具如何在你的非本职工作领域发挥作用,比如在公司管理、团队领导、跨部门合作、团队发展以及市场研究等方面。提出这些工具如何被有效利用,以及它们可能带来的改
以下是关于学习 AI 的相关内容: 一、AI 工具的操作 要了解并掌握至少一种 AI 工具的基本操作,如智能代码、流程管理、智能报表、数据分析、图像识别、文字生成等。 二、AI 工具在本职工作的应用 思考并提出 AI 工具如何帮助更高效地完成本职工作,包括但不限于提高工作效率、优化工作流程、节约成本、提升交付质量等。 三、AI 工具在非本职工作的潜力推演 探索 AI 工具在非本职工作领域,如公司管理、团队领导、跨部门合作、团队发展以及市场研究等方面的作用,思考如何有效利用这些工具以及它们可能带来的改变。 四、学习路径 1. 对于不会代码的学习者: 20 分钟上手 Python+AI,在 AI 的帮助下可以完成很多基础的编程工作。若想深入,需体系化了解编程及 AI,至少熟悉 Python 基础,包括基本语法(如变量命名、缩进等)、数据类型(如字符串、整数、浮点数、列表、元组、字典等)、控制流(如条件语句、循环语句)、函数(定义和调用函数、参数和返回值、作用域和命名空间)、模块和包(导入模块、使用包)、面向对象编程(类和对象、属性和方法、继承和多态)、异常处理(理解异常、异常处理)、文件操作(文件读写、文件与路径操作)。 2. 新手学习 AI: 了解 AI 基本概念,建议阅读「」部分,熟悉术语和基础概念,浏览入门文章。 开始 AI 学习之旅,在「」中找到为初学者设计的课程,推荐李宏毅老师的课程,也可通过在线教育平台(如 Coursera、edX、Udacity)按自己节奏学习并获证书。 选择感兴趣的模块深入学习,掌握提示词技巧。 实践和尝试,理论学习后通过实践巩固知识,在知识库分享实践作品和文章。 体验 AI 产品,如 ChatGPT、Kimi Chat、智谱、文心一言等聊天机器人,了解其工作原理和交互方式。 五、工具推荐 1. Kimi 智能助手:ChatGPT 的国产平替,上手体验好,适合新手入门学习和体验 AI。不用科学网、不用付费、支持实时联网,是国内最早支持 20 万字无损上下文的 AI,对长文理解做得好,能一次搜索几十个数据来源,无广告,能定向指定搜索源(如小红书、学术搜索)。 PC 端: 移动端(Android/ios): 2. 飞书:汇集各类 AI 优质知识库、AI 工具使用实践的效率工具,助力人人成为效率高手。
2025-02-07
我想从普通的功能型产品经理转变为AI应用产品经理,应该怎么进阶,需要掌握什么能力?
要从普通的功能型产品经理转变为 AI 应用产品经理,可以从以下几个方面进阶并掌握相应能力: 一、不同阶段的能力要求 1. 入门级 能通过 WaytoAGI 等开源网站或一些课程了解 AI 的概念。 使用 AI 产品并尝试动手实践应用搭建。 2. 研究级 技术研究路径或商业化研究路径。 对某一领域有认知,能根据需求场景选择解决方案。 利用 Hugging face 等工具手搓出一些 AI 应用来验证想法。 3. 落地应用级 有一些成功落地应用的案例,产生商业化价值。 二、AI 产品经理与传统互联网产品经理层级对应 传统互联网产品经理层级: 1. 负责功能模块与执行细节。 2. 负责整体系统与产品架构。 3. 熟悉行业竞争格局与商业运营策略。 三、AI 产品经理需掌握的能力 1. 懂得技术框架,对技术边界有认知,最好能知道一些优化手段和新技术的发展。 2. 理解产品核心技术,了解基本的机器学习算法原理,做出更合理的产品决策。 3. 与技术团队有效沟通,掌握一定的算法知识,减少信息不对称带来的误解。 4. 评估技术可行性,在产品规划阶段做出更准确的判断。 5. 把握产品发展方向,了解算法前沿。 6. 提升产品竞争力,发现产品的独特优势,提出创新的产品特性。 7. 具备数据分析能力,很多 AI 算法都涉及到数据处理和分析。 四、其他能力 1. 语言学能力,锻炼语言表述能力,更精准地用语言描述问题。 2. 业务理解和 AI 嵌入能力,找到业务中需要应用大模型的场景,将业务和大模型算法结合,理解模型在业务中的边界。 3. 维度转换能力,将各种问题、业务数据转化为语言描述,将通用模块问题转化为通用问题模块。 总之,AI 产品经理要关注场景、痛点、价值,不断提升自身能力,以适应市场需求。
2025-02-06