Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

AI小白应该如何开始入门AI

Answer

对于 AI 小白入门 AI,以下是一些建议:

  1. 了解 AI 基本概念:
    • 阅读「从这里启程」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。
    • 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。
  2. 开始 AI 学习之旅:
    • 参考「入门:AI 学习路径」,找到为初学者设计的课程,特别推荐李宏毅老师的课程。
    • 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。
  3. 选择感兴趣的模块深入学习:
    • AI 领域广泛,比如图像、音乐、视频等,可根据自身兴趣选择特定模块深入学习。
    • 掌握提示词的技巧,其上手容易且很有用。
  4. 实践和尝试:
    • 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。
    • 在知识库分享实践后的作品和文章。
  5. 体验 AI 产品:
    • 与如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人互动,了解其工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验。

此外,您还可以参考《雪梅 May 的 AI 学习日记》,其中提到:

  1. 适合纯 AI 小白,可先看目录,作者从一开始的到处看到走在学习轨道上。
  2. 学习模式是输入→模仿→自发创造,如果对费曼学习法没自信,可尝试这种模式。
  3. 学习内容因 AI 节奏快可能不适用,可去 waytoAGI 社区发现自己感兴趣的领域,学习最新内容。
  4. 学习时间不是每天依次进行,有空时学习即可。
  5. 保持好的学习状态,能学多少算多少。
  6. 学习资源免费开源。

另外,有人的 AI 之旅开始于 prompt,3.5 刚出来时,写好 prompt 能提高问问题和解决问题的效率,虽然将 prompt 规范、抽象用以让 AI 拟人较难,但参加相关活动和学习也有收获。

Content generated by AI large model, please carefully verify (powered by aily)

References

问:新手如何学习 AI?

了解AI基本概念:首先,建议阅读「[从这里启程](https://waytoagi.feishu.cn/wiki/PFXnwBTsEiGwGGk2QQFcdTWrnlb?table=blkjooAlLFNtvKJ2)」部分,熟悉AI的术语和基础概念。了解什么是人工智能,它的主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。浏览入门文章,这些文章通常会介绍AI的历史、当前的应用和未来的发展趋势。开始AI学习之旅:在「[入门:AI学习路径](https://waytoagi.feishu.cn/wiki/ZYtkwJQSJiLa5rkMF5scEN4Onhd?table=tblWqPFOvA24Jv6X&view=veweFm2l9w)」中,你将找到一系列为初学者设计的课程。这些课程将引导你了解生成式AI等基础知识,特别推荐李宏毅老师的课程。通过在线教育平台(如Coursera、edX、Udacity)上的课程,你可以按照自己的节奏学习,并有机会获得证书。选择感兴趣的模块深入学习:AI领域广泛(比如图像、音乐、视频等),你可以根据自己的兴趣选择特定的模块进行深入学习。我建议你一定要掌握提示词的技巧,它上手容易且很有用。实践和尝试:理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出你的作品。在知识库提供了很多大家实践后的作品、文章分享,欢迎你实践后的分享。体验AI产品:与现有的AI产品进行互动是学习AI的另一种有效方式。尝试使用如ChatGPT、Kimi Chat、智谱、文心一言等AI聊天机器人,了解它们的工作原理和交互方式。通过与这些AI产品的对话,你可以获得对AI在实际应用中表现的第一手体验,并激发你对AI潜力的认识。

《雪梅 May 的 AI 学习日记》挑战 100 天和 AI 做朋友(持续更新中)

说明:1.适合纯AI小白:如果你还在观望AI,不知道从何入手,可以参考我这个日记。你可以先看左边的目录,会发现我现在已经快到100天了,在这个时间跨度里,我从一开始的到处看看到现在觉得自己已经走在了一条学习AI的轨道上。2.学习模式是什么:我平时有记录笔记的习惯,所以积累了这份AI学习日记。我最近整理复盘了这将近100天记录的日记后,我发现我学习AI的模式是输入→模仿→自发创造。如果你没有自信一开始就用费曼学习法来接触AI,那你可以试试我这个实践出来的学习模式。3.学习内容:我日记里的学习内容你可以不用直接复用,因为AI的节奏太快了,很多学习的材料在半年后的现在可能已经不适用了。比如coze之前共学的那些课程,你会发现coze已经改版了,如果你按照老课程来模仿,产品功能不一样了,对你来说会有转换的门槛。你可以去waytoAGI社区发现你自己感兴趣的AI领域,去学习你自己想学的最新的内容。4.有时间学吗:在半年多的时间跨度中,其中有100天在学习AI,所以这里的DAY(天数)不是每天依次进行,而是有空的时候学习。目前我进行到了90天,希望自己能够坚持满100天,甚至更多时间。5.学习状态:我在2024年保持了比较好的学习状态,有意愿和动力也能头脑清醒的学进去东西。这种状态不仅体现在学AI,我在2024年还看了33本书,像《穷查理宝典》这样的大部头都能看进去。所以如果你看到这个100天日记觉得自己很难做到,那是学习状态没有到最好,不用有心里压力,能学多少算多少就行。6.有费用吗:本日记中学习资源的内容都是免费开源的,真的很感谢这些把信息开源的人,这样会AI的人才会越来越多。我也是秉持这个理念,把我的学习日记开源了

谁是人类?!—— 围观人员震颤的瞳孔和激动的心

我原以为,这种涉及代码和大模型能力的东西从来都是阳春白雪,我等小白触碰不得,可如今借由《谁是人类》这个活动,我意识到它和我就隔着几天的发烧努力——一个全程围观并做一点志愿者服务的元子语。我的AI之旅开始于prompt。显而易见,3.5刚出来的时候,对AI生成原理的理解加上prompt写得好,问问题和解决问题的效率是巨大的,当真能解决一些生活中的问题了。然而作为一个小白类型的Chat网页终端用户,更多的是临时捏一些prompt解决具体的问题,将prompt规范、抽象用以让AI拟人,当然试过,却远远做不到。不知道每一个比较小白的小伙伴,是不是都和我有类似的疑虑呢?然而来都来了,自然要参加一下,学习一下也是好的。作为一个围观人群,我虽然没有躬身入局,却因为近距离地作为线上志愿者,惊觉原来这一切其实门槛都在社区里一一解决过,需要的只是愿意花一些时间和做一些准备。在这个过程中,我也直接被点燃了。

Others are asking
如何用AI修改论文
以下是关于如何用 AI 修改论文的相关内容: 在论文写作领域,AI 技术的应用正迅速发展,能提供多方面的辅助,包括文献搜索、内容生成、语言润色、数据分析、论文结构和格式以及研究伦理和抄袭检测等。以下是一些常用的 AI 工具和平台: 文献管理和搜索: Zotero:结合 AI 技术,可自动提取文献信息,助您管理和整理参考文献。 Semantic Scholar:由 AI 驱动的学术搜索引擎,提供相关文献推荐和引用分析。 内容生成和辅助写作: Grammarly:通过 AI 技术提供文本校对、语法修正和写作风格建议,提高论文语言质量。 Quillbot:基于 AI 的重写和摘要工具,可精简和优化论文内容。 研究和数据分析: Google Colab:提供基于云的 Jupyter 笔记本环境,支持 AI 和机器学习研究,便于进行数据分析和可视化。 Knitro:用于数学建模和优化的软件,可进行复杂的数据分析和模型构建。 论文结构和格式: LaTeX:结合自动化和模板,高效处理论文格式和数学公式。 Overleaf:在线 LaTeX 编辑器,有丰富模板库和协作功能,简化论文编写过程。 研究伦理和抄袭检测: Turnitin:广泛使用的抄袭检测工具,确保论文原创性。 Crossref Similarity Check:通过与已发表作品比较,检测潜在抄袭问题。 如果您的医学课题需要 AI 给出修改意见,可以考虑以下专业工具: Scite.ai:为研究人员等打造的创新平台,提供引用声明搜索等工具,简化学术工作。 Scholarcy:可提取文档结构化数据,生成文章概要,包含关键概念等板块内容。 ChatGPT:强大的自然语言处理模型,能提供医学课题的修改意见。 此外,有作者在修改小说时的经验分享:首先将原文喂给 code interpreter 并保存为 excel 文件备用,然后让 GPT 读取文件并给出反馈。从情节合理与连贯性角度修改,细节修改时 Arthur 的结构化 prompt 效果较好,修改过程中要注意保存备份。一轮修改完成后可进行新一轮,修改重点会有所变化。最后还提到了未来的探索方向,包括琢磨 prompts 和设计 agent 框架等。 使用这些工具时,要结合自己的写作风格和需求,选择最合适的辅助工具。
2025-03-03
怎么学习AI基础知识
以下是学习 AI 基础知识的方法: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括人工智能的定义、主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 对于中学生学习 AI,建议如下: 1. 从编程语言入手学习: 可以从 Python、JavaScript 等编程语言开始学习,学习编程语法、数据结构、算法等基础知识,为后续的 AI 学习打下基础。 2. 尝试使用 AI 工具和平台: 可以使用 ChatGPT、Midjourney 等 AI 生成工具,体验 AI 的应用场景。 探索一些面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. 学习 AI 基础知识: 了解 AI 的基本概念、发展历程、主要技术如机器学习、深度学习等。 学习 AI 在教育、医疗、金融等领域的应用案例。 4. 参与 AI 相关的实践项目: 可以参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动。 尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 5. 关注 AI 发展的前沿动态: 关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展。 思考 AI 技术对未来社会的影响,培养对 AI 的思考和判断能力。 如果您不会代码但希望在 20 分钟上手 Python + AI,可以尝试了解以下内容作为基础: 1. AI 背景知识: 基础理论:了解人工智能、机器学习、深度学习的定义及其之间的关系。 历史发展:简要回顾 AI 的发展历程和重要里程碑。 2. 数学基础: 统计学基础:熟悉均值、中位数、方差等统计概念。 线性代数:了解向量、矩阵等线性代数基本概念。 概率论:基础的概率论知识,如条件概率、贝叶斯定理。 3. 算法和模型: 监督学习:了解常用算法,如线性回归、决策树、支持向量机(SVM)。 无监督学习:熟悉聚类、降维等算法。 强化学习:简介强化学习的基本概念。 4. 评估和调优: 性能评估:了解如何评估模型性能,包括交叉验证、精确度、召回率等。 模型调优:学习如何使用网格搜索等技术优化模型参数。 5. 神经网络基础: 网络结构:理解神经网络的基本结构,包括前馈网络、卷积神经网络(CNN)、循环神经网络(RNN)。 激活函数:了解常用的激活函数,如 ReLU、Sigmoid、Tanh。
2025-03-03
怎么用AI写论文
利用 AI 写论文可以按照以下步骤进行: 1. 确定课题主题:明确研究兴趣和目标,选择具有研究价值和创新性的主题。 2. 收集背景资料:使用学术搜索引擎和文献管理软件等 AI 工具搜集相关研究文献和资料。 3. 分析和总结信息:利用 AI 文本分析工具提取关键信息和主要观点。 4. 生成大纲:使用 AI 写作助手生成包括引言、文献综述、方法论、结果和讨论等部分的大纲。 5. 撰写文献综述:借助 AI 工具撰写文献综述部分,确保内容准确完整。 6. 构建方法论:根据研究需求,采用 AI 建议的方法和技术设计研究方法。 7. 数据分析:若课题涉及数据收集和分析,使用 AI 数据分析工具处理和解释数据。 8. 撰写和编辑:利用 AI 写作工具撰写课题各部分,并进行语法和风格检查。 9. 生成参考文献:使用 AI 文献管理工具生成正确的参考文献格式。 10. 审阅和修改:借助 AI 审阅工具检查课题的逻辑性和一致性,并根据反馈修改。 11. 提交前的检查:使用 AI 抄袭检测工具确保课题的原创性,并进行最后的格式调整。 在论文写作领域,常用的 AI 工具和平台有: 1. 文献管理和搜索: Zotero:结合 AI 技术,自动提取文献信息,帮助管理和整理参考文献。 Semantic Scholar:AI 驱动的学术搜索引擎,提供文献推荐和引用分析。 2. 内容生成和辅助写作: Grammarly:提供文本校对、语法修正和写作风格建议,提高语言质量。 Quillbot:基于 AI 的重写和摘要工具,精简和优化论文内容。 3. 研究和数据分析: Google Colab:提供基于云的 Jupyter 笔记本环境,支持 AI 和机器学习研究,便于数据分析和可视化。 Knitro:用于数学建模和优化,帮助进行复杂的数据分析和模型构建。 4. 论文结构和格式: LaTeX:结合自动化和模板,高效处理论文格式和数学公式。 Overleaf:在线 LaTeX 编辑器,提供丰富模板库和协作功能,简化编写过程。 5. 研究伦理和抄袭检测: Turnitin:广泛使用的抄袭检测工具,确保论文原创性。 Crossref Similarity Check:通过与已发表作品比较,检测潜在抄袭问题。 需要注意的是,AI 工具可以作为辅助,但不能完全替代研究者的专业判断和创造性思维。在使用 AI 进行论文写作时,应保持批判性思维,并确保研究的质量和学术诚信。同时,如果担心 AI 对孩子思考力产生负面影响,应正确引导使用方法。例如,将任务设置为让孩子提交与 AI 共同完成作文的聊天记录,重点评价孩子能否说清楚 AI 作文的优缺点及如何修改。
2025-03-03
现阶段AI应用软件有哪些好用的
以下是一些好用的现阶段 AI 应用软件: AI 摄影参数调整助手:使用图像识别、数据分析技术,常见于摄影 APP 中,能根据场景自动调整摄影参数,市场规模达数亿美元。 AI 音乐情感分析平台:运用机器学习、音频处理技术,有音乐情感分析软件,可分析音乐的情感表达,市场规模达数亿美元。 AI 家居智能照明系统:基于物联网技术、机器学习,如小米智能照明系统,实现家居照明的智能化控制,市场规模达数十亿美元。 AI 金融风险预警平台:采用数据分析、机器学习技术,有金融风险预警软件,能提前预警金融风险,市场规模达数十亿美元。 AI 旅游路线优化平台:借助数据分析、自然语言处理技术,如马蜂窝路线优化功能,可根据用户需求优化旅游路线,市场规模达数亿美元。 AI 儿童安全座椅推荐系统:通过数据分析、机器学习,如宝宝树安全座椅推荐,为家长推荐合适的儿童安全座椅,市场规模达数亿美元。 AI 汽车保养套餐推荐系统:利用数据分析、机器学习,如途虎养车保养推荐,根据车辆情况推荐保养套餐,市场规模达数十亿美元。 AI 物流快递柜管理系统:基于数据分析、物联网技术,如丰巢快递柜管理系统,优化快递柜使用效率,市场规模达数十亿美元。 AI 招聘面试模拟平台:运用自然语言处理、机器学习,如智联招聘面试模拟功能,帮助求职者进行面试模拟,市场规模达数亿美元。 AI 房地产装修设计平台:借助图像生成、机器学习,如酷家乐装修设计软件,为用户提供装修设计方案,市场规模达数十亿美元。 AI 游戏道具推荐系统:通过数据分析、机器学习,如游戏内商城推荐功能,根据玩家需求推荐游戏道具,市场规模达数亿美元。 AI 天气预报分时服务:采用数据分析、机器学习技术,如彩云天气分时预报,提供精准的分时天气预报,市场规模达数亿美元。 AI 医疗病历分析平台:利用数据分析、自然语言处理,如医渡云病历分析系统,分析医疗病历,辅助诊断,市场规模达数十亿美元。 AI 会议发言总结工具:借助自然语言处理、机器学习,如讯飞听见会议总结功能,自动总结会议发言内容,市场规模达数亿美元。 AI 书法作品临摹辅助工具:通过图像识别、数据分析,如书法临摹软件,帮助书法爱好者进行临摹,市场规模达数亿美元。
2025-03-03
现阶段AI应用有哪些
现阶段 AI 应用主要包括以下方面: 1. AI 视频生成: 专业创作者(艺术家、影视人等):能够为作品赋予独特风格和想象力,提供灵感,降低后期制作门槛和成本,目前主要集中在音乐 MV、短篇电影、动漫等方向。 自媒体、非专业创作者:解决视频剪辑痛点,如快速生成脚本分镜、视频,将文章高效转 PPT 再转视频,解决同一素材在不同平台分发的成本问题。 企业客户:为小企业、非盈利机构大幅缩减视频制作成本。 2. 交通领域: 自动驾驶:提高交通安全性和效率。 交通管理:优化交通信号灯和交通流量,缓解交通拥堵。 物流和配送:优化物流路线和配送计划,降低运输成本。 无人机送货:将货物快速送达偏远地区。 3. 其他领域: 教育:提供个性化学习体验。 农业:分析农田数据,提高农作物产量和质量。 娱乐:开发虚拟现实和增强现实体验。 能源:优化能源使用,提高能源效率。 此外,从使用场景来看,还包括改善大模型产品的使用体验、助力用户工作流、细分场景独立实用工具、AI 社区、Chatbot 等方向;从产品形态上来看,分为插件、辅助现有产品能力、深度结合 LLM 能力的独立网站&应用、AI 社区等。目前产品大多分布在 PC 端。
2025-03-03
我想通过ai换脸,把一张网图的照片变成我的脸,该怎么办
以下是将网图照片换成您的脸的一些方法和步骤: 1. 星流一站式 AI 设计工具: 选中图像进入扩展功能界面,自动提取面部信息。 上传想要替换到图像的图片。 参数方面:提示词框会自动根据图像进行填充,无需手动填写;重绘风格选择与放大图像相对应的风格,会提升换脸效果,其余参数默认即可。 2. 【SD】无需 Lora,一键换脸插件 Roop: 勾选相关项目,确保包含 Python 和 C++包。 更改到您想要安装的位置,点击右下角的安装。 安装时间较长,需耐心等待。 安装好后,打开 SD 文件目录下的相关文件夹,在地址栏输入“cmd”,然后回车。 在打开的 dos 界面里,粘贴“python m pip install insightface==0.7.3 user”代码,自动开始安装 insightface。 若此阶段出现错误,建议下载最新的秋叶 4.2 整合包(6 月 23 号更新),后台回复【SD】即可下载。 安装完成后,重新打开启动器,后台会继续下载一些模型,全程需保证科学上网。 启用 ROOP 插件,选择想要替换的人物照片,面部修复选择“GFPGAN”。右边的参数数值越低,人物会越像,但图像会很模糊;数值越高人物越不像,但图像会很清晰,可根据需求设置,如使用 0.5 测试。最下面还有放大算法,可使用一个模型放大图像,相当于高清修复。设置好后点击生成。若人脸部分像素偏低、有点模糊,可将图发送到“图生图”,开一个较小的重绘幅度。 需要注意的是,AI 换脸存在一定的法律风险。除上述诈骗、寻衅滋事、编造、传播虚假信息罪外,AI 换脸技术既然要对“人脸”进行更换,其民事侵权风险自不言而明,相对应地构成侮辱、诽谤罪及制作、贩卖、传播淫秽色情物品罪的案例亦会出现。就民事侵权而言,《民法典》第一千零一十九条明确规定,“任何组织或者个人不得以丑化、污损,或者利用信息技术手段伪造等方式侵害他人的肖像权。未经肖像权人同意,不得制作、使用、公开肖像权人的肖像,但是法律另有规定的除外。”因此,一旦换脸技术所生成之人脸系自然人的肖像,那么未经他人同意,使用他人肖像的行为当然侵犯了自然人的肖像权。在刑事犯罪方面,行为人使用他人肖像进行 AI 换脸旨在侮辱、诽谤、恶意丑化他人,并在网络上肆意传播,该行为就极有可能涉嫌刑法上的侮辱、诽谤罪。此外,现阶段还存在大量行为人利用 AI 换脸技术专门进行违法犯罪活动,其中较为典型的是诈骗罪和制作、复制、出版、贩卖、传播淫秽物品牟利罪或传播淫秽物品罪。
2025-03-03
智能体入门
以下是关于智能体入门的相关内容: 讲师介绍: 韦恩是智能体创业者、WayToAGI 共建者、微软提示词工程师、多平台 Agent 开发者、企业级 AI Agent 定制专家,荣获多家 AI 开发平台的比赛奖项,拥有 12 年程序开发背景,是多家企业的 AI 落地顾问。其承接业务包括 1v1 辅导、智能体培训、智能体定制开发、企业 AI 项目落地。 课程计划: 1. DAY1:入门,搭建证件照应用,需要有一定的智能体搭建基础。 2. DAY2:进阶,邮票收藏馆搭建,需要有第一天的 AI 应用搭建基础。 课程收获: 1. 全面认识扣子的 AI 应用的底层逻辑。 2. 解决 AI 应用核心卡点,如工具栏、表单使用、加载动图、界面布局等。 3. 收获一个价值千元的 AI 应用——证件照。 智能体特点: 1. 强大的学习能力,能够通过大量的数据进行学习,从而获得对语言、图像等多种信息的理解和处理能力。 2. 灵活性,可以适应不同的任务和环境,表现出较高的灵活性和适应性。 3. 泛化能力,能够将学到的知识泛化到新的情境中,解决之前未见过的类似问题。 智能体的核心在于如何有效地控制和利用大型模型,以达到设定的目标,这通常涉及到精确的提示词设计,提示词的设计直接影响到智能体的表现和输出结果。
2025-02-28
AI入门途径
以下是为新手提供的 AI 入门途径: 1. 了解 AI 基本概念:建议阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。同时浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅:在「」中,有一系列为初学者设计的课程,特别推荐李宏毅老师的课程。您还可以通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习:AI 领域广泛,比如图像、音乐、视频等,您可以根据自己的兴趣选择特定的模块进行深入学习。同时,掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试:理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 5. 体验 AI 产品:与现有的 AI 产品进行互动是学习 AI 的另一种有效方式。尝试使用如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 此外,对于通过 AI 开发应用的同学,必读 OpenAI API 文档()。 对于使用 AI 应用的同学,以下是一些入门文章: 《ChatGPT 中,G、P、T 分别是什么意思?》:GPT 分别代表生成式、预训练和转换器。 《大白话聊 ChatGPT》:逐字稿: 《AI 的时代已经到来》:中文译稿: 《万物摩尔定律》:
2025-02-28
如何对AI进行基础入门学习,具体步骤是什么
以下是对 AI 进行基础入门学习的具体步骤: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,可根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库提供了很多大家实践后的作品、文章分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 对于中学生学习 AI,建议如下: 1. 从编程语言入手学习: 可以从 Python、JavaScript 等编程语言开始学习,学习编程语法、数据结构、算法等基础知识。 2. 尝试使用 AI 工具和平台: 可以使用 ChatGPT、Midjourney 等 AI 生成工具,体验 AI 的应用场景。 探索一些面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. 学习 AI 基础知识: 了解 AI 的基本概念、发展历程、主要技术如机器学习、深度学习等。 学习 AI 在教育、医疗、金融等领域的应用案例。 4. 参与 AI 相关的实践项目: 参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动。 尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 5. 关注 AI 发展的前沿动态: 关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展。 思考 AI 技术对未来社会的影响,培养对 AI 的思考和判断能力。
2025-02-28
多维表格入门
以下是关于多维表格入门的相关内容: 智浦清流工作流与多维表格:元子将介绍多维表格的使用,CT 会介绍如何将 code 连进多维表格。 多维表格创建问卷:在飞书云文档中通过点击加号新建问卷,可用于收集信息。 多维表格与 Excel 对比:Excel 处理数据有一定门槛,而多维表格有丰富插件,可与 AI 协作处理数据,更方便易用。 多维表格的应用场景:可提取网页和电话等信息,留存透视所有信息,还能实现微信收集信息自动存入多维表格等功能。 智普工作流接入:逻辑上智普工作流可接入多维表格,但目前没有直接可用插件,可能需要自行开发。 多维表格的主要构成:包括输入(框子里能装的数据类型)、数据处理(重点,有插件、AI、自动写公式等)、视图(透视功能)、看板(可视化)、工作流(自动化)、和飞书联动。 飞书多维表格字段捷径中接入 COS 的 agent 能力及相关话题分享:ct 分享了如何将 cos 中的 bot 导入飞书多维表格的字段捷径,包括发布 bot 到飞书多维表格、配置相关内容、注意发布范围等操作,还展示了多个案例。
2025-02-28
角色指令设计入门
以下是关于角色指令设计入门的相关内容: SD 角色设计: 绘制一致性多角度头像: 大模型:majicmixRealistic_v6.safetensors 正向提示词:,auburn hair,eyes open,cinematic lighting,Hyperrealism,depth of field,photography,ultra highres,photorealistic,8k,hyperrealism,studio lighting,photography 负向提示词:EasyNegative,canvasframe,canvas frame,eyes shut,wink,blurry,hands,closed eyes,,lowres,sig,signature,watermark,username,bad,immature,cartoon,anime,3d,painting,b&w 参数设置:迭代步数 50,采样方法 DPM++2M Karras,尺寸 1328×800px MJ 手册·快速入门: 角色人物公式:人物姓名(命名)+描述词(重要描述词和人物特征描述词)+风格+官方命令词 3D 公式:主体+描述词(重要描述词和物体特征描述词)+风格+灯光+官方命令词 插画公式:主题描述词语+风格(风格名称或画家)+描述+颜色灯光+官方命令 特定公式: 连续场景变化公式: 1)角色/场景公式:上传图片(喂图)+人物描写(融入其他场景需要关键词 white background,结合场景后换成 walking in a futuristic cyberpunk city)+场景风格描写+官方命令 2)木偶公式:人物图片+场景+人物+动作+风格+官方命令 3)等距粘土公式: 1. 等距+物体+max emoji(表情符号),soft(柔和)lighting soft(柔和光线)pastel colors/pastel background(背景)+3Dicon+clay(粘土)+blender 3d+背景颜色=等距粘土物体 2. 安子布莱斯娃娃/也可以换成其他知道的娃娃名称+灯光/颜色/背景/材质+clay(粘土)+良奈吉友画风/或者其他名人风格=人 4)3D 图标公式(未测试,可用):喂图(1~3 张相似的风格)+描述的 icon(和喂图一致的关键词)+颜色(和喂图颜色一致的)+渲染词+官方命令 通用公式:角色/物体描述+背景描述+灯光风格+官方命令 Midjourney V6 更新角色一致性命令“cref”: 角色参考(或cref)将帮助您在不同图像中获得大致相同的角色,“角色”是指任何类人物形象。cref 参数允许我们根据我们通过 URL 提供的现有角色图像来创建大致相似的角色。 角色属性对于cref 参数效果良好的包括显著的标志性特征,如蓝绿色卷曲头发、粉红色太阳镜、及膝风衣、绿色背包;效果不佳的包括细小的细节,如一个银色吊坠项链,上面有八个小金字塔形宝石,一件左袖缺失的皮夹克,背后写着“ZOOM”,夹克是袖子缺失的设计,两侧夹克缘处有无限符号剃掉的发型。 准确的使用方法可参考频道说明,地址链接:https://discord.com/channels/662267976984297473/1216877089286787222
2025-02-27
如何从入门到精通AI
以下是从入门到精通 AI 的学习路径: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,可根据自己的兴趣选择特定模块深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解其工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 如果希望继续精进,对于 AI,可以尝试了解以下内容作为基础: 1. AI 背景知识: 基础理论:了解人工智能、机器学习、深度学习的定义及其之间的关系。 历史发展:简要回顾 AI 的发展历程和重要里程碑。 2. 数学基础: 统计学基础:熟悉均值、中位数、方差等统计概念。 线性代数:了解向量、矩阵等线性代数基本概念。 概率论:基础的概率论知识,如条件概率、贝叶斯定理。 3. 算法和模型: 监督学习:了解常用算法,如线性回归、决策树、支持向量机(SVM)。 无监督学习:熟悉聚类、降维等算法。 强化学习:简介强化学习的基本概念。 4. 评估和调优: 性能评估:了解如何评估模型性能,包括交叉验证、精确度、召回率等。 模型调优:学习如何使用网格搜索等技术优化模型参数。 5. 神经网络基础: 网络结构:理解神经网络的基本结构,包括前馈网络、卷积神经网络(CNN)、循环神经网络(RNN)。 激活函数:了解常用的激活函数,如 ReLU、Sigmoid、Tanh。
2025-02-27
我是AI小白,我应该如何学习AI,从而提升自己工作领域效率。
对于 AI 小白来说,想要通过学习 AI 提升工作领域的效率,可以按照以下步骤进行: 1. 了解 AI 基本概念: 建议阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,您可以找到一系列为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,您可以根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 通过与这些 AI 产品的对话,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 此外,AI 工作流是给每个环节找最合适的 AI 工具,不同的 AI 工具配合起来效果更好。虽然当前 AI 可能不够完美,但提前学习 AI 工作流可以提前布局,抢占先机。未来会出现更强大的 AI 工具,熟练掌握 AI 工作流的人能迅速应用新工具提升效率,而未学习的人则会落后。学习 AI 工作流不仅能提升当下工作效率,也能在未来占据有利位置。
2025-03-03
我是AI小白,我应该如何学习AI。从而自己工作领域效率。
对于 AI 小白来说,以下是一些学习 AI 以提高工作领域效率的建议: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,您可以根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 通过与这些 AI 产品的对话,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 此外,了解 AI 工作流也很重要。AI 工作流就是要给每个环节找最合适的 AI 工具,不同的 AI 工具配合起来,效果比单独用一个工具好得多。虽然当前的 AI 可能不够完美,但提前学习 AI 工作流可以提前布局,抢占先机。未来会出现更强大的 AI 工具,熟练掌握 AI 工作流的人能迅速将其应用到工作中,提升效率。
2025-03-03
我是一个AI新手小白,在这个网站里怎么学习AI知识和技能
对于 AI 新手小白,在本网站学习 AI 知识和技能可以参考以下步骤: 1. 了解 AI 基本概念: 建议阅读「」部分,熟悉 AI 的术语和基础概念,包括人工智能的主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,您将找到一系列为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛(比如图像、音乐、视频等),您可以根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 如果希望继续精进,对于不会代码的您,可以尝试了解以下作为基础的内容: 1. AI 背景知识: 基础理论:了解人工智能、机器学习、深度学习的定义及其之间的关系。 历史发展:简要回顾 AI 的发展历程和重要里程碑。 2. 数学基础: 统计学基础:熟悉均值、中位数、方差等统计概念。 线性代数:了解向量、矩阵等线性代数基本概念。 概率论:基础的概率论知识,如条件概率、贝叶斯定理。 3. 算法和模型: 监督学习:了解常用算法,如线性回归、决策树、支持向量机(SVM)。 无监督学习:熟悉聚类、降维等算法。 强化学习:简介强化学习的基本概念。 4. 评估和调优: 性能评估:了解如何评估模型性能,包括交叉验证、精确度、召回率等。 模型调优:学习如何使用网格搜索等技术优化模型参数。 5. 神经网络基础: 网络结构:理解神经网络的基本结构,包括前馈网络、卷积神经网络(CNN)、循环神经网络(RNN)。 激活函数:了解常用的激活函数,如 ReLU、Sigmoid、Tanh。 此外,参加 WaytoAGI 有以下好处: 1. 了解最新的 AI 技术:它像一个免费的“技术期刊”,不仅能让您了解最新动态,还能教您各种实用技能,并且开源免费。 2. 线上共学,手把手教您:WaytoAGI 不仅提供知识,还会通过线上共学的方式,手把手教您如何应用 AI 技术。无论您是小白还是有一定基础,都能在这里找到适合自己的学习路径。 3. 找到志同道合的队友:如果您想创业、做副业,或者只是想找一群对 AI 感兴趣的小伙伴一起搞事情,WaytoAGI 是一个很好的平台。在这里,您能找到和您目标一致的合作伙伴。 在 WaytoAGI 的线下活动中,您可能会有以下收获: 1. AI 自动化,牛 X 到炸:只要有个想法,用 DeepSeek 加飞书多维表格,分分钟实现自动化。 2. 找到副业和创业的伙伴:在活动中,您可能会遇到很多对创业和副业感兴趣的人。 3. 遇见高手和大佬面对面:在线下经常会出现各路大佬带着自己遇到的实际操作中具体的一些问题和卡点,去当面请教他们是让自己避免走很多弯路和浪费时间的有效途径。 WaytoAGI 的线下活动不仅让您了解到了最新的 AI 落地应用现状,还结识了一群有趣、有想法的人。更重要的是,它让您意识到:人一定要走出去,多和人碰撞,多去体验真实的生活,才能真正成长。如果您也对 AI 感兴趣,或者想找到一群志同道合的伙伴,来 WaytoAGI 一起玩!
2025-02-28
我是一名小白,怎么进入知识库?
以下是进入知识库的步骤: 1. 地址输入浏览器:http://这里替换为你宝塔左上角的那一串:3000/ 。然后到“文件”菜单中执行,点击文件找到 root,进入 root 文件夹,找到 chatgptonwechat 文件夹,并进入。 2. 点击文件夹上方功能栏中的【终端】(注意,不是左侧一级菜单里的终端,是文件夹上方那一行的终端电脑)。 3. 粘贴“cp configtemplate.json config.json”,点击回车。点击后,关闭此弹窗。 4. 刷新页面。在当前目录下,找到 config.json 文件。双击这个文件,修改画红框的地方。如果是小白,建议直接复制下方的配置。删除文件里的所有代码,复制下边的代码,粘贴到文件里。粘贴后,找到第 4、5 行,把刚才 FastGPT 里拿到 API 和 key,根据要求粘贴到双引号里。修改完之后,点击保存,关闭文件。 在 Bot 内使用知识库: 1. 登录。 2. 在左侧导航栏的工作区区域,选择进入指定团队。 3. 在 Bots 页面,选择指定 Bot 并进入 Bot 详情页。 4. 在 Bot 编排页面的知识库区域,单击加号图标,添加指定的知识库。 5. (可选)添加知识库后,可以在自动调用下拉界面内,调整知识库的配置项,包括最大召回数量、最小匹配度、调用方式等。配置项说明: 最大召回数量:Bot 在调用知识库匹配用户输入内容时,返回的数据片段数量,数值越大返回的内容越多。 最小匹配度:Bot 在调用知识库匹配用户输入内容时,会将达到匹配度要求的数据片段进行召回。如果数据片段未达到最小匹配度,则不会被召回。 调用方式:知识库的调用方式。自动调用:每轮对话将自动从所有关联的知识库中匹配数据并召回。按需调用:需要在人设与回复逻辑中提示 Bot 调用 RecallKnowledge 方法,以约束 Bot 在指定时机从知识库内匹配数据。 6. (可选)在预览与调试区域调试 Bot 能力时,扩展运行完毕的内容可以查看知识库命中并召回的分片内容。 在工作流内使用 Knowledge 节点: 1. 登录。 2. 在左侧导航栏的工作区区域,选择进入指定团队。 3. 在页面顶部进入工作流页面,并打开指定的工作流。 4. 在左侧基础节点列表内,选择添加 Knowledge 节点。 创建知识库并上传文本内容: 1. 登录。 2. 在左侧导航栏的工作区区域,选择进入指定团队。 3. 在页面顶部进入知识库页面,并单击创建知识库。 4. 在弹出的页面配置知识库名称、描述,并单击确认。一个团队内的知识库名称不可重复,必须是唯一的。 5. 在单元页面,单击新增单元。 6. 在弹出的页面选择要上传的数据格式,默认是文本格式,然后选择一种文本内容上传方式完成内容上传。
2025-02-28
我如何给小白介绍deepseek的原理
DeepSeek 的原理主要包括以下几个方面: 1. AI 特性定位: 支持文本/代码/数学公式混合输入。 具有动态上下文,对话式连续记忆约 4K tokens 上下文窗口,换算成汉字约 8000 字左右。 任务适应性强,可切换创意生成/逻辑推理/数据分析模式。 2. 系统响应机制: 采用意图识别+内容生成双通道。 自动检测 prompt 中的任务类型、输出格式、知识范围。 对位置权重(开头/结尾)、符号强调敏感。 3. 基础指令框架: 可以套用四要素模板。 掌握格式控制语法,如强制结构使用```包裹格式要求,用{{}}标注需填充内容,使用优先级符号>表示关键要求,!表示禁止项。 4. 进阶控制技巧: 思维链引导,包括分步标记法和苏格拉底式追问。 知识库调用,如领域限定指令和文献引用模式。 支持多模态输出。 此外,DeepSeek 还具有一些设计思路,如将 Agent 封装成 Prompt 并储存在文件,通过提示词文件实现同时使用联网功能和深度思考功能,在模型默认能力基础上优化输出质量等。您可以通过搜索 www.deepseek.com 并按照相关步骤开始使用 DeepSeek。
2025-02-28
我如何给小白介绍deepseek
DeepSeek 是一个具有多种功能和特点的产品: 1. 效果对比:通过 Coze 进行了小测试,可对比查看相关结果。 2. 使用方法: 搜索 www.deepseek.com,点击“开始对话”。 将装有提示词的代码发给 DeepSeek。 认真阅读开场白后正式开始对话。 3. 设计思路: 将 Agent 封装成 Prompt 并储存在文件,减轻调试负担。 通过提示词文件让 DeepSeek 实现同时使用联网和深度思考功能。 在模型默认能力基础上优化输出质量,减轻 AI 味,增加可读性。 设计了阈值系统,可能会根据反馈修改。 用 XML 进行规范设定。 4. 完整提示词:有特定版本,如 v1.3。 5. 特别鸣谢:李继刚的【思考的七把武器】提供了思考方向,Thinking Claude 是设计灵感来源,Claude 3.5 Sonnet 是得力助手。 此外,关于 DeepSeek 还有以下信息: 1. 智能纪要: 能进行自然语言理解与分析、编程、绘图等。 使用优势是能用更少的词做更多事,思维发散,给出创意思路和高级内容。 存在问题是思维链长不易控制,可能输出错误内容,增加纠错成本。 审核方法可用其他大模型解读其内容。 使用时要有自己的思维雏形,多看思考过程,避免被冲刷原有认知。 适用于阅读、育儿、写作、交流等场景。 有案例展示,如与孩子共读时制作游戏,左脚踩右脚式的模型交互。 2. DeepSeek 只是品牌名,需搭配具体模型,如 DeepSeek V3(类 GPT4o)和 DeepSeek R1(类 OpenAI o1)。相关文档在 3 群和 4 群分享,也可在 v to a gi 的飞书知识库中搜索获取。
2025-02-28
我想借助ai学习法语,我应该如何进行?
以下是借助 AI 学习法语的一些方法和推荐的工具: 1. 语言学习平台: FluentU:使用真实世界的视频,通过 AI 生成个性化的词汇和听力练习。选择学习语言,观看视频并完成相关练习,积累词汇和提升听力理解能力。 Memrise:结合 AI 技术,根据学习者的记忆曲线提供复习和练习,增强记忆效果。选择学习语言,使用应用提供的词汇卡和练习进行学习。 2. 发音和语法检查: Speechling:提供口语练习和发音反馈,帮助学习者改进口音和发音准确性。录制语音,提交给 AI 系统或人类教练,获取反馈和改进建议。 Grammarly:可以帮助提高写作的语法和词汇准确性,支持多种语言。将写作内容粘贴到 Grammarly 编辑器中,获取语法和词汇改进建议。 3. 实时翻译和词典工具: Google Translate:提供实时翻译、语音输入和图像翻译功能,适合快速查找和学习新词汇。输入或语音输入需要翻译的内容,查看翻译结果和示例句子。 Reverso Context:提供单词和短语的翻译及上下文例句,帮助理解和学习用法。输入单词或短语,查看翻译和例句,学习实际使用场景。 4. 语言学习应用: Duolingo:使用 AI 来个性化学习体验,根据进度和错误调整练习内容。通过游戏化的方式提供词汇、语法、听力和口语练习。下载应用,选择要学习的语言,并按照课程指引进行学习。 Babbel:结合 AI 技术,提供个性化的课程和练习,重点在于实际交流所需的语言技能。注册账户,选择语言课程,按照学习计划进行学习。 Rosetta Stone:使用动态沉浸法,通过 AI 分析学习进度,提供适合的练习和反馈。注册并选择学习语言,使用多种练习模式(听力、口语、阅读和写作)进行学习。 5. AI 对话助手: ChatGPT:可以用来模拟对话练习,帮助提高语言交流能力。在聊天界面选择目标语言,与 AI 进行对话练习。可以询问语法、词汇等问题,甚至模拟实际交流场景。 Google Assistant:支持多种语言,可以用来进行日常对话练习和词汇学习。设置目标语言,通过语音命令或文本输入与助手进行互动,练习日常用语。
2025-03-01
我想用AI设计一款小程序,我应该从哪里入手
如果您想用 AI 设计一款小程序,可以从以下几个方面入手: 1. 形成项目需求文档:与相关人员沟通确认需求细节,并查看对应文档。 2. 整理对应模块,进行功能设计:包括明确需求,进行 UI 和技术(前后端实现途径)、测试用例的设计。根据 AI 写的功能设计模块文档,观看确认和完善,以了解项目技术实现和执行方式。 3. 编写代码:根据模块任务一点点写代码,并将代码文件和更改记录写到对应代码说明文档,同时做好代码注解。在每个功能块开发完成后,用测试用例跑一遍。 4. 界面设计:可以先绘制草图,然后借助多模态 AI 工具(如 GPT/Claude)生成初步的前端结构代码。前端开发语言方面,HTML 用于构建网页基础框架,CSS 负责布局样式美化,JavaScript 实现交互逻辑。 此外,您还可以参考以下相关知识: 直接使用 Coze 的 API 对接前端 UI 框架,将工作流逻辑集中在工程模板端,实现前后端分离的处理方式。 直接调用大模型 API,并通过前端代码实现提示词处理和逻辑控制,将交互流程完全放入前端代码中。 了解如何实现文件上传,通过 Coze 的,用户可将本地文件上传至 Coze 的云存储。 参考关于 API 的使用及工作流执行流程的。 希望以上内容对您有所帮助。
2025-03-01
我想从实践中学习coze,应该如何开始?
以下是从实践中学习 Coze 的一些建议和步骤: 1. 利用 Cursor+Coze 工作流打造网页内容提取插件: 开发时要具备架构思维,懂得向 AI 描述需求。 获取授权令牌(Token),掌握工作流调用方法。 查看 coze 的 api 开发文档,获取工作流的开发文档、个人令牌和工作流 id。 让 Cursor 根据相关内容写调用 coze 工作流的服务,注意声明入参和中文编码。 完成后用 chrome 加载做好的插件,并优化界面。 2. 用 Claude+Coze 学习 RAG: 通过 Claude 了解细节概念,再通过 Coze 搭建 Demo,在动手实践中学习。 在学习过程中创建相关 Bot,如产品资料问答机器人、Query 改写助手学习 Bot 等。 3. 分步构建和测试 Agent 功能: 进入 Coze,点击「个人空间工作流创建工作流」,自定义工作流信息。 左侧「选择节点」模块中,根据子任务需要选择插件、大模型、代码等节点。 按照流程图在编辑面板中拖入对应的节点完成工作流框架搭建。
2025-02-28
deepseek 的提示词应该怎么写?和以往的大语言模型的提示词有什么不同?
DeepSeek 的提示词具有以下特点: 1. 语气上还原帝王语气,不过分用力,使用相对古典但兼顾可读性的文字,避免傻气的表达。 2. 对历史细节熟悉,这可能与支持“深度探索”和“联网搜索”同时开启有关,能准确还原如“太极宫”“甘露殿”“掖庭局”“观音婢”“宫门鱼符”等唐初的历史称谓。 3. 输出极其具体且充满惊人细节,行文的隐喻拿捏到位,如“狼毫蘸墨时发现指尖残留着未洗净的血痂”“史官们此刻定在掖庭局争吵。该用‘诛’还是‘戮’,‘迫’还是‘承’。‘只是这次,他不敢触碰我甲胄上元吉的掌印’”等句子,虽未直接写“愧疚与野心,挣扎与抱负”,但句句体现。 与以往大语言模型的提示词的不同在于:以往模型可能在语气、历史细节和具体细节的处理上不如 DeepSeek 出色。
2025-02-28