以下是关于 Dify 的学习资料:
https://docs.dify.ai/v/zh-hans/getting-started/install-self-hosted/docker-compose这些命令都是在宝塔面板的终端安装。如果你想学习这些命令是什么就还是直接给AI就可以。比如cd dify/docker是啥意思。这个docker-compose文件就是在这个/root/dify/docker目录下。这里边以后可以修改,可以学习里边的文件是什么意思。检查一下一共有7个在运行。docker compose ps如果nginx这个容器无法运行。把终端里输出的代码粘贴给AI,可能是80端口被占用了。按照AI的方法,检查谁占用的,都停止掉就可以了。也可以用别的方法,我是用这种方法。记住要一步步来,确保前一步成功再下一步,怎么确保就是把代码复制问AI。现在可以在浏览器的地址栏里,输入你的公网ip就可以。可以上腾讯云服务器上查,你的宝塔面板上的地址栏也有显示,去掉后面的:8888就是。进去以后邮箱密码随便填一下。随便建立一个知识库,知识库中选择设置。这时候你就可以选择模型了,国内的模型都有免费额度,随便选,你也可以都选。拿智谱ai举例。点设置,点从智谱ai获取钥匙,直接会进入智谱的官网。用手机号注册,添加API keys,复制一下。然后看一下有多少免费额度,智谱是资源包管理里边看,赠送500万一个月。这些大模型有的限制时间,有的不限制。有的给tokens额度有的给钱。最后把网址收藏一下。回到上面的图,把钥匙复制,保存就可以了。然后随便创建个应用。可以先选择智谱glm-4测试一下,聊两句,看有回应没,然后点发布。选择第二个,如图:点击api秘钥,创建一个,复制。
使用Dify构建知识库的具体步骤如下:1.准备数据:收集需要纳入知识库的文本数据,包括文档、表格等格式。对数据进行清洗、分段等预处理,确保数据质量。2.创建数据集:在Dify中创建一个新的数据集,并将准备好的文档上传至该数据集。为数据集编写良好的描述,描述清楚数据集包含的内容和特点。3.配置索引方式:Dify提供了三种索引方式供选择:高质量模式、经济模式和Q&A分段模式。根据实际需求选择合适的索引方式,如需要更高准确度可选高质量模式。4.集成至应用:将创建好的数据集集成到Dify的对话型应用中,作为应用的上下文知识库使用。在应用设置中,可以配置数据集的使用方式,如是否允许跨数据集搜索等。5.持续优化:收集用户反馈,对知识库内容和索引方式进行持续优化和迭代。定期更新知识库,增加新的内容以保持知识库的时效性。总的来说,Dify提供了一个可视化的知识库管理工具,使得构建和维护知识库变得相对简单。关键步骤包括数据准备、数据集创建、索引配置,以及将知识库集成到应用中并持续优化。内容由AI大模型生成,请仔细甄别
Dify是一个开源的大模型应用开发平台,它通过结合后端即服务和LLMOps的理念,为用户提供了一个直观的界面来快速构建和部署生产级别的生成式AI应用。该平台具备强大的工作流构建工具,支持广泛的模型集成,提供了一个功能丰富的提示词IDE,以及一个全面的RAG Pipeline,用于文档处理和检索。此外,Dify还允许用户定义Agent智能体,并通过LLMOps功能对应用程序的性能进行持续监控和优化。Dify提供云服务和本地部署选项,满足不同用户的需求,并且通过其开源特性,确保了对数据的完全控制和快速的产品迭代。Dify的设计理念注重简单性、克制和快速迭代,旨在帮助用户将AI应用的创意快速转化为现实,无论是创业团队构建MVP、企业集成LLM以增强现有应用的能力,还是技术爱好者探索LLM的潜力,Dify都提供了相应的支持和工具。Dify官方手册:https://docs.dify.ai/v/zh-hans一般地,如果是个人研究,推荐大家单独使用Dify,如果是企业级落地项目推荐大家使用多种框架结合,效果更好。