Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

dify平台入门

Answer

Dify 是一个开源的大模型应用开发平台:

  • 理念:结合后端即服务和 LLMOps 的理念。
  • 特点:为用户提供直观界面,快速构建和部署生产级别的生成式 AI 应用。具备强大工作流构建工具,支持广泛模型集成,有功能丰富的提示词 IDE 和全面的 RAG Pipeline 用于文档处理和检索。允许用户定义 Agent 智能体,通过 LLMOps 功能持续监控和优化应用程序性能。
  • 部署选项:提供云服务和本地部署,满足不同需求。
  • 优势:开源特性确保对数据完全控制和快速产品迭代,设计理念注重简单、克制和快速迭代,能帮助用户将 AI 应用创意快速转化为现实。
  • 建议:个人研究推荐单独使用,企业级落地项目推荐多种框架结合。 Dify 官方手册:https://docs.dify.ai/v/zh-hans
Content generated by AI large model, please carefully verify (powered by aily)

References

RAG提示工程系列(3)| 迈向工程化应用

Dify是一个开源的大模型应用开发平台,它通过结合后端即服务和LLMOps的理念,为用户提供了一个直观的界面来快速构建和部署生产级别的生成式AI应用。该平台具备强大的工作流构建工具,支持广泛的模型集成,提供了一个功能丰富的提示词IDE,以及一个全面的RAG Pipeline,用于文档处理和检索。此外,Dify还允许用户定义Agent智能体,并通过LLMOps功能对应用程序的性能进行持续监控和优化。Dify提供云服务和本地部署选项,满足不同用户的需求,并且通过其开源特性,确保了对数据的完全控制和快速的产品迭代。Dify的设计理念注重简单性、克制和快速迭代,旨在帮助用户将AI应用的创意快速转化为现实,无论是创业团队构建MVP、企业集成LLM以增强现有应用的能力,还是技术爱好者探索LLM的潜力,Dify都提供了相应的支持和工具。Dify官方手册:https://docs.dify.ai/v/zh-hans一般地,如果是个人研究,推荐大家单独使用Dify,如果是企业级落地项目推荐大家使用多种框架结合,效果更好。

RAG提示工程系列(3)| 迈向工程化应用

Dify是一个开源的大模型应用开发平台,它通过结合后端即服务和LLMOps的理念,为用户提供了一个直观的界面来快速构建和部署生产级别的生成式AI应用。该平台具备强大的工作流构建工具,支持广泛的模型集成,提供了一个功能丰富的提示词IDE,以及一个全面的RAG Pipeline,用于文档处理和检索。此外,Dify还允许用户定义Agent智能体,并通过LLMOps功能对应用程序的性能进行持续监控和优化。Dify提供云服务和本地部署选项,满足不同用户的需求,并且通过其开源特性,确保了对数据的完全控制和快速的产品迭代。Dify的设计理念注重简单性、克制和快速迭代,旨在帮助用户将AI应用的创意快速转化为现实,无论是创业团队构建MVP、企业集成LLM以增强现有应用的能力,还是技术爱好者探索LLM的潜力,Dify都提供了相应的支持和工具。Dify官方手册:https://docs.dify.ai/v/zh-hans一般地,如果是个人研究,推荐大家单独使用Dify,如果是企业级落地项目推荐大家使用多种框架结合,效果更好。

RAG 提示工程(三):迈向工程化应用

Dify是一个开源的大模型应用开发平台,它通过结合后端即服务和LLMOps的理念,为用户提供了一个直观的界面来快速构建和部署生产级别的生成式AI应用。该平台具备强大的工作流构建工具,支持广泛的模型集成,提供了一个功能丰富的提示词IDE,以及一个全面的RAG Pipeline,用于文档处理和检索。此外,Dify还允许用户定义Agent智能体,并通过LLMOps功能对应用程序的性能进行持续监控和优化。Dify提供云服务和本地部署选项,满足不同用户的需求,并且通过其开源特性,确保了对数据的完全控制和快速的产品迭代。Dify的设计理念注重简单性、克制和快速迭代,旨在帮助用户将AI应用的创意快速转化为现实,无论是创业团队构建MVP、企业集成LLM以增强现有应用的能力,还是技术爱好者探索LLM的潜力,Dify都提供了相应的支持和工具。Dify官方手册:https://docs.dify.ai/v/zh-hans一般地,如果是个人研究,推荐大家单独使用Dify,如果是企业级落地项目推荐大家使用多种框架结合,效果更好。

Others are asking
dify部署
Dify 是一款开源的大语言模型应用开发平台,以下是关于 Dify 部署的相关信息: 1. 运行 Dify: 本地需先支持 Docker 和 Git 的依赖环境。 在对应的终端直接执行相关代码即可运行。 2. 添加模型: Dify 启动成功后,通过浏览器访问 ,新建账号密码。 在右上角 admin 处点击设置,新增本地模型配置,如添加 LLM 模型为 deepseekr1:7b,基础 URL 为 ,并添加 Text Embedding 模型。 3. 部署方式: 可参考 https://docs.dify.ai/v/zhhans/gettingstarted/installselfhosted/dockercompose ,这些命令在宝塔面板的终端安装。 若使用云服务器 Docker 部署,可重装服务器系统,安装宝塔面板,进行防火墙端口放行和获取宝塔面板账号密码等操作,然后安装 Docker 用于 Dify 部署。 部署过程中需注意确保每一步成功后再进行下一步,如遇到问题可咨询相关技术支持或向 AI 寻求帮助。
2025-02-23
difyd本地部署
Dify 是一款开源的大语言模型应用开发平台,具有以下特点和部署方式: 特点:融合后端即服务和 LLMOps 理念,内置关键技术栈,支持数百个模型,有直观的 Prompt 编排界面、高质量的 RAG 引擎、稳健的 Agent 框架、灵活的流程编排,提供易用界面和 API,非技术人员也能参与。 本地部署: 依赖环境:本地需先支持 Docker 和 Git。 运行:在对应终端执行相关代码。 添加模型:启动成功后,浏览器访问,新建账号密码,在右上角 admin 处点击设置,新增本地模型配置,如添加 LLM 模型 deepseekr1:7b 及 Text Embedding 模型。 云服务器部署:参考 https://docs.dify.ai/v/zhhans/gettingstarted/installselfhosted/dockercompose ,在宝塔面板终端安装,注意处理可能出现的 80 端口被占用等问题。可选择国内模型,如智谱 ai,获取钥匙并复制保存,创建应用等。 Dify 在私人定制类 AI 应用中表现出色,安装过程简单,熟练用户约 5 分钟可完成本地部署,集成依赖到一键部署指令。它支持本地和云端部署,云端有包月套餐,但访问可能需特殊方法。本地部署需自行处理模型接入等问题,构建个人知识库要考虑多种因素。用户可根据需求、技术能力和预算选择。
2025-02-23
dify网站
Dify 网站有以下两种部署方式: 1. 云服务版本: 直接在官网 dify.ai 上注册账号使用。 2. 部署社区版: 开源,可商用,但不能作为多租户服务使用,对个人使用无限制。 部署前提条件:2 核 4G 云服务器一台(约 159 元),本地也可部署,但较折腾。 方案一:腾讯云一键部署 优惠:打开腾讯云官网,左上角【最新活动】进入,新老用户均可享受。 购买:Dify 社区版官方要求 2 核 4G,境内境外根据需求选择,境内 159 一年。 创建:选好后,选择【使用应用模板创建】【AI】,其他按需选择,不选额外花钱的。 使用:服务器初始化完成,在控制台服务器中查看,若显示运行中则初始化成功。复制公网 IP 到浏览器中加上 /apps 回车,进入安装页面,设置管理员账号密码,正常情况下会以管理员身份进入网站,配置模型服务即可使用。 方案二:云服务器 Docker 部署 腾讯云一键部署存在问题,如买服务器后能否做其他事、Dify 更新频率高升级麻烦等。 装系统:安装宝塔面板(可视化服务器管理),登陆凭证选自定义密码。 登陆:控制面板服务器查看详情,找到【应用信息】卡片,点击管理应用,放行防火墙端口,获取宝塔面板的账号密码。 Docker 安装:登陆成功 bt 面板后,点击左侧菜单栏【Docker】,按提示操作。
2025-02-23
如何学习 Dify
以下是关于学习 Dify 的相关内容: 1. 部署方面: 可通过云服务器、dify、智能微秘书来免费搭建微信机器人。相关命令在宝塔面板的终端安装,如在/root/dify/docker 目录下的 dockercompose 文件,可通过询问 AI 了解命令含义。若遇到问题,如 nginx 容器无法运行,可将终端输出的代码粘贴给 AI 查找原因,可能是 80 端口被占用,可按 AI 方法解决。 完成部署后,在浏览器地址栏输入公网 IP(去掉宝塔面板地址栏显示的:8888),随便填邮箱密码建立知识库,选择模型(国内模型有免费额度,如智谱 ai 可通过手机号注册获取 API keys 并复制),创建应用并测试。 2. 平台特点: Dify 是开源的大模型应用开发平台,结合后端即服务和 LLMOps 理念,提供直观界面构建和部署生产级别生成式 AI 应用。 具备强大工作流构建工具,支持广泛模型集成,有功能丰富的提示词 IDE 和全面的 RAG Pipeline 用于文档处理和检索。 允许定义 Agent 智能体,通过 LLMOps 功能监控和优化应用性能,提供云服务和本地部署选项,开源特性确保对数据完全控制和快速产品迭代。 设计理念注重简单性、克制和快速迭代,为创业团队、企业和技术爱好者提供支持和工具。 官方手册:https://docs.dify.ai/v/zhhans 。一般个人研究推荐单独使用,企业级落地项目推荐多种框架结合。
2025-02-23
与dify类似的知识库有那些?哪个更适合商用?
以下是一些与 Dify 类似的知识库: 1. Notion:功能强大,支持多种格式和复杂的结构,适用于各种类型的知识管理。 2. Confluence:常用于团队协作和企业知识共享。 3. Evernote:方便记录和整理各种类型的信息。 至于哪个更适合商用,这取决于具体的需求和使用场景。如果对可视化的知识库管理工具、简单易用且能快速集成到应用中有较高需求,Dify 是不错的选择。Notion 则在灵活性和扩展性方面表现出色,适合对知识结构有复杂要求的商业场景。Confluence 更侧重于团队协作和企业级的知识共享。 使用 Dify 构建知识库的具体步骤如下: 1. 准备数据:收集需要纳入知识库的文本数据,包括文档、表格等格式。对数据进行清洗、分段等预处理,确保数据质量。 2. 创建数据集:在 Dify 中创建一个新的数据集,并将准备好的文档上传至该数据集。为数据集编写良好的描述,描述清楚数据集包含的内容和特点。 3. 配置索引方式:Dify 提供了三种索引方式供选择,包括高质量模式、经济模式和 Q&A 分段模式。根据实际需求选择合适的索引方式,如需要更高准确度可选高质量模式。 4. 集成至应用:将创建好的数据集集成到 Dify 的对话型应用中,作为应用的上下文知识库使用。在应用设置中,可以配置数据集的使用方式,如是否允许跨数据集搜索等。 5. 持续优化:收集用户反馈,对知识库内容和索引方式进行持续优化和迭代。定期更新知识库,增加新的内容以保持知识库的时效性。 Dify 有两种使用方式: 1. 云服务版本。直接在官网 dify.ai 上注册账号使用。 2. 部署社区版。开源,可商用,但是不能作为多租户服务使用。对个人使用完全无限制。 部署前提条件:2 核 4G 云服务器一台(约 159 元)。
2025-02-22
dify
Dify 是一个开源的大模型应用开发平台: 构建知识库的具体步骤: 准备数据:收集文本数据,包括文档、表格等格式,进行清洗、分段等预处理以确保数据质量。 创建数据集:在 Dify 中创建新数据集,上传准备好的文档,并编写良好描述。 配置索引方式:提供三种索引方式(高质量模式、经济模式和 Q&A 分段模式),根据需求选择,如追求高准确度可选高质量模式。 集成至应用:将数据集集成到 Dify 的对话型应用中,在应用设置中配置数据集使用方式。 持续优化:收集用户反馈,对知识库内容和索引方式持续优化和迭代,定期更新增加新内容。 平台特点: 结合后端即服务和 LLMOps 理念,提供直观界面快速构建和部署生产级别的生成式 AI 应用。 具备强大工作流构建工具,支持广泛模型集成,提供功能丰富的提示词 IDE 和全面的 RAG Pipeline 用于文档处理和检索。 允许用户定义 Agent 智能体,通过 LLMOps 功能对应用程序性能持续监控和优化。 提供云服务和本地部署选项,满足不同用户需求,开源特性确保对数据完全控制和快速产品迭代。 设计理念注重简单性、克制和快速迭代,为创业团队构建 MVP、企业集成 LLM 增强现有应用能力、技术爱好者探索 LLM 潜力等提供支持和工具。 Dify 官方手册:https://docs.dify.ai/v/zhhans 。一般来说,个人研究推荐单独使用 Dify,企业级落地项目推荐多种框架结合,效果更好。
2025-02-22
我是一名AI工具使用小白,渴望快速掌握AI工具,在电子表格制作、ppt制作、公文写作、文案写作等方面提升应用能力,请问应该学习哪些入门课程。
以下是一些适合您入门学习的 AI 课程: 1. 工具入门篇(AI Tools): 数据工具多维表格小白之旅:适合 Excel 重度使用者、手动数据处理使用者、文件工作者。通过表格+AI 进行信息整理、提效、打标签,满足 80%数据处理需求。 文章链接: 视频链接: 2. 工具入门篇(AI Code): 编程工具Cursor 的小白试用反馈:适合 0 编程经验、觉得编程离我们很遥远的小白。通过 AI 工具对编程祛魅,降低技术壁垒。 文章链接: 3. 工具入门篇(AI Music): 音乐工具Suno 的小白探索笔记:适合 0 乐理知识、觉得作词作曲和我们毫不相关成本巨大的小白。AI 赋能音乐创作,无需乐理知识即可参与音乐制作。 文章链接: 此外,还有以下相关内容供您参考: 1. 关于 AI 视频制作的交流与答疑: 视频流表格制作:在知识库的 AI 视频专栏中有相关教程和模板。 Copy UI 社区:微推有专门研究 Copy UI 的社区,相关内容有趣但本次未展开讲。 SD 类图片作用:国内大厂很卷,一般需求吉梦等产品可完成,特殊精细要求才用 SD,不了解可在微推加 AI 会话中找。 图片视角转移:使用 P 模型,上传图片并告知镜头移动方向和相关内容。 PNG 与背景融合:Recraft 产品目前不太擅长 PNG 与背景的特别好的融合,可通过合并方式处理。 保证文字不崩:使用吉梦的 2.1 模型效果较好。 新手 AI 视频制作:纯小白参与项目时,项目组会做好部分准备工作,上手难度不高,专注出图和出视频,用好相关技术。 关于利用 AI 工具创作北京宣传片相关问题的探讨。 AI 工具使用思路:对于如何利用 AI 工具创作,建议直接上手尝试,通过试错和与 AI 交流获取反馈,遇到具体问题再向社区请教。 素材处理方法:若有故宫相关照片素材,可采用导入参考图生图、让实拍素材动起来等方式,还可通过抠图、融图等操作将素材与虚拟背景融合。 创作需先构思:创作时不能仅考虑如何连接已有素材,而应先构思剧本和想要表达的内容,再合理运用素材。 2. 入门工具推荐: Kimi 智能助手:Chatgpt 的国产平替,实际上手体验最好,推荐新手用 Kimi 入门学习和体验 AI。不用科学🕸️、不用付费、支持实时联网。是国内最早支持 20 万字无损上下文的 AI,也是目前对长文理解做的最好的 Ai 产品。能一次搜索几十个数据来源,无广告,能定向指定搜索源。 PC 端: 移动端 Android/ios: 您还可以通过「飞书」这款工具,浏览其社区的精选课程、先进客户实践。下载飞书:
2025-02-26
哪里可以下载《DeepSeek:从入门到精通》
《DeepSeek:从入门到精通》可以通过以下链接下载:https://waytoagi.feishu.cn/record/QAURr4CNGeJ5GIcvU0nc9X3dndg
2025-02-24
《DeepSeek:从入门到精通》
《DeepSeek:从入门到精通》是由清华大学新闻与传播学院新媒体研究中心出品的指南。该指南详细阐述了 DeepSeek 的功能,如智能对话、文本生成、代码生成、自然语言理解等,并探讨了如何使用 DeepSeek,包括推理模型与通用模型的区别、提示语设计策略以及如何从入门到精通。文章还介绍了提示语设计的核心技能、常见陷阱及应对方法,旨在帮助用户更好地掌握 AI 工具的使用,提升工作效率和创新能力。 此外,还有一些相关的报告和内容,如 2 月 10 日社区动态速览中提到的《2025DeepSeek 爆火详细报告:回顾 DeepSeek 的爆火过程》《DeepSeek 15 天指导手册——从入门到精通》《DeepSeekV3 技术报告》中文翻译版、华西证券的《计算机行业深度Deepseek:国产 AI 应用的“诺曼底时刻”》、中信建投的《DeepSeek R1 深度解析及算力影响几何》等。
2025-02-24
帮我推荐一本入门llm的书
以下是为您推荐的入门 LLM 的相关资源: 1. 《皇子:LLM 经典论文速读版,看完感觉自己通透了》:包含 31 篇 LLM 的经典论文速读版,涵盖大语言模型架构、RAG、预训练、微调、提示词等内容。阅读前可安装浏览器插件“沉浸式翻译”方便中文阅读,将 arxiv PDF 论文原地址域名中的 x 更换成 5 可调整为 HTM 版本方便阅读。 2. 课程学习: 首先学习大语言模型(LLM)入门者的课程,这是了解 LLM 的基础。 进一步学习面向开发者的课程,帮助更好地应用 LLM 于实际项目中。 3. AI 大神 Karpathy 再发的 LLM 入门介绍视频:时长三个半小时,详细介绍 LLM 训练的全部过程,包括预训练、有监督微调和强化学习。即使没有技术背景也能看懂,将提供对 ChatGPT 等 LLM 完整训练流程的直观理解,包含许多示例,并可能帮助思考当前的能力、所处的位置以及未来的发展方向。
2025-02-23
ai编程怎么入门
以下是关于 AI 编程入门的一些建议: 使用 Cursor 入门: 1. 分辨两个模式:Chat 模式可与大模型对话,Composer 模式能即时反馈,直接创建文件和填写代码。 2. 例如在 Composer 模式下输入“给我创建一个 2048 的网页游戏吧”,它会生成相关文件。 3. 若环境报错,可截图在 Composer 对话框询问解决方法。 4. 生成文件后,可打开文件夹中的 index.html 查看运行效果。 Python + AI 入门: 1. 了解一些背景知识:Python 拥有丰富的标准库,若不够用还可通过 pip 工具从类似 GitHub 的平台订购新道具。 2. OpenAI 通过 ChatGPT 提供开箱即用的服务,也通过 OpenAI API 提供更灵活的代码调用服务。 3. 在 20 分钟内,可循序渐进完成简单程序、爬虫应用抓取公众号文章、为公众号文章生成概述等任务。 希望以上内容对您入门 AI 编程有所帮助。
2025-02-23
Deepseek 从入门到精通
以下是关于 DeepSeek 从入门到精通的相关资源: 《》 ,由清华大学新闻与传播学院、新媒体研究中心、元宇宙文化实验室提供,类型为 PPT 课件。
2025-02-21
coze平台中的数据库应用,怎么判断数据是那个用户的,插入数据库节点时,需要明确用户uuid吗
在 Coze 平台中判断数据属于哪个用户,插入数据库节点时通常需要明确用户的唯一标识,如用户 UUID 或类似的唯一标识。 例如,在自动总结公众号内容并定时推送到微信的工作流中,考虑到可能有多个用户同时使用,使用了 server 酱的 sendkey 作为用户的唯一标识(重命名为 suid)。在数据库节点中查询是否已经推送过文章时,需要文章的 url 和用户的 suid 这两个值来判断。 在增加记账记录的工作流中,通过大语言模型将用户输入的非结构化数据转变为结构化数据存入数据库时,也需要明确相关的用户标识。 在 COZE 工作流中,数据库节点的设置包括输入参数的设置(如参数名、参数值、引用来源)以及在 SQL 输入中添加相应的代码。 总之,明确用户标识对于准确判断数据归属和进行数据库操作是很重要的。
2025-02-25
comfyui算力平台
以下是关于 ComfyUI 算力平台的相关信息: 揽睿: 属性:云平台 邀请链接:https://lanruiai.com/register?invitation_code=0659 备注:WaytoAGI 邀请码 0659 可以得到 10 小时的免费时长 厚德云: 属性:云平台 邀请链接:https://portal.houdeyun.cn/register?from=Waytoagi 备注:厚德云是专业的 AI 算力云平台,隶属于又拍云旗下,又拍云拥有 15 年云服务经验。注册后送 50 元代金券。ComfyUI 悟空换脸特效使用流程: 百度飞桨: 属性:云平台 邀请链接:https://aistudio.baidu.com/community/app/106043?source=appCenter 备注:新注册 2 个小时。,明天给大家发放 50 小时的算力 阿里云 PAI Artlab: 属性:云平台 邀请链接:直达地址:https://developer.aliyun.com/topic/paisports 备注:登录后领取免费试用,领取 500 元算力、OSS 20G 存储。AI 创作你的奥运专属海报,参与 PK 赢取台式升降桌、Lamy 钢笔套盒、双肩包等大奖!活动地址:https://mp.weixin.qq.com/s/y3Sk5PtVT5g8yFTMJASdFw onethingai: 属性:云平台 邀请链接:https://onethingai.com/invitation?code=dyAK4vY5 以云平台揽睿为例,搭建自己第一个 Comfyui 的方法如下: 1. 进入「应用启动器」页面,选择「comfyui 官方启动器」,点击「部署」按钮,点击「立即创建」,会进入「工作空间」页面。 2. 创建完成后稍等片刻,无需其他任何操作,等待「打开应用」按钮可点击后,点击该按钮就可以打开 comfyui 界面使用啦。 3. 启动/出图/训练进度可进入工作空间详情 日志查看。
2025-02-25
基于trae平台如何与飞书联动
以下是基于 Trae 平台与飞书联动的相关内容: 案例:向阳用 Grok3 + Trae 写了微信读书有关的工具,实现了读取自己书架、获取指定书籍热门划线和人数、生成本地 CSV 文件并同步飞书多维表格,基于划线内容和人数,飞书 AI 自动总结、打分、写阅读理由等功能。经验包括给 Github 代码库地址让 Grok3 分析实现方案,对于过长内容用公式抽取一部分,拆解为多个子功能实现后让 Trae 读取参考做整合。 第三节:基于飞书多维表格开发网页及相关问题。包括创建多维表格数据库,介绍创建具有 AI 能力的多维表格的核心在于字段捷径中的多种 AI 能力;配置飞书应用权限,在飞书开发平台创建企业自建应用,配置相关权限,创建并发布版本,保存凭证信息;关联多维表格与应用,在多维表格中添加创建的飞书应用,获取 APP ID 和 secret,为外部通过 API 访问多维表格数据打通通道;开发网页与调试,基于 readme 文件开发网页,尝试接通飞书多维表格,解决开发和调试过程中的问题,最终成功读取多维表格数据。还涉及小程序开发与工具应用的交流,如小程序 API 连接问题、云开发与经费、飞书工具使用、AI 编程活动安排、业务场景需求探讨等。 做一个专属的好文推荐网站(DeepSeek R1 + 飞书多维表格):第二步用网页呈现多维表格里的内容,分为增加一个飞书应用和使用 Trae 开发一个网页读取多维表格的数据并呈现两小步。增加飞书应用包括打开网址登录并进入开发者后台,创建新应用,填写应用相关信息,配置应用权限,选择多维表格相关权限,发布应用,获取应用 ID 和密匙,创建飞书多维表格并安装应用。使用 Trae 开发网页包括新建文件夹,用 Trae 打开并新建“readme.md”文件,复制代码,打开 Builder 模式说出需求,调试 bug 完成 MVP 版本。下一章节会结合浏览器插件知识进一步完善产品功能。
2025-02-25
对话ai平台有哪些,各有什么特色
以下是一些常见的对话 AI 平台及其特色: 1. Replika:是最早和最著名的全栈伴侣应用程序之一,于 2017 年推出。用户可以设计理想的伴侣,关系会随时间发展,其代表能存储记忆用于未来对话,甚至发送照片。Replika 的 Subreddit 展示了其热情的用户群,用户会分享各种与代表的互动。但今年早些时候该应用程序移除了“情色角色扮演”功能,引起用户不满。 2. Character AI:基于角色的平台,可与数百个由 AI 驱动的角色对话,包括名人和受欢迎的动漫角色,还能创建自己的角色并赋予各种属性和功能,用户可训练角色、评价回答并生成新回答。 3. Chai:专门用于与机器人聊天的应用程序。 4. Janitor AI:专门用于与机器人聊天的应用程序。 5. Chub AI:专门用于与机器人聊天的应用程序。 6. Charstar:专门用于与机器人聊天的应用程序。 7. SpicyChat:专门用于与机器人聊天的应用程序。 8. Character.ai:行业扛把子,创建角色功能简洁,支持上传声音片段实现语言克隆。用户通过一问一答的多轮对话方式与角色交互,支持回复重新生成、回滚至指定位置。 9. 筑梦岛:背靠阅文,内容 IP 资源相对丰富。具有单人聊天和多人聊天模式,多人聊天为伪群聊。角色设定是核心人设属性,有梦境、小剧场等功能,创建角色需要提供各类信息。
2025-02-23
利用ai制作一个高质量网站的国内平台
以下是一些国内可以利用 AI 制作高质量网站的平台: 1. Wix ADI(Artificial Design Intelligence) 网址:https://www.wix.com/ 特点:基于用户提供的信息自动生成定制化网站,提供多个设计选项和布局,集成了 SEO 工具和分析功能。 2. Bookmark 网址:https://www.bookmark.com/ 特点:AIDA(Artificial Intelligence Design Assistant)通过询问用户几个简单问题快速生成网站,提供直观的拖放编辑器,包括多种行业模板和自动化营销工具。 3. Firedrop 网址:https://firedrop.ai/ 特点:Sacha 是其 AI 设计助手,可根据用户指示创建和修改网站设计,提供实时编辑和预览功能,包含多种现代设计风格和自定义选项。 4. The Grid 网址:https://thegrid.io/ 特点:Molly 是其 AI 设计助手,可自动调整网站设计和布局,基于内容和用户互动进行优化,支持多种内容类型。 5. Zyro 网址:https://zyro.com/ 特点:使用 AI 生成网站内容,包括文本、图像和布局建议,提供 AI 驱动的品牌和标志生成器,包含 SEO 和营销工具。 6. 10Web 网址:https://10web.io/ 特点:基于 AI 的 WordPress 网站构建工具,可自动生成网站布局和设计,提供一键迁移功能,集成的 AI 驱动 SEO 分析和优化工具。 7. Jimdo Dolphin 网址:https://www.jimdo.com/ 特点:Dolphin 是其 AI 网站构建器,通过询问用户问题定制网站,提供自动生成的内容和图像,包含电子商务功能。 8. Site123 网址:https://www.site123.com/ 特点:简单易用的 AI 网站构建工具,适合初学者,提供多种设计模板和布局,包括内置的 SEO 和分析工具。
2025-02-21
市面上还有阿里百炼平台类似的竞品吗? 我的意思是工作流
市面上与阿里百炼平台类似的工作流竞品有以下几种: 1. 智谱 GLM4V:通用视觉类大模型,拍立得最早使用的模型,接口响应速度快,指令灵活性差一些,一个接口支持图片/视频/文本,视频和图片类型不能同时输入,调用成本为 0.05 元/千 tokens,可参考。 2. 阶跃星辰:通用视觉类大模型,响应速度快,支持视频理解,输入成本为 0.005~0.015/千 tokens,输出成本为 0.02~0.07/千 tokens,可参考。 3. 百度 PaddlePaddle:OCR 垂直小模型,文本识别能力补齐增强,私有化部署服务费,API 调用在 0.05~0.1/次,开源地址为。
2025-02-21