Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

如何提高AI回答准确

Answer

以下是一些提高 AI 回答准确性的方法:

  1. 明确角色和任务:赋予 AI 特定的角色,如专注于民商事法律领域的律师,以利用其数据处理和模式识别能力。
  2. 清晰表述任务目标:例如在法律建议中,明确概括核心观点和注意事项的数量。
  3. 提供完整的上下文和背景信息:讲清楚背景和目的,如律师处理交通事故案件时,提供详细的案件事实和法规。
  4. 提出具体明确的需求和细节性信息:使用清晰、具体的语言,避免模糊表述。
  5. 设定限制和不需要的内容:明确告知 AI 哪些内容不应包含。
  6. 遵循特定的回答语言风格和形式:例如使用引号、分隔符号以及“首先、其次、最后”等连接词来组织回答。
  7. 了解 AI 的工作原理和限制:有助于更好地设计问题。
  8. 拆解工作流程:将复杂任务分解为更小、更具体的环节,使 AI 执行更精确。

在生成回答的过程中,系统基于整合好的上下文信息来构建最终的回答,具体步骤包括:

  1. 上下文向量化:将整合后的上下文信息转化为向量,通常通过预训练的语言模型进行,如 BERT 或 GPT,以捕捉语义信息。
  2. 生成模型激活:使用基于 Transformer 的生成模型(如 GPT)接收向量化的上下文,利用自注意力机制理解关系和信息。
  3. 逐词生成回答:模型逐词构建回答,考虑之前已生成的词和整个上下文的语义,迭代进行直至回答构建完成。
  4. 优化语言流畅性和准确性:确保生成的文本语法正确、逻辑连贯,与用户问题紧密相关。
  5. 回答评估与调整:完成初步生成后,对回答进行评估,根据需要微调或重新生成。
  6. 输出回答:最终将生成的答案呈现给用户。
Content generated by AI large model, please carefully verify (powered by aily)

References

潘帅:手把手分享法律人如何用好AI — Prompt篇

在提供法律建议时,我们需要用简洁明了的语言来总结核心观点和注意事项。例如,我们可以概括出5点关于案件处理的核心观点,并列出7点在案件推进中需要特别注意的事项。Separator为了确保我们的建议清晰易懂,我们可以使用引号、分隔符号以及“首先、其次、最后”等连接词来组织Prompt。这样做不仅能让建议更有条理,还能通过AI给到更优质的信息。Capacity and Role比如:你是一名专注于民商事法律领域的律师,擅长案例研究、法律条文检索以及案件策略分析。通过赋予AI这样的角色,我们能够更有效地利用它的数据处理和模式识别能力,从而提升律师的工作效率。3.Prompt方法总结格式=【设定角色+任务目标+上下文和背景信息+(正面要求)详细需求和细节性信息+(负面要求)限制和不需要的内容+回答的语言风格和形式】4.Prompt技巧讲清楚背景和目的在向AI提问时,除了明确的问题描述,对于背景信息和提问的目的最好梳理清楚,这样可以帮助AI更好地理解问题的上下文,从而提高回答的准确性。例如,律师在处理一起交通事故案件时,可以询问:“给你一则交通事故案件事实xxx,根据xxx法规,x方的责任应如何划分?”学会提问,如何提高回答内容的准确性提出好问题是提高AI回答准确性的关键。这包括使用清晰、具体的语言,避免模糊不清的表述。同时,了解AI的工作原理和限制也很重要,这样你可以更好地设计问题,使其能够提供有用的答案。拆解环节、切分流程、具体落到某个工作细节在应用AI之前,首先要对工作流程进行细致的拆解。这意味着将复杂的任务分解成更小、更具体的环节,以便AI可以更精确地执行。

【AI+知识库】商业化问答场景,让AI回复更准确,一篇专为所有“小白”讲透RAG的实例教程(上篇)

其中,她是陈美嘉,这里是人设中的设定。吵架的经过是知识库中的内容。在我提问了之后,大模型去知识库里找到了相关内容,然后回复了我。这就是一个简单的正确回复的demo示例。然而,我们会发现,有时候她的回答会十分不准确。图二明显回答的牛头不对马嘴。图三是知识库截图,其中是有“一菲为美嘉找了一份助教工作”的内容的。但是回答这个问题时,AI并没有根据正确的知识库内容回答。这,就是基于知识库问答中的一个非常常见的错误场景。在其他情况下,甚至有可能出现报价错误、胡编乱造等等。这在严肃场景中,是不能接受的出错。现在应该能够直观的理解,为什么需要让大模型根据知识库回答的更加准确、更符合我们的要求。在AI领域中,优化AI更准确回答问题的过程,有一个更加专业的术语,叫做RAG。接下来,咱们进入正题,一步一步探索,如何优化回答。二、基础概念如果我们要优化幻觉问题和提高准确性,就务必要了解清楚从“问题输入”--“得到回复”,这个过程中,究竟发生了什么。然后针对每一个环节,逐个调优,以达到效果最佳化。因此,我们先深入其中了解问答全貌。

【AI+知识库】商业化问答场景,让AI回复更准确,一篇专为所有“小白”讲透RAG的实例教程(上篇)

在生成过程中,系统基于整合好的上下文信息来构建最终的回答时。这个过程具体包括以下关键步骤:1.上下文向量化:2.将整合后的上下文信息转化为向量。这通常通过一个预训练的语言模型进行,例如BERT或GPT。这些向量能够捕捉上下文中的语义信息,为生成回答提供必要的输入。3.生成模型激活:4.使用一个基于Transformer的生成模型(如GPT)接收向量化的上下文。这个模型利用自注意力机制来理解上下文中的各种关系和信息。5.逐词生成回答:6.生成模型开始逐词构建回答。模型在每一步生成一个词,同时考虑到之前已生成的词和整个上下文的语义。这个过程是迭代的,直到整个回答构建完成。7.语言流畅性和准确性优化:8.在回答生成的过程中,模型会优化语言的流畅性和逻辑性。确保生成的文本不仅在语法上正确,而且在逻辑上连贯,与用户问题紧密相关。9.回答评估与调整:10.完成初步生成后,系统可能会对回答进行评估,检查其准确性、相关性和用户满意度。如果需要,可以对回答进行微调或完全重新生成。⑤、输出回答:最终,生成的答案呈现给用户。简要总结RAG的全流程:

Others are asking
如何生成稳定的AI视频
以下是关于生成稳定的 AI 视频的相关信息: 工具推荐: Runway: 网址:https://app.runwayml.com/videotools/ 官方使用教程:https://academy.runwayml.com/ 知识库详细教程: 特点:支持文生视频、图生视频、视频生视频;文生视频支持正向提示词、风格选择、运镜控制、运动强度控制、运动笔刷,支持多种尺寸,可设置种子值;生成好的视频可以延长时间,默认生成 4s 的视频;使用英文提示词。 Stable video: 网址:https://www.stablevideo.com/generate 知识库详细教程: 特点:支持文生视频、图生视频,仅英文;图生视频不可写 prompt,提供多种镜头控制;文生视频先生成 4 张图片,选择其中一张图片以后再继续生成视频。 技术差异: 代表产品如 Runway,在端到端视频生成中,涉及的技术包括 GAN 生成对抗网络、VAE 变分自编码器和 Transformer 自注意力机制。 GAN 生成对抗网络:是一种无监督的生成模型框架,能生成视觉逼真度高的视频,但控制难度大、时序建模较弱。 VAE 变分自编码器:可以学习数据分布,像压缩和解压文件一样重建视频数据,能根据条件输入控制生成过程,但质量较 GAN 略低。 GAN、VAE 生成视频速度快,但存在生成质量和分辨率较低、长度短、控制能力弱的缺点。 Transformer 自注意力机制:通过学习视频帧之间的关系,理解视频的长期时间变化和动作过程,对长视频建模更好,时序建模能力强,可实现细粒度语义控制,但计算量大。 当前面临的问题及解决方案: 当前仍面临生成时间长、视频质量不稳定、生成的视频语义不连贯、帧间存在闪烁、分辨率较低等问题。解决方案包括使用渐进生成、增强时序一致性的模型等方法,上述的补帧算法、视频完善策略也可在一定程度上缓解问题。 制作技巧: 在镜头衔接上要写运镜提示词,描述多种运镜方式,否则画面会乱变。在做视频时要不断尝试参数。
2025-02-26
AI陪伴有什么好的产品
以下是一些 AI 陪伴的好产品: 1. Character.ai:这是一个 AI 虚拟陪伴平台,用户能与数百个 AI 驱动的角色交流,还可创建自己的角色并赋予其各种特性。 2. Replika:一款 AI 虚拟陪伴应用,用户可设计理想伴侣,其会存储记忆并在未来对话中参考,甚至能发送照片。 3. Talkie:主打情感路线的 AI 虚拟陪伴应用,设计有大量 npc,游戏和休闲娱乐体验感强,每个 npc 都有自己的剧情体系,交流中会触发抽取卡牌机会。 AI 陪伴已进入成长爆发期,可能看起来是小众市场,但实际上已成为生成式 AI 主流应用场景之一。网页端和移动端数据表明其正变得越来越普及。例如,在网页端榜单上,Character.ai 领跑 AI 陪伴榜单。 陪伴应用的范畴也在迅速扩大,不仅限于“男友”“女友”概念,还涵盖友谊、指导、娱乐、医疗保健等方面。一些早期研究显示,AI 在诊断准确性和患者沟通技巧上能超越真人医生,如 Replika 聊天机器人帮助部分用户减轻了自杀念头。 移动端和网页端应用在 AI 使用类型上有明显不同。网页端产品更倾向支持内容创作和编辑的复杂工作流程,如 ElevenLabs、Leonardo、Gamma 等。移动端应用更倾向通用型助手,不少模仿了 ChatGPT。
2025-02-26
AI基础
以下是关于 AI 基础的全面介绍: 一、AI 背景知识 1. 基础理论:人工智能、机器学习、深度学习的定义及其之间的关系。 2. 历史发展:简要回顾 AI 的发展历程和重要里程碑。 二、数学基础 1. 统计学基础:熟悉均值、中位数、方差等统计概念。 2. 线性代数:了解向量、矩阵等线性代数基本概念。 3. 概率论:基础的概率论知识,如条件概率、贝叶斯定理。 三、算法和模型 1. 监督学习:了解常用算法,如线性回归、决策树、支持向量机(SVM)。 2. 无监督学习:熟悉聚类、降维等算法。 3. 强化学习:简介强化学习的基本概念。 四、评估和调优 1. 性能评估:了解如何评估模型性能,包括交叉验证、精确度、召回率等。 2. 模型调优:学习如何使用网格搜索等技术优化模型参数。 五、神经网络基础 1. 网络结构:理解神经网络的基本结构,包括前馈网络、卷积神经网络(CNN)、循环神经网络(RNN)。 2. 激活函数:了解常用的激活函数,如 ReLU、Sigmoid、Tanh。 六、学习资源和方法 1. 了解 AI 基本概念:阅读「」部分,熟悉 AI 的术语和基础概念。浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅:在「」中,找到一系列为初学者设计的课程。通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。特别推荐李宏毅老师的课程。 3. 选择感兴趣的模块深入学习:AI 领域广泛(比如图像、音乐、视频等),根据自己的兴趣选择特定的模块进行深入学习。掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试:理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出作品。在知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品:与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 七、书籍推荐 1. 《认知神经学科:关于心智的生物学》(作者:Michael S.Gazzaniga;Richard B.Lvry;George R.Mangun):世界权威的认知神经科学教材,认知神经科学之父经典力作,系统了解认知神经科学的发展历史、细胞机制与认知、神经解剖与发展、研究方法、感觉知觉、物体识别、运动控制、学习与记忆、情绪、语言、大脑半球特异化、注意与意识、认知控制、社会认知和进化的观点等。 2. 《神经科学原理》(作者:Eric R.Kandel;James H.Schwartz):让你系统神经元的细胞和分子生物学、突触传递、认知的神经基础、感觉、运动、神经信息的加工、发育及行为的出现、语言、思想、感动与学习。 3. 《神经生物学:从神经元到脑》(作者:John G.Nicholls 等著):神经生物学领域内的一本世界级名著,涵盖了神经科学的方方面面,系统介绍了神经生物徐的基本概念、神经系统的功能及细胞和分子机制。
2025-02-26
普通人怎么学习AI
普通人学习 AI 可以参考以下步骤: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,如图像、音乐、视频等,可根据自身兴趣选择特定模块深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习后,通过实践巩固知识,尝试使用各种产品做出作品。 在知识库分享实践后的作品和文章。 5. 体验 AI 产品: 与现有的 AI 产品互动,如 ChatGPT、Kimi Chat、智谱、文心一言等聊天机器人,了解其工作原理和交互方式。 此外,还可以参考以下方法: 1. 万能公式法:问 AI【一个(xxx 职业)需要具备哪些知识?】,AI 就可给出知识框架,然后根据知识框架每一个小点去问,就能让 AI 工具帮你指数级深度思考。 2. 寻找优质信息源:像没有技术背景的普通人,学习或了解 AI 最好的信息源在「即刻」App 的“”等免费圈子里。 3. 信息爆炸之做减法的小 tips: 只掌握最好的产品,少关注新产品测评(除非远超 ChatGPT)。 只解决具体问题,不做泛泛了解。从问题中来,到问题中去。 只关注核心能力,不关注花式玩法,用 AI 扬其长避其短。 只关注理清需求和逻辑,不死记硬背提示词。 先关注提升认知/洞察,然后再谈技巧。 对于纯 AI 小白,如果还在观望 AI 不知从何入手,可以参考《雪梅 May 的 AI 学习日记》。其学习模式是输入→模仿→自发创造。学习资源免费开源,可去 waytoAGI 社区发现自己感兴趣的 AI 领域,学习最新内容。
2025-02-26
AI基础
以下是关于 AI 基础的知识: 一、背景知识 了解人工智能、机器学习、深度学习的定义及其之间的关系,简要回顾 AI 的发展历程和重要里程碑。 二、数学基础 1. 统计学基础:熟悉均值、中位数、方差等统计概念。 2. 线性代数:了解向量、矩阵等线性代数基本概念。 3. 概率论:掌握基础的概率论知识,如条件概率、贝叶斯定理。 三、算法和模型 1. 监督学习:了解常用算法,如线性回归、决策树、支持向量机(SVM)。 2. 无监督学习:熟悉聚类、降维等算法。 3. 强化学习:了解强化学习的基本概念。 四、评估和调优 1. 性能评估:了解如何评估模型性能,包括交叉验证、精确度、召回率等。 2. 模型调优:学习如何使用网格搜索等技术优化模型参数。 五、神经网络基础 1. 网络结构:理解神经网络的基本结构,包括前馈网络、卷积神经网络(CNN)、循环神经网络(RNN)。 2. 激活函数:了解常用的激活函数,如 ReLU、Sigmoid、Tanh。 六、学习建议 1. 了解 AI 基本概念:阅读相关部分,熟悉术语和基础概念,了解主要分支及联系,浏览入门文章。 2. 开始学习之旅:在入门课程中学习生成式 AI 等基础知识,推荐李宏毅老师的课程,通过在线教育平台按自己节奏学习。 3. 选择感兴趣模块深入:AI 领域广泛,可根据兴趣选择特定模块,如掌握提示词技巧。 4. 实践和尝试:理论学习后进行实践,巩固知识,使用各种产品创作作品,并分享实践成果。 5. 体验 AI 产品:与 ChatGPT、Kimi Chat、智谱、文心一言等互动,了解工作原理和交互方式。 此外,为您推荐三本神经科学相关的基础学科书籍: 1. 《认知神经学科:关于心智的生物学》(作者:Michael S.Gazzaniga;Richard B.Lvry;George R.Mangun):世界权威的认知神经科学教材,系统了解认知神经科学的多方面内容。 2. 《神经科学原理》(作者:Eric R.Kandel;James H.Schwartz):让您系统了解神经元的相关知识。 3. 《神经生物学:从神经元到脑》(作者:John G.Nicholls 等著):神经生物学领域的名著,涵盖神经科学的方方面面。
2025-02-26
AI介入设计的相关案例
以下是大淘宝设计部 2023 年度 AI 设计实践的相关案例: 1. 在工作流方面: 主要工具为 Midjourney 和 Stabel Diffusion,辅助工具有 RUNWAY 和 PS beta 等。 在营销设计中,AI 设计使整体项目设计时间大约减少 18%左右,其中在创意阶段丰富性提升 150%左右、时间节省 60%左右。 创意多样,项目中不同创意概念的提出数量增加了 150%。 执行加速,设计师在创意生成阶段的时间缩短了平均 60%。 整体提效,从创意发散到落地执行品效都有显著提升。 2. 具体应用场景案例: 大促营销:通过 AI 生成图像或素材,再结合平面合成及修正,确保符合品牌形象,更精准表达营销活动主题,如淘宝天猫大促视觉、双 11 大促横向会场版头模板化应用、天猫小黑盒新品联名等。 AI 布景:对于定制化真人模特实景素材的主题活动,通过 AI 完成页面所有素材的生产和输出,如七夕主题活动页面、超级品类日传播拍摄创意等。 产品营销视觉:在 UI 设计场景中,采用 AI 能力快速定制多种用户需要的视觉效果,如 88VIPAI 定制皮肤。 品牌超级符号映射:根据品牌符号的模型训练和结构控制,用户输入丰富关键词即可快速完成准确的超级符号主视觉,如双 11AI 创作赢红包、双 11 联合传播猫头海报&花车大巡游、超级品类日品牌符号系列海报等。 品牌 IP 形象 AI 生成:训练特定的天猫/淘宝/营销 IP 公仔模型,稳定输出定制化 IP 形象,如天猫 AI 玩行动品牌联合海报、天猫双 11出游主题喵卡、淘宝天猫一起冲亚、天猫 U 先公仔三视图生成及应用等。 传播&投放:如双 11 超级发布品牌联合海报、媒介投放开屏海报。
2025-02-26
视频拍摄中如何用更准确的提示词
在视频拍摄中,以下是一些更准确的提示词使用技巧: 1. 清晰定义动作:如果想让视频中包含角色的动作,用具体的动词和副词来描述,如奔跑、飞翔、游泳或跳舞,并包含动作的速度,如缓慢、快速或逐渐。示例提示词:“一只狗欢快地在海滩上冲刺,跃起接住空中的球。” 2. 使用描述性形容词:准确传达视频的氛围至关重要,使用能唤起想要传达的感觉的形容词,如宁静、神秘或充满活力。示例提示词:“海滩上一个宁静、雾蒙蒙的早晨,柔和的阳光透过沙滩椅洒下。” 3. 提供背景故事或上下文:对于更复杂的视频项目,融入特定的情节元素或角色,提供背景或上下文有助于生成连贯且引人入胜的视频序列。 4. 使用相机角度和运动:Firefly 通常可以模拟真实世界的摄像工作,通过指定希望相机采用的角度或运动,如推镜头、拉镜头、平移、倾斜、固定镜头,为视频增添个性化的触感。 不同的视频模型和工具在提示词方面也有各自的特点: 1. Vidu 模型:其 Prompt 基本构成包括主体/场景、场景描述、环境描述、艺术风格/媒介。要调整句式和语序,避免主体物过多/复杂、主体物分散的句式描述,避免模糊的术语表达,使用更加流畅准确的口语化措辞,丰富、准确和完整的描述才能生成特定艺术风格、满足需求的视频。 2. 星流一站式 AI 设计工具:在其 prompt 输入框中可以输入提示词、使用图生图功能辅助创作。提示词用于描绘想要的画面,输入语言方面,星流通用大模型与基础模型 F.1、基础模型 XL 使用自然语言,基础模型 1.5 使用单个词组,支持中英文输入。写好提示词要做到内容准确,包含人物主体、风格、场景特点、环境光照、画面构图、画质等。还可以调整负面提示词,利用“加权重”功能让 AI 明白重点内容,使用辅助功能如翻译、删除所有提示词、会员加速等。
2025-02-26
如何让推理大模型回答的更准确,使用什么样的提示词
要让推理大模型回答得更准确,可以通过以下提示词相关的设置和方法: 1. 参数设置: Temperature:参数值越小,模型返回结果越确定;调高参数值,可能带来更多随机、多样化或具创造性的产出。对于质量保障等任务,设置更低值以促使模型基于事实返回真实简洁结果;对于诗歌生成等创造性任务,可适当调高。 Top_p:与 Temperature 类似,用于控制模型返回结果的真实性。需要准确和事实的答案时,调低参数值;想要更多样化答案时,调高参数值。一般建议改变其中一个参数即可。 Max Length:通过调整控制大模型生成的 token 数,有助于防止生成冗长或不相关的响应并控制成本。 Stop Sequences:指定字符串来阻止模型生成 token,是控制响应长度和结构的方法之一。 Frequency Penalty:对下一个生成的 token 进行惩罚,与 token 在响应和提示中出现次数成比例,减少响应中单词的重复。 2. 提示词示例: 对于推理任务,目前已有一些涉及数学能力的改进。执行推理任务可能有难度,需要更高级的提示词工程技术,后续会介绍相关高级技术。 可以通过示例给模型说明,可能获得更准确结果,后面章节会介绍更多常见应用示例。 3. 调教方法: 像打字和写作一样,不断尝试和大模型交互是最佳方法,方法论不是关键。 可以在提示词里设定规则,也可临时更改,交互时无需遵循规则,重点是是否达成目的,未达成可重新尝试或更换模型。 用 Markdown 格式清晰表达问题,具有结构清晰、格式化强调、适用性广等优点,有助于模型更好地理解用户意图。
2025-02-26
如何给AI提问,得到自己想要的更准确的内容
以下是一些给 AI 提问以获得更准确内容的方法: 1. 设定角色:给 AI 赋予一个明确的角色,例如“你是一个专注于民商事法律领域的律师”,让其以特定角色来理解和回答问题。 2. 举例子:通过给出实际的例子,能使 AI 更准确地了解您的要求。 3. 连续提问:对于复杂的问题,可以就一个问题连续提问,根据 AI 的回复不断细化要求。 4. 直接问 AI 如何提问:当不知道如何提问时,可以先向 AI 请教如何提问,然后用它产生的问题再问它。 5. 讲清楚背景和目的:在提问时,除了明确的问题描述,还要梳理清楚背景信息和提问目的,帮助 AI 更好地理解问题上下文。 6. 学会提问:使用清晰、具体的语言,避免模糊表述,同时了解 AI 的工作原理和限制,设计合适的问题。 7. 拆解环节、切分流程:将复杂任务分解成更小、更具体的环节,让 AI 更精确地执行。 8. 对于编程相关问题: 提供代码范例,尤其是新进入代码节点的 IDE 中的范例。 说清楚输入变量与输出变量的类型。 说明与工作流中匹配或想要的变量名称。 列出输入变量的具体书写形式。 讲清楚代码要实现的功能,复杂功能尽量说清运行逻辑,描述中用变量名称指代相关变量。并可参考以下提问范式:。关键步骤请附上注释。
2025-02-24
复杂推理的产品,给模型灌什么能够更好训练推理能力?以及怎么优化模型的推理准确度?
以下是一些能够更好训练模型推理能力以及优化推理准确度的方法: 1. OpenAI 的推理模型通过强化学习进行训练,在训练过程中,模型学会在回答前思考,产生长链的思维过程,并不断尝试不同策略,识别错误,从而能够遵循特定的指导方针和模型政策,提供更有用的回答,避免产生不安全或不适当的内容。 2. 蒙特卡洛树搜索(MCTS)对推理模型有积极影响,例如在数学定理证明中,能探索非确定性证明路径,将解决 IMO 几何题的耗时从传统方法的 30 分钟降至 90 秒;在多跳问答系统中,结合 MCTS 的模型在 HotpotQA 数据集上准确率提升 12%,因其能回溯验证中间推理步骤。 3. 动态知识融合机制方面,传统基于规则的推理无法处理模糊知识,而 MCTS 增强方案在医疗诊断中可将误诊率从纯规则引擎的 23%降至 9%。 4. 资源分配优化方面,在逻辑谜题求解任务中,MCTS + Transformer 能达到 85%准确率且耗时 3 秒,而纯 Transformer 为 62%准确率且耗时 8 秒;在法律条文推导任务中,MCTS + Transformer 有 92%合规性且耗时 5 秒,纯 Transformer 为 88%合规性且耗时 2 秒。 OpenAI 于 9 月 12 日发布的新模型 o1 旨在实现通用复杂推理,通过强化学习和思维链的方式提升推理能力,尤其在数学和编程领域表现出色,但用户反馈显示其实际表现与宣传存在差距,成本高于 GPT4o,且在某些任务上优势不明显,OpenAI 仍在探索如何优化模型的推理性能。
2025-02-21
to B的产品怎么通过RL来提升准确性
通过 RL 提升 to B 产品的准确性可以参考以下方法: 1. 如同 DeepSeek R1 模型,在“冷启动”阶段,利用少量(数千条)人工精选的思维链数据进行初步引导,建立符合人类阅读习惯的推理表达范式。 2. 主要依靠强化学习,在奖励系统的反馈下提升准确性。例如,设置准确率奖励,用于评估 AI 提供的最终答案是否正确,为其提供答案准确度的反馈;同时设置格式奖励,强制结构化输出,让模型把思考过程置于<think></think>标签之间,以便观察推理过程。 3. 但需要注意的是,不同模型在 RL 应用上有所差异。例如,Alpha Zero 的强化学习更加专精棋类,而 DeepSeek R1 更注重学习推理的底层策略,培养通用推理能力,实现跨领域的知识迁移运用和推理解答。 4. 对于 LLMs ,其在自主模式下存在局限性,如无法生成可执行的规划,无法自我验证等。即使通过迭代提示,在验证解决方案方面可能也不比生成解决方案表现得更好。
2025-02-21
偏推理型的内容,怎么提升模型的推理深度及准确度?
提升模型推理深度及准确度的方法包括以下几个方面: 1. 扩大模型规模:随着模型规模的扩大,其推理能力会得到提升,类似于 AlphaGo 或 AlphaZero 的工作方式,通过蒙特卡罗推演来修改评估函数,从而提高推理精度。 2. 引入多模态学习:引入图像、视频和声音等多种模式将极大地改变模型的理解和推理能力,特别是在空间理解方面。多模态模型可以通过更多的数据和更少的语言来进行学习。 3. 优化训练方法: RLHF(Reinforcement Learning from Human Feedback):模型在这个过程中的目标是最大程度地获得人类的认可,通过奖励模型来衡量。 结合不同的推理能力提高途径:将生成不同的思维链(CoT)并选择有效路径的方法,与在部署时用大量计算进行推理的方法结合起来。 4. 改进模型结构和算法: 规模和算法是科技进步的关键因素,数据和计算规模具有决定性作用。 在模型之上添加启发式方法或增加模型本身的规模。 此外,Hinton 还提到了一些相关观点,如最合理的模型是将符号转换成大向量并保留符号的表面结构,大型语言模型通过寻找共同的结构来提高编码效率,以及即使训练数据中有错误,大型神经网络也具有超越训练数据的能力等。
2025-02-21
学完以上课程 熟练上手实操,需要多长时间,请回答需要多长时间而不是回答课程数量
学习不同的 AI 课程并熟练上手实操所需时间因人而异,但大致估计如下: 《雪梅 May 的 AI 学习日记》中制作微信机器人的共学课程,包含 6 个分享,每个分享 2 3 小时,需要有大块完整时间,可能需要数天甚至更长时间才能学完。 入门强化学习,如果没有基础,学习概率论和线性代数相关课程大约需要周末一天时间;吴恩达和李宏毅的课程约 25 小时;《动手学深度学习》前五章约 10 小时;王树森课程的前几节约 5 小时;《动手学强化学习》看到 DQN 部分约十几小时。 微软 AI 初学者入门课程为期 12 周、共 24 课时。 需要注意的是,这只是一个大致的估计,实际所需时间会受到个人学习能力、投入程度等因素的影响。
2025-02-19
对于中小企业而言,ai转型的落地过程中有什么风险和挑战?请分别回答风险和挑战是什么
对于中小企业而言,AI 转型的落地过程中存在以下风险和挑战: 风险: 1. 管理风险:使用 AI 工具评估和管理企业面临的各种风险时,可能存在对风险评估不准确、应对策略不恰当等问题,导致企业无法有效应对潜在挑战,造成不必要的损失。 2. 网络安全风险:引入 AI 驱动的网络安全解决方案时,若安全系统配置不当、软件和 AI 模型未及时更新、员工网络安全意识不足等,可能导致企业网络系统遭受网络威胁和攻击,造成数据泄露、业务中断等严重后果。 挑战: 1. 任务自动化挑战:在评估和识别日常重复性高的任务时,可能存在对任务分析不准确、目标设定不清晰的情况,影响后续自动化工具的引入和效果。同时,选择合适的自动化工具并进行有效配置和测试也具有一定难度。 2. 网络安全挑战:选择适合企业网络环境和安全需求的 AI 驱动的网络安全解决方案并非易事,需要充分了解各种方案的特点和适用性。此外,定期更新和维护安全系统、进行网络安全演练以及对员工进行培训等工作也需要投入大量的时间和精力。
2025-02-19
你会使用DeepSeek来回答问题吗
DeepSeek 是一款具有独特特点和优势的深度推理模型。其核心是推理型大模型,与指令型大模型不同,不需要用户提供详细步骤指令,而是通过理解用户真实需求和场景来提供答案。它能够理解用户用“人话”表达的需求,无需用户学习特定提示词模板。在回答问题时能够进行深度思考,并非简单罗列信息。还可以模仿不同作家的文风进行写作,适用于多种文体和场景。 DeepSeek R1 不同于先前的普通模型,如 ChatGPT4、Claude 3.5 sonnet、豆包、通义等,它与 OpenAI 现在最先进的模型 o1、o3 同属基于强化学习 RL 的推理模型。在回答用户问题前,R1 会先进行“自问自答”式的推理思考,以提升最终回答的质量。这种“自问自答”并非简单自言自语,而是模拟人类的深度思考。从用户初始问题出发,唤醒所需推理逻辑与知识,进行多步推导,为最终回答提供更完备的思考准备。DeepSeek R1 的“聪明”源于其独特的“教育方式”,在其他 AI 模型还在接受“填鸭式教育”时,它已率先进入“自学成才”新阶段。 更多提示词技巧请查看 。
2025-02-17
你是用什么模型来回答问题的?
我使用多种模型和相关知识来回答您的问题,包括但不限于以下内容: 2023 年度中文大模型基准测评报告中提到的 GPT4Turbo 和 gpt3.5turbo 等模型,并对其在准确性、相关性等方面的表现进行了评估。 智谱·AI 开源模型列表中的 WebGLM10B、WebGLM2B、MathGLM2B、MathGLM500M、MathGLM100M、MathGLM10M、MathGLMLarge 等模型,介绍了它们的特点和相关链接。 OpenAI 官方指南中提到的一些战术,如指示模型使用参考文本回答,包括提供参考文本和使用参考文本中的引文来回答等策略。 但具体回答您的问题所依据的模型和知识来源会根据问题的性质和需求而定。
2025-02-17
你能回答关于AI以外的事情吗?有关于AI的方面你又知道多少。
以下是关于 AI 的相关知识: 1. 基础方面: 背景知识:包括人工智能、机器学习、深度学习的定义及其之间的关系。 历史发展:简要回顾 AI 的发展历程和重要里程碑。 数学基础: 统计学基础:熟悉均值、中位数、方差等统计概念。 线性代数:了解向量、矩阵等线性代数基本概念。 概率论:基础的概率论知识,如条件概率、贝叶斯定理。 2. 算法和模型: 监督学习:了解常用算法,如线性回归、决策树、支持向量机(SVM)。 无监督学习:熟悉聚类、降维等算法。 强化学习:简介强化学习的基本概念。 3. 评估和调优: 性能评估:了解如何评估模型性能,包括交叉验证、精确度、召回率等。 模型调优:学习如何使用网格搜索等技术优化模型参数。 4. 神经网络基础: 网络结构:理解神经网络的基本结构,包括前馈网络、卷积神经网络(CNN)、循环神经网络(RNN)。 激活函数:了解常用的激活函数,如 ReLU、Sigmoid、Tanh。 关于 WaytoAGI 网站,它提供以下功能: 1. 和 AI 知识库对话:您可以在这里问任何关于 AI 的问题。 2. AI 网站:集合了精选的 AI 网站,按需求找到适合您的工具。 3. AI 提示词:集合了精选的提示词,可以复制到 AI 对话网站来使用。 4. 知识库精选:将每天知识库的精华内容呈现给大家。 请注意,我只能为您提供与 AI 相关的知识和指导,对于其他非 AI 领域的内容,我的知识库中没有相关信息。
2025-02-16
如何利用ai提高学习能力
利用 AI 提高学习能力可以从以下方面入手: 英语学习: 1. 智能辅助工具:如 Grammarly 可进行英语写作和语法纠错,改进表达和写作能力。 2. 语音识别和发音练习:使用 Call Annie 进行口语练习和发音纠正,获取实时反馈和建议。 3. 自适应学习平台:Duolingo 能利用 AI 技术量身定制学习计划,提供个性化内容和练习。 4. 智能导师和对话机器人:ChatGPT 可用于英语会话练习和对话模拟,提高交流能力和语感。 数学学习: 1. 自适应学习系统:Khan Academy 结合 AI 技术提供个性化学习路径和练习题,精准推荐。 2. 智能题库和作业辅助:Photomath 通过图像识别和数学推理技术提供问题解答和解题步骤。 3. 虚拟教学助手:Socratic 利用 AI 技术解答数学问题、提供教学视频和答疑服务。 4. 交互式学习平台:参与 Wolfram Alpha 的学习课程和实践项目,利用 AI 技术进行数学建模和问题求解。 学习一门外语的通用方法: 1. 设定目标:明确学习目标和时间表,分阶段完成任务。 2. 多样化练习:结合听、说、读、写多种方式全面提升语言技能。 3. 模拟真实环境:多与母语者交流,或用 AI 对话助手模拟真实对话场景。 4. 定期复习:使用 AI 工具的复习功能,根据记忆曲线定期复习已学内容巩固记忆。 在医疗保健领域,鉴于人工智能依赖的神经网络基础,专家 AI 可能通过元学习更快地获得知识,并带着人类一同进步。AI 的特性使我们能将其一部分一部分地拆解研究,构建系统深入探索其内部工作机制,创造学习的飞轮,最终可能成为下一代专家(无论是人类还是 AI)的教师。 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2025-02-26
能够帮助大学老师提高工作效率的AI工具有哪些?请为我推荐10个APP
以下为您推荐 10 个能够帮助大学老师提高工作效率的 AI 工具 APP: 1. WPS 文档翻译功能:这是 WPS 的一项功能,利用自然语言处理技术,可快速翻译办公文档,提高工作效率。 2. 美丽修行 APP:通过数据分析和自然语言处理技术,根据用户肤质推荐适合的美容护肤产品。 3. 360 儿童手表:利用图像识别和机器学习技术,实现定位、通话、安全区域设置等功能,保障儿童安全。 4. 汽车之家 APP:借助数据分析和机器学习技术,根据用户汽车型号、行驶里程等信息提醒车主及时进行汽车保养。 5. 豆果美食 APP:运用自然语言处理和数据分析技术,根据用户口味和现有食材生成个性化菜谱。 6. 沪江开心词场:采用自然语言处理和机器学习技术,辅助用户学习语言,提供个性化学习方案。 7. 爱奇艺智能推荐:利用数据分析和机器学习技术,根据用户喜好推荐电影。 8. WPS Office:借助自然语言处理和机器学习技术,提高办公效率,实现自动化办公流程。 9. Speak:是一个由 AI 驱动的语言老师,能够实时交流,并对发音或措辞给予反馈。 10. Quazel:提供类似的语言学习帮助。 此外,还有 Lingostar、Photomath、Mathly、PeopleAI、Historical Figures、Grammarly、Orchard、Lex、Tome、Beautiful.ai 等工具在不同方面为学习和工作提供支持。
2025-02-21
我做餐饮服务相关的投标文件,能用到哪些ai工具或平台能让我提高工作效率
以下是一些在制作餐饮服务投标文件时可能提高工作效率的 AI 工具和平台: 1. AutogenAI:伦敦初创公司开发的基于生成型人工智能的工具,声称可以帮助企业撰写更强的提案,提高中标率。能将撰写强大提案的过程加快 800%,同时降低 10%的采购成本。 2. Synthesia:允许用户创建由 AI 生成的高质量视频,包括数字人视频。可用于制作营销视频、产品演示等。 3. HeyGen:基于云的 AI 视频制作平台,用户可从 100 多个 AI 头像库中选择,并通过输入文本生成数字人视频。适合制作营销视频和虚拟主持人等。 4. Jasper AI:人工智能写作助手,可用于生成营销文案、博客内容、电子邮件等。提供多种语气和风格选择,写作质量较高。 5. Copy.ai:AI 营销文案生成工具,可快速生成广告文案、社交媒体帖子、电子邮件等营销内容。有免费和付费两种计划。 6. Writesonic:AI 写作助手,专注于营销内容创作,如博客文章、产品描述、视频脚本等。提供多种语气和行业定制选项。 您还可以查看 WaytoAGI 网站(https://www.waytoagi.com/sites?tag=8)获取更多相关信息。但请注意,内容由 AI 大模型生成,请仔细甄别。
2025-02-12
DeepSeek提高工作效率
DeepSeek 可以有效提高工作效率,主要体现在以下几个方面: 1. 具有极具性价比的开发方案,如 DeepSeekR1 与 RooCline 的组合,其深度思考能力与某些产品相当,但价格更低,适合注重效率和成本的开发团队或个人,对于复杂或需要更准确的快速开发测试能提升效率并降低成本。 2. 其在中英双语处理上具有专业性,对中国法律合规,且在辅助输出时以人类主导为前提,通过特定标签实现逻辑清晰的响应。 3. 相关的分享会和文章为非技术人群通俗易懂地介绍了技术亮点,探讨了业界困惑与解决方案,展望了未来应用的新范式及产品可能性,并澄清了流行谣言。 4. 可以与飞书多维表格结合,实现批量处理信息,如批量转换文风、快速回复消息、利用 AI 生成文案等,操作简单便捷,让普通人无需编程知识也能轻松使用 AI 提升工作效率。
2025-02-12
如何进入AI时代,如何寻找和使用AI工具来提高工作和学习效率,以及如何解决个性化和专业化需求的问题
进入 AI 时代并利用 AI 工具提高工作和学习效率、解决个性化和专业化需求问题,可参考以下要点: 1. 对于 AI 发展的态度:不盲目跟风(FOMO),也不消极对待(JOMO)。 2. 成功的 AI 公司可能需要打造自身的数据飞轮,尤其是在 ToC 场景中寻求突破,因为 C 端能带来的数据飞轮效应在 AI 早期可能是决胜关键。 3. 有专业壁垒的垂直模型可能是机会所在,很多高价值、特定领域的工作流程依赖于丰富的专有数据集。 4. 大模型产品的两个方向: 个性化:给 AI 装上“记忆”,使其成为工作助理或陪伴者。 场景化:给 AI 装上“手”和“眼睛”。 5. 在工作中使用 AI 工具的情况: 最常用的是通过自然语言对话完成一次性任务,90%的产品从业者用其辅助文本信息处理生成。 63%的用户用其辅助搜索,甚至优先用 AI 搜索信息。 45%的用户借助其生成图片以及音视频用于快速制作 demo 演示效果,也有少部分用于制作最终产品。 29%的用户将其作为工作创意助手以及数据报告的处理。 6. AI 工具的改进方向: 提高创新性和创新辅助能力,关注产品从业者的工作模式和思维习惯。 提升个性化和智能化程度,理解并适应用户的个性化需求。 更精准识别合适场景,满足不同场景的使用需求。 7. 使用 AI 完成任务时: 对于简单需求,给 AI 下达明确命令完成一次性任务。 了解 AI 编程的边界和限制。 遵循编程准则,能不编尽量不编。优先找线上工具、其次找插件、最后是本地应用;对于 API 功能,先找现成开源工具,然后考虑付费服务,实在找不到才考虑自己编程,且编程要以终为始,聚焦目标。 总之,在 AI 时代,要积极拥抱 AI,用起来并有效迭代,形成正确的底层工作逻辑,设计合理流程,按节奏确定目标和复盘。同时,把握好融资节奏,适应对创始人更高、更全面的要求。
2025-02-11
可以提高图片分辨率的AI软件
以下是一些可以提高图片分辨率的 AI 软件: 1. ComfyUISUPIR:简单易用,能够提高图片分辨率和质量,但需要下载约 10GB 的 CLIP 模型,可能存在不便。提供了 GitHub 和在线体验链接。 2. InvSR:通过 1 到 5 步提升图像清晰度,用户可在效率与效果间自由调节,即便仅处理一步,也能媲美多步骤方法,适用于老照片修复及生成图优化。 您可以根据自己的需求选择适合的软件。
2025-02-11