Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

准确的讲述垂直大模型的概念,国内外的应用现状、场景,发展趋势,最好能附带图片。内容尽量详细、逻辑通顺。

Answer

垂直大模型是专注于特定领域的大模型,例如小语种交流、临床医学、AI 蛋白质结构预测等。

在国内,大模型分为通用模型如文心一言、讯飞星火等,处理自然语言;也有垂直模型专注特定领域。

大模型因其强大的语言理解和生成能力,在多个领域和应用场景中表现出色。比较火的应用场景包括:

  1. 文本生成和内容创作:撰写文章、生成新闻报道、创作诗歌和故事等。
  2. 聊天机器人和虚拟助手:提供客户服务、日常任务提醒和信息咨询等服务。
  3. 编程和代码辅助:代码自动补全、bug 修复和代码解释。
  4. 翻译和跨语言通信:促进不同语言背景的用户之间的沟通和信息共享。
  5. 情感分析和意见挖掘:为市场研究和产品改进提供数据支持。
  6. 教育和学习辅助:创建个性化的学习材料、自动回答学生问题和提供语言学习支持。
  7. 图像和视频生成:如 DALL-E 等模型可以根据文本描述生成相应的图像,甚至在未来可能扩展到视频内容的生成。
  8. 游戏开发和互动体验:创建游戏中的角色对话、故事情节生成和增强玩家的沉浸式体验。
  9. 医疗和健康咨询:理解和回答医疗相关的问题,提供初步的健康建议和医疗信息查询服务。
  10. 法律和合规咨询:帮助解读法律文件,提供合规建议,降低法律服务的门槛。

关于发展趋势,尽管当前市场以基础大模型为主,但将大模型与行业专业知识结合,以满足不同行业的需求,成为未来发展的关键。例如腾讯研究院的《行业大模型调研报告》指出,如何将大模型与行业专业知识结合是重点。同时,在发展过程中也需要注意其在隐私、安全和伦理方面的挑战。

很抱歉,暂时无法为您提供相关图片。

Content generated by AI large model, please carefully verify (powered by aily)

References

02-基础通识课

[heading2]总结大语言模型的介绍与原理国内大模型的分类:国内大模型有通用模型如文心一言、讯飞星火等,处理自然语言;还有垂直模型,专注特定领域如小语种交流、临床医学、AI蛋白质结构预测等。大模型的体验:以‘为什么我爸妈结婚的时候没有邀请我参加婚礼’和‘今天我坐在凳子上’为例,体验了Kimi、通义千问、豆包等大模型的回答和续写能力,发现回复有差异,且大模型基于统计模型预测生成内容。大语言模型的工作原理:大语言模型工作原理包括训练数据、算力、模型参数,在训练数据一致情况下,模型参数越大能力越强,参数用b链形容大小。Transformer架构:Transformer是大语言模型训练架构,17年出现用于翻译,具备自我注意力机制能理解上下文和文本关联,其工作原理是单词预测,通过嵌入、位置编码、自注意力机制生成内容,模型调教中有控制输出的temperature。关于大语言模型的原理、应用及相关概念Transformer模型原理:通过不断检索和匹配来寻找依赖关系,处理词和词之间的位置组合,预测下一个词的概率,是一个偏向概率预测的统计模型。大模型幻觉:大模型通过训练数据猜测下一个输出结果,可能因错误数据导致给出错误答案,优质数据集对其很重要。Prompt的分类和法则:分为system prompt、user prompt和assistant prompt,写好prompt的法则包括清晰说明、指定角色、使用分隔符、提供样本等,核心是与模型好好沟通。Fine tuning微调:基于通用大模型,针对特定领域任务提供数据进行学习和调整,以适应特定领域的需求。RAG概念:未对RAG的具体内容进行详细阐述,仅提出了这个概念。

问:现在大模型有什么比较火的应用场景

大模型因其强大的语言理解和生成能力,在多个领域和应用场景中表现出色,成为当前AI领域的热点。以下是一些大模型比较火的应用场景:文本生成和内容创作:大模型可以生成连贯、有逻辑的文本,应用于撰写文章、生成新闻报道、创作诗歌和故事等。聊天机器人和虚拟助手:利用大模型的自然语言处理能力,开发能够与人类进行自然对话的聊天机器人,提供客户服务、日常任务提醒和信息咨询等服务。编程和代码辅助:大模型可以用于代码自动补全、bug修复和代码解释,帮助开发者提高编程效率。翻译和跨语言通信:大模型能够理解和翻译多种语言,促进不同语言背景的用户之间的沟通和信息共享。情感分析和意见挖掘:通过分析社交媒体、评论和反馈中的文本,大模型可以识别用户情感和观点,为市场研究和产品改进提供数据支持。教育和学习辅助:大模型可以用于创建个性化的学习材料、自动回答学生问题和提供语言学习支持。图像和视频生成:如DALL-E等模型可以根据文本描述生成相应的图像,甚至在未来可能扩展到视频内容的生成。游戏开发和互动体验:大模型可以用于创建游戏中的角色对话、故事情节生成和增强玩家的沉浸式体验。医疗和健康咨询:大模型能够理解和回答医疗相关的问题,提供初步的健康建议和医疗信息查询服务。法律和合规咨询:大模型可以帮助解读法律文件,提供合规建议,降低法律服务的门槛。这些应用场景只是大模型潜力的一部分体现,随着技术的进步和模型的优化,大模型在未来可能会拓展到更多的领域和场景中。同时,随着大模型的普及,也需要注意其在隐私、安全和伦理方面的挑战。内容由AI大模型生成,请仔细甄别。

2.2 精选:AI 研究报告

|报告标题|备注|发布时间|附件|首图|推荐|下载PDF版本|文本3||-|-|-|-|-|-|-|-||腾讯研究院:行业大模型调研报告|腾讯研究院的《行业大模型调研报告》深入分析了人工智能大模型在不同行业中的应用现状和发展趋势。报告指出,尽管当前市场以基础大模型为主,但它们普遍缺乏特定行业的专业知识。因此,如何将大模型与行业专业知识结合,以满足不同行业的需求,成为未来发展的关键。报告通过广泛的行业调研和专家访谈,提出了行业大模型的概念,强调了其在推动行业数字化转型和高质量发展中的重要性。同时,报告还探讨了行业大模型在安全治理、技术实现方式以及未来趋势等方面的挑战和机遇,为业界提供了宝贵的参考和指导。|2024/05/17||||[https://t.zsxq.com/u8x0e](https://t.zsxq.com/u8x0e)|||腾讯云&Gartner:2024生成式AI产业落地路径研究报告|这份由腾讯云和Gartner联合发布的报告,深入探讨了生成式AI技术在产业中的应用和落地路径。报告首先介绍了生成式AI技术的快速发展以及其为企业带来的机遇,然后提出了一个应用场景矩阵和落地路线图,帮助企业根据自身情况选择合适的AI应用场景和技术路线。报告还讨论了企业在实施生成式AI时可能面临的挑战,并基于Gartner的研究成果,提供了腾讯云的实践经验和建议,旨在帮助企业捕捉新技术带来的机遇,并实现业务增长。|2024/05/18||||[https://t.zsxq.com/U7hIp](https://t.zsxq.com/U7hIp)||

Others are asking
给出一份目前开源大模型的算力、存储要求和部署方案的报告,可以附带优化方案,字数10000字左右。
由于篇幅限制,我无法直接给出一份 10000 字左右的报告,但我可以为你提供一个简要的大纲: 开源大模型的算力、存储要求和部署方案报告 一、引言 (一)背景介绍 (二)目的和意义 二、大模型的算力要求 (一)训练算力需求 1. 数据预处理 2. 模型训练 3. 超参数调整 (二)推理算力需求 1. 数据加载 2. 模型推理 3. 结果输出 三、大模型的存储要求 (一)训练数据存储 1. 数据集大小 2. 数据格式 3. 数据存储方式 (二)模型参数存储 1. 模型大小 2. 模型格式 3. 模型存储方式 (三)推理结果存储 1. 结果大小 2. 结果格式 3. 结果存储方式 四、大模型的部署方案 (一)云平台部署 1. 云计算服务提供商 2. 云计算资源配置 3. 云计算成本估算 (二)本地部署 1. 硬件设备需求 2. 软件环境配置 3. 网络连接要求 五、大模型的优化方案 (一)数据预处理优化 1. 数据清洗 2. 数据增强 3. 数据压缩 (二)模型架构优化 1. 模型压缩 2. 模型剪枝 3. 模型量化 (三)训练算法优化 1. 优化器选择 2. 学习率调整 3. 训练轮数控制 (四)推理加速优化 1. 硬件加速 2. 软件优化 3. 模型编译优化 六、结论与展望 (一)总结大模型的算力、存储要求和部署方案 (二)提出未来研究和发展方向的建议 请注意,以上只是一个简要的大纲,具体内容需要根据实际情况进行详细调研和分析。如果你需要更详细的报告,请提供更多相关信息,我将尽力为你提供帮助。
2024-03-20
Midjourney对于不同场景下多人物一致性不是很好控制,我想知道如果用Stable Diffusion 能做到2个以上的固定人物同时出现在一个场景中,能控制的很好吗?
在多人物一致性控制方面,Midjourney存在一定的局限性。例如,对亚洲人脸的一致性效果较差,尤其在多主体时容易出现问题。 对于 Stable Diffusion,其在控制 2 个以上固定人物同时出现在一个场景中的表现因多种因素而异。Midjourney 有新功能 Cref 用于控制人物一致性,但存在一些问题,如对亚洲人脸效果不佳,对画面审美和构图有一定破坏性。 在使用 Midjourney 时,控制多人物一致性的关键包括:确定底图(Midjourney 生成的底图效果优于真实照片)和 cref 的参数设置(100 可保持人物面部、衣服、发型等一致,0 可配合提示词保存面部不变、改变衣服和发型,参数需根据实际情况调整)。 在处理 Midjourney 出图质量不好和一致性差的问题时,多角色情况下可放弃参考角色(cref 提示),只用参考风格(sref),好处是不会出现奇怪组合,坏处是出图较随机;还可多用局部重绘,出图先出一个主要角色和场景,对于多角色场景,可将其他角色抠图粘贴。
2025-04-15
公共议题:AI如何助力HR业务? 研讨目标: 深入理解:深入探讨 AI在人力资源管理领域的应用、薪酬管理、员工关系、公司文化、包括人才获取与配置、学习与发展、组织与人才培、HR共享与HRIS等各模块的可应用场景 机会识别与场景落地:基于组织现状,识别出业务价值高、可落地的 A 应用场景; 研讨成果(输出物): 请输出5个业务价值高、具备可行性的AI应用场景介绍,并说明what(场景是什么)、why(为什么值得做)、How(如何落地);
以下是 5 个业务价值高、具备可行性的 AI 应用场景介绍: 场景一:AI 在人才获取与配置中的应用 What:利用 AI 技术对求职者的简历和技能进行自动筛选和匹配,以快速找到最适合岗位的人才。 Why:节省招聘时间和成本,提高招聘效率和准确性,确保企业能够吸引到最合适的人才。 How:通过收集和分析大量的求职者数据,训练 AI 模型来识别关键技能和经验;将企业的岗位需求与求职者的简历进行智能匹配。 场景二:AI 在薪酬管理中的应用 What:借助 AI 分析市场数据和员工绩效,为企业提供合理的薪酬建议。 Why:确保薪酬公平合理,提高员工满意度,有助于吸引和留住优秀人才。 How:收集同行业薪酬数据和员工绩效数据,利用 AI 算法进行分析和预测;根据分析结果为企业制定个性化的薪酬方案。 场景三:AI 在员工关系管理中的应用 What:使用 AI 监测员工的情绪和满意度,及时发现问题并提供解决方案。 Why:改善员工工作体验,增强员工忠诚度,减少员工流失。 How:通过员工在工作中的交流、反馈等数据,运用自然语言处理技术分析员工情绪;根据分析结果采取相应的措施,如组织团队活动、提供心理支持等。 场景四:AI 在学习与发展中的应用 What:利用 AI 为员工提供个性化的培训课程和学习计划。 Why:提升员工的能力和绩效,促进员工的职业发展,适应企业的发展需求。 How:分析员工的技能水平和职业发展目标,利用 AI 推荐适合的学习资源和课程;跟踪员工的学习进度和效果,不断优化学习计划。 场景五:AI 在 HR 共享与 HRIS 中的应用 What:通过 AI 实现 HR 流程的自动化和智能化,如请假审批、福利申请等。 Why:提高 HR 工作效率,减少人工错误,提升服务质量。 How:将 HR 流程进行数字化和标准化,利用 AI 技术实现自动审批和处理;建立智能客服,解答员工常见的 HR 问题。
2025-04-15
金融业相关AI应用场景或AI技术介绍
在金融业中,AI 有以下应用场景和技术: 1. 风控和反欺诈:用于识别和阻止欺诈行为,降低金融机构的风险。 2. 信用评估:评估借款人的信用风险,帮助金融机构做出更好的贷款决策。 3. 投资分析:分析市场数据,辅助投资者做出更明智的投资决策。 4. 客户服务:提供 24/7 的客户服务,回答客户常见问题。 例如,Hebbia 获得近 1 亿美元 B 轮融资,其 AI 技术能够一次处理多达数百万份文档,在短时间内浏览数十亿份包括 PDF、PowerPoint、电子表格和转录内容等,并返回具体答案,主要面向金融服务公司,如对冲基金和投资银行,同时也适用于律师事务所等其他专业领域。
2025-04-15
公共议题:AI如何助力HR业务? 研讨目标: 深入理解:深入探讨 AI在人力资源管理领域的应用、薪酬管理、员工关系、公司文化、包括人才获取与配置、学习与发展、组织与人才培、HR共享与HRIS等各模块的可应用场景 机会识别与场景落地:基于组织现状,识别出业务价值高、可落地的 A 应用场景; 研讨成果(输出物): 请输出10个业务价值高、具备可行性的AI应用场景介绍,并说明what(场景是什么)、why(为什么值得做)、How(如何落地);
以下是为您生成的 10 个业务价值高、具备可行性的 AI 应用场景介绍: 1. 人才招聘与筛选 What:利用 AI 技术对求职者的简历进行自动筛选和分析,评估其与岗位的匹配度。 Why:节省 HR 大量的时间和精力,提高招聘效率和准确性。 How:通过自然语言处理和机器学习算法,训练模型识别关键信息和技能。 2. 员工培训与发展 What:根据员工的技能水平和职业发展目标,定制个性化的培训计划。 Why:提升员工的能力和绩效,增强员工对企业的忠诚度。 How:利用大数据分析员工的工作表现和学习需求,推荐相关课程和学习资源。 3. 薪酬福利管理 What:运用 AI 预测市场薪酬趋势,为企业制定合理的薪酬策略。 Why:保持企业薪酬的竞争力,吸引和留住优秀人才。 How:收集和分析行业薪酬数据,结合企业的财务状况和战略目标进行优化。 4. 员工绩效评估 What:借助 AI 实时监测员工的工作表现,提供客观的绩效评估。 Why:减少人为偏差,确保评估的公正性和准确性。 How:利用工作流程数据和行为分析模型进行评估。 5. 员工关系管理 What:通过 AI 分析员工的情绪和满意度,及时发现问题并解决。 Why:营造良好的工作氛围,提高员工的工作积极性和创造力。 How:使用情感分析技术处理员工的反馈和交流信息。 6. 组织架构优化 What:利用 AI 分析企业的业务流程和人员配置,提供组织架构调整建议。 Why:提高企业的运营效率和灵活性,适应市场变化。 How:基于数据分析和模拟优化算法进行评估和推荐。 7. 人力资源规划 What:根据企业的战略目标和业务发展预测人力资源需求。 Why:提前做好人才储备和招聘计划,保障企业的正常运营。 How:运用数据分析和预测模型进行规划。 8. 企业文化传播 What:使用 AI 生成个性化的企业文化宣传内容,提高传播效果。 Why:增强员工对企业文化的认同感和归属感。 How:利用自然语言生成技术和个性化推荐算法。 9. 智能客服 What:在 HR 服务中引入 AI 客服,解答员工常见问题。 Why:快速响应员工需求,提高服务质量。 How:训练智能客服模型,涵盖常见的 HR 问题和解决方案。 10. 人才库管理 What:利用 AI 对人才库进行分类和更新,提高人才库的利用效率。 Why:方便快速找到合适的人才,降低招聘成本。 How:运用数据挖掘和分类算法进行管理。
2025-04-14
公共议题:AI如何助力HR业务? 研讨目标: 深入理解:深入探讨 AI在人力资源管理领域的应用、薪酬管理、员工关系、公司文化、包括人才获取与配置、学习与发展、组织与人才培、HR共享与HRIS等各模块的可应用场景 机会识别与场景落地:基于组织现状,识别出业务价值高、可落地的 A 应用场景; 研讨成果(输出物): 请输出3-5个业务价值高、具备可行性的AI应用场景介绍,并说明what(场景是什么)、why(为什么值得做)、How(如何落地);
以下是为您提供的 3 个业务价值高、具备可行性的 AI 应用场景介绍: 场景一:AI 在企业招聘中的应用 What:利用 AI 技术进行简历筛选、人才匹配和面试评估。 Why:能够快速处理大量简历,提高招聘效率和准确性,节省人力和时间成本,同时更精准地找到符合岗位需求的人才。 How:通过引入相关的 AI 招聘软件,与企业现有的招聘系统集成,对简历进行关键词提取和分析,利用机器学习算法进行人才匹配,并通过视频面试中的语音和表情分析辅助评估候选人。 场景二:AI 助力个性化人力资源管理 What:根据员工的个人特点和工作表现,提供个性化的培训计划、职业发展建议和绩效评估。 Why:能够充分发挥员工的潜力,提高员工满意度和忠诚度,促进企业的长期发展。 How:收集员工的工作数据、学习记录和绩效表现等信息,运用 AI 算法进行分析和预测,为员工制定专属的发展方案,并通过移动应用或内部系统向员工推送相关建议和培训课程。 场景三:AI 打造无人值守的 HR 平台 What:实现 HR 业务的自动化处理,如员工请假审批、薪酬计算和福利发放等。 Why:减少人工操作的错误和繁琐流程,提高 HR 工作的效率和准确性,使 HR 人员能够专注于更有价值的战略工作。 How:整合企业内部的各种 HR 系统和数据,利用 RPA 和 AI 技术实现流程的自动化,同时建立监控和预警机制,确保平台的稳定运行。
2025-04-14
随着 ChatGPT、Deepseek 等 AI 技术的爆发式发展,人工智能正在加速渗透各行业应用场景,包括茶饮行业。请你对 AI 技术在茶饮行业的影响进行研究分析,并提出 AI 技术可以在连锁奶茶店如何应用的设想。
以下是关于 AI 技术在茶饮行业的影响分析及在连锁奶茶店应用的设想: 影响分析: 1. 提升运营效率:通过自动化流程和智能预测,优化库存管理、员工排班等环节。 2. 改善客户体验:利用智能客服快速响应顾客咨询,提供个性化推荐。 3. 精准营销:基于大数据分析顾客偏好,制定更有针对性的营销策略。 应用设想: 1. 智能点单系统:根据顾客的历史订单和偏好,为其推荐饮品和搭配。 2. 库存管理优化:借助 AI 预测销售趋势,精准控制原材料库存。 3. 员工培训辅助:利用虚拟培训工具,提升员工的服务技能和产品知识。 4. 营销决策支持:通过数据分析,确定最佳的促销活动和推广渠道。 目前的知识库中,相关的具体研究报告主要有: 1. 浙江大学:《DeepSeek 技术溯源及前沿探索朱强》(2025/03/19),介绍了语言模型从基于统计的 Ngram 到 Transformer 的技术演化,以及大模型的发展,如 GPT 系列。 2. 浙江大学:《DeepSeek:回望 AI 三大主义与加强通识教育报告》(2025/03/05),围绕人工智能展开,介绍其发展历程、三大主义、技术进展、应用成果以及教育举措。 3. 清华大学:《气象人工智能技术与应用报告》(2024/12/25),围绕气象人工智能展开,介绍了其发展和应用情况。 如需下载这些研究报告,可。
2025-04-09
请详细讲述一下这个网站《通往AGI之路》的学习方法?
《通往 AGI 之路》的学习方法如下: 1. 系统学习:观看李弘毅老师的生成式 AI 导论、吴达的生成式 AI 入门视频等高质量学习内容,并整理成学习笔记,在整理过程中与大家交流互动。 2. 社区共创学习:对于觉得系统学习枯燥的同学,可以等待社区共创内容,通过共创做小项目来反向推动学习。 3. 了解相关原理:学习 A16Z 推荐的包括 GPT 相关知识、Transformer 模型运作原理、大语言模型词语接龙原理等基础知识。 4. 探索应用:例如了解 Stable Diffusion 运作原理与 GPT 训练现状。 5. 针对特定软件:对于 AE 软件,可在 B 站找丰富的入门课程自学,也可从包图网下载工程文件学习。通过拆解视频、留意路边广告特效、按层级逻辑思考画面运动来学习,还可参考模板。 6. 名词解释:理解包括 AGI、AIGC、agent、prompt 等 AI 相关名词,可通过与 AI 对话或李继刚老师的课程来理解。 7. 信息获取:关注赛博蝉星公众号、国外优质博主的 blog 或 Twitter 等,订阅获取最新信息并投稿。 8. 参与活动:参加如 AIPO、CONFIUI 生态大会等社区活动,每月还有切磋大会。 9. 阅读经典:阅读介绍 GPT 运作原理、Transformer 模型、扩散模型等的经典必读文章,以及软件 2.0 时代相关内容。 10. 初学者推荐:对于初学者,推荐看 Open AI 的官方 Cookbook,小琪姐做了中文精读翻译,也可查看 cloud 的相关内容。同时,整理 open AI 的发展时间线和万字长文回顾等历史脉络类资料。
2025-03-23
我需要你给我生成一些提示词,我会给你我想的想法。《》以内的是想法。《我想写一篇影视解说的文案,写作的视角以我,第一人称的视角来写。想要风格偏幽默风趣一点,就像跟朋友在讲述一样,可以模仿鲁迅先生的手法。而且还想把影片的剧情内容写出来,从开篇到电影的结尾,如果有需要保留原片的地方,请把原片的画面场景以及时间段描述出来。要求这篇文案要附上我自己的内心独白,以此引人深思!请你深度思考后,在做答复!要求字数不少于5000字。》请问我该如何写提示词?请你整理好提示词后发给我
以下是为您生成的一些提示词,希望对您有所帮助: 影视解说文案提示词 1. 以第一人称幽默风趣的口吻,像与朋友讲述般,描绘影片从开篇到结尾的精彩剧情,融入自己的内心独白,模仿鲁迅先生的手法,展现独特的视角和深刻的思考。 2. 用轻松幽默的语言,以我的视角详述影片情节,穿插搞笑的评论和内心想法,借鉴鲁迅先生的讽刺技巧,使解说引人入胜。 3. 以亲切自然的叙述方式,如同与好友聊天,讲述影片故事,从开头至结束,结合鲁迅先生的文风,加入个人的情感起伏和独特见解。 DALL·E 相关提示词 1. 绘画:提及颜料种类、画布纹理和笔触形状/纹理(列表)。 2. 数字:注明使用的软件、阴影技术和多媒体方法(列表)。 3. 基于详细提示使用 DALL·E 3 生成图像,让创意鲜活起来,为提示的每个元素做出大胆有趣的选择。 4. 遵循提示指南,提出四个全新的简单概念,而非完整提示,从上次给出的建议中获取灵感。 请注意,默认方面比率为正方形(1:1),默认风格为摄影,包括相机设置、摄影类型和设备。同时,避免违反服务条款的词汇或概念,不侵犯版权,不使用暗示性或露骨的图像,强调符合 G 级评级的元素。
2025-02-06