Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

AI的历史

Answer

AI 作为一个领域始于二十世纪中叶。最初,符号推理流行,带来了如专家系统等重要进展,但因从专家提取知识并以计算机可读形式表现及保持知识库准确性的任务复杂且成本高,导致 20 世纪 70 年代出现“人工智能寒冬”。

随着时间推移,计算资源更便宜,数据更多,神经网络方法在计算机视觉、语音理解等领域展现出卓越性能,过去十年中“人工智能”常被视为“神经网络”的同义词。

AI 技术的发展历程如下:

  1. 早期阶段(1950s - 1960s):专家系统、博弈论、机器学习初步理论。
  2. 知识驱动时期(1970s - 1980s):专家系统、知识表示、自动推理。
  3. 统计学习时期(1990s - 2000s):机器学习算法(决策树、支持向量机、贝叶斯方法等)。
  4. 深度学习时期(2010s - 至今):深度神经网络、卷积神经网络、循环神经网络等。

当前 AI 前沿技术点包括:

  1. 大模型(Large Language Models):GPT、PaLM 等。
  2. 多模态 AI:视觉 - 语言模型(CLIP、Stable Diffusion)、多模态融合。
  3. 自监督学习:自监督预训练、对比学习、掩码语言模型等。
  4. 小样本学习:元学习、一次学习、提示学习等。
  5. 可解释 AI:模型可解释性、因果推理、符号推理等。
  6. 机器人学:强化学习、运动规划、人机交互等。
  7. 量子 AI:量子机器学习、量子神经网络等。
  8. AI 芯片和硬件加速。

最初,查尔斯·巴贝奇发明计算机用于按明确程序运算。现代计算机虽先进但仍遵循相同理念。但有些任务如根据照片判断人的年龄无法明确编程,因不知大脑完成任务的具体步骤,这类任务正是 AI 感兴趣的。

Content generated by AI large model, please carefully verify (powered by aily)

References

人工智能简介和历史

人工智能作为一个领域始于二十世纪中叶。最初,符号推理非常流行,也带来了一系列重要进展,例如专家系统——能够在某些有限问题的领域充当专家的计算机程序。然而,人们很快发现这种方法无法实现应用场景的大规模拓展。从专家那里提取知识,用计算机可读的形式表现出来,并保持知识库的准确性,是一项非常复杂的任务,而且因为成本太高,在很多情况下并不适用。这使得20世纪70年代出现了“人工智能寒冬”([AI Winter](https://en.wikipedia.org/wiki/AI_winter))。随着时间的推移,计算资源变得越来越便宜,可用的数据也越来越多,神经网络方法开始在计算机视觉、语音理解等领域展现出可与人类相媲美的卓越性能。在过去十年中,“人工智能”一词大多被用作“神经网络”的同义词,因为我们听到的大多数人工智能的成功案例都是基于神经网络的方法。我们可以观察一下这些方法是如何变化的,例如,在创建国际象棋计算机对弈程序时:

问:AI的技术历史和发展方向,目前最前沿的技术点有哪些

AI技术的发展历程和前沿技术点可以概括如下:[heading2]AI技术发展历程[content]1.早期阶段(1950s-1960s):专家系统、博弈论、机器学习初步理论2.知识驱动时期(1970s-1980s):专家系统、知识表示、自动推理3.统计学习时期(1990s-2000s):机器学习算法(决策树、支持向量机、贝叶斯方法等)4.深度学习时期(2010s-至今):深度神经网络、卷积神经网络、循环神经网络等[heading2]当前AI前沿技术点[content]1.大模型(Large Language Models):GPT、PaLM等2.多模态AI:视觉-语言模型(CLIP、Stable Diffusion)、多模态融合3.自监督学习:自监督预训练、对比学习、掩码语言模型等4.小样本学习:元学习、一次学习、提示学习等5.可解释AI:模型可解释性、因果推理、符号推理等6.机器人学:强化学习、运动规划、人机交互等7.量子AI:量子机器学习、量子神经网络等8.AI芯片和硬件加速

人工智能简介和历史

译者:Miranda,原文见https://microsoft.github.io/AI-For-Beginners/lessons/1-Intro/README.md[heading1][课前测试](https://red-field-0a6ddfd03.1.azurestaticap[content]人工智能(Artificial Intelligence)是一门令人兴奋的科学,它研究我们如何使计算机表现出智能行为,例如做一些人类所擅长的事情。最初,查尔斯·巴贝奇(Charles Babbage)发明了计算机,用于按照一套明确定义的程序(即算法)来对数字进行运算。现代计算机虽然比19世纪提出的原始计算机模型要先进得多,但仍然遵循着相同的受控计算理念。因此,如果我们知道实现某些目标所需的每一个步骤及其顺序,就有可能编写出程序,使计算机按照我们的想法去做这些事。✅“根据照片判断一个人的年龄”是一件无法明确编程的任务,因为我们并不知道当我们在做这件事时,是如何经过某些清晰的步骤,从而在脑海中得到一个数字的。然而,对于有些任务,我们并不能知道明确的解法。例如从一个人的照片中来判断他/她的年龄。我们之所以能做这件事,是因为我们见过了很多不同年龄的人,但我们无法明确自己的大脑具体是通过哪些步骤来完成这项任务的,所以也无法编写明确的程序让计算机来完成。这种类型的任务正是人工智能(简称AI)感兴趣的。✅想一想,如果人工智能得以实现,哪些任务可以被交给计算机完成?考虑金融、医学和艺术领域,这些领域如今是如何从人工智能中受益的?

Others are asking
ai如何做儿童绘本
以下是关于如何用 AI 做儿童绘本的相关信息: 有专门的 AI 生成儿童绘本和多媒体故事平台,支持从构思、插画制作到配音发布的一体化创作流程。 该平台提供 100 多种模板和 60 多种绘画风格,可定制故事板和角色设计。 免费用户仅能生成 5 页内容,付费后可提升质量和生成速度。相关链接: 另外,儿童绘本是 AI 比较火的一个赛道,因为儿童生活在相对简单化的世界,还未成长到面对真实复杂世界的地步。
2025-02-25
请推荐视频清晰度修复的AI网站
以下为您推荐一些视频清晰度修复的 AI 网站: 1. https://www.topazlabs.com/topazvideoai :Topaz Video AI 是一款用于消除视频抖动和运动模糊的插件,可提升画质、帧率等。解压对应文件后,右键管理员运行 VideoAIportable.exe 文件,导入处理好的视频进行操作。预设部分有放大视频、提升画质等功能,稳定 AI 模式分为自动裁切和完整帧,强度在 60 左右为宜。 2. Kraken.io :主要用于图像压缩,但也提供免费的图像放大功能,能保证图像细节清晰度。 3. Deep Art Effects :强大的艺术效果编辑器,通过 AI 技术能将图像放大并赋予艺术效果,支持多种滤镜和风格。 4. https://replicate.com/nightmareai/realesrgan :基于 RealESRGAN 的图像超分辨率增强模型,可选人脸修复和调节放大倍数,但使用几次后收费。 此外,还可以通过以下方式进行视频清晰度修复: 使用 Photoshop Generative AI 功能,主要工具包括 Remove tool、Clone brush、Generative fill 以及 Neural filters。链接:https://x.com/xiaohuggg/status/1692751080973828468?s=46&t=F6BXooLyAyfvHbvr7Vw2g SD 图生图,重绘幅度小一点。 另外,新的视频修复与超分辨率工具具有画面缺失修补、模糊去除、清晰度提升(最高 4 倍超分辨率)等功能,同时支持去模糊、修复、超分任务,操作简便,仅需一张 13G 显存 GPU。项目地址:https://visionxl.github.io
2025-02-25
如何在MacBook上部署AI工具
在 MacBook 上部署 AI 工具的方法如下: 方法一:接入微信 1. 打开菜单中的“终端”。 2. 按照以下步骤依次粘贴代码并回车: 第一步:cd/root||exit 1 第二步:粘贴下方两行代码,等待下载完成。若有卡点,可能是服务器网络问题,可手动下载文件并上传至 root 文件夹。 第三步:rm f Anaconda32021.05Linuxx86_64.sh 第四步:/root/anaconda/bin/conda create y name AI python=3.8 第五步:依次粘贴并回车:echo'source /root/anaconda/bin/activate AI'>>~/.bashrc 3. 执行完成后,刷新重新进入终端,若最左侧出现“(AI)”字符,则部署成功。 方法二:安装 Trae 1. 科学上网,因为 Trae AI 官网部署在海外,且需要使用海外的大模型。 2. 在官网直接点击下载,Trae 会自动识别电脑芯片。 3. 对于 Mac,将下载完后的左侧 Trae 应用拖动到右侧文件夹内;对于 Windows,双击 Trae 图标完成安装。 4. 安装完成后,点击图标启动,进行简单设置,如选择主题背景和默认语言为中文,根据情况选择“Skip”选项等。 5. 选择合适的登录方式,如 Google 账号或 Github 账号(推荐注册 Github 账号:https://github.com/ )。 方法三:选择合适的平台 目前市面上有线上和线下本地部署的两种 AI: 线上的优势为出图速度快,不吃本地显卡配置,无需下载大模型,能看其他创作者的作品,但出图分辨率有限。 线下部署的优势为可添加插件,不卡算力,出图质量高,但使用时电脑基本宕机,配置不高可能出问题。 可充分发挥线上和线下平台的优势,线上用于找参考、测试模型,线下作为主要出图工具。例如,在线上绘图网站的绘图广场上发现想要的画风,点击创作获取模型和标签,截取游戏人物底图,多次尝试不同画风得出合适的模型和组合,最后在 C 站(https://civitai.com/ )下载对应模型到本地加载部署后开始生图。
2025-02-25
如何快速学习AI进行数据分析
以下是快速学习 AI 进行数据分析的方法: 1. 了解数据分析流程: 逻辑流程图包括 SQL 分析和个性化分析。 SQL 分析:用户描述分析内容,后台连接数据库,让 AI 输出并校验 SQL 语句,执行后将数据传给 GPT 分析,最后返回分析结论和建议并在前端展示。 个性化分析:用户上传文件并描述,前端解析后传给 GPT 分析,后续步骤与 SQL 分析一致。 2. 掌握提示词技巧: 提供大模型可访问的数据源或上传数据表格。 用清晰的提示词说明分析维度和结果输出格式。 观察生成结果,迭代优化提示词,满意后导出结果。 3. 分环节处理: 将数据清洗、提取、模型选择、训练和结果解释等环节分开处理,便于优化性能和发现问题。 4. 逐步深化和细化提问: 先提出宽泛问题,再根据回答进一步细化。 5. 提供学习内容: 为 AI 系统提供大量数据、示例、高质量参考材料和详细流程、知识(knowhow)。 6. 利用专业术语引导: 在 Prompt 中使用专业领域术语引导 AI 回答方向。 7. 进行验证与反馈: 大模型语料有滞后性,使用 AI 回答后要交叉验证,结合自身专业知识筛选判断,确保符合法律伦理等要求。
2025-02-25
免费生成ppt的ai
以下是为您提供的免费生成 PPT 的 AI 相关信息: 目前市面上大多数 AI 生成 PPT 按照以下思路完成设计和制作: 1. AI 生成 PPT 大纲 2. 手动优化大纲 3. 导入工具生成 PPT 4. 优化整体结构 为您推荐以下工具: 1. 歌者 PPT(gezhe.com):是一款永久免费的智能 PPT 生成工具。具有话题生成、资料转换、多语言支持、海量模板和案例、在线编辑和分享、增值服务等功能。其产品优势包括免费使用、智能易用、海量案例、资料转 PPT 专业、AI 翻译等。推荐理由为完全免费、智能化程度高、模板和案例库丰富、支持多语言、学习成本低。 2. Gamma:在各种交流群中被频繁推荐,免费版本也能生成高质量的 PPT,不断优化改进,个人使用体验良好,生成效果在内容组织、设计美观度和整体专业感方面表现卓越。 此外,推荐 2 篇市场分析的文章供您参考: 1. 《》 2. 《》 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2025-02-25
我要做动画短片 ,从剧本到成片,需要用到哪些AI软件(国内可用的)?
2025-02-25
有没有可以分析历史事件关联性的AI
很抱歉,上述提供的内容中没有直接提到可以分析历史事件关联性的 AI 相关信息。但目前在 AI 领域,有一些自然语言处理和数据分析的技术及工具可能会被应用于历史事件关联性的分析。例如,利用大规模的语言模型结合历史数据进行文本挖掘和关联分析。不过,具体的专门用于此目的的成熟 AI 应用可能还需要进一步的研究和开发。
2025-02-24
有没有能进行历史进程分析的AI
以下是关于历史进程分析的 AI 相关内容: AI 技术的发展历程和前沿技术点可以概括如下: 发展历程: 1. 早期阶段(1950s 1960s):包括专家系统、博弈论、机器学习初步理论。 2. 知识驱动时期(1970s 1980s):有专家系统、知识表示、自动推理。 3. 统计学习时期(1990s 2000s):出现机器学习算法如决策树、支持向量机、贝叶斯方法等。 4. 深度学习时期(2010s 至今):深度神经网络、卷积神经网络、循环神经网络等得到发展。 当前前沿技术点: 1. 大模型(Large Language Models):如 GPT、PaLM 等。 2. 多模态 AI:包括视觉 语言模型(CLIP、Stable Diffusion)、多模态融合。 3. 自监督学习:如自监督预训练、对比学习、掩码语言模型等。 4. 小样本学习:有元学习、一次学习、提示学习等。 5. 可解释 AI:涉及模型可解释性、因果推理、符号推理等。 6. 机器人学:包含强化学习、运动规划、人机交互等。 7. 量子 AI:如量子机器学习、量子神经网络等。 8. AI 芯片和硬件加速。 对于大众来说,AI 领域的使用随着国内互联网的发展,在近 20 年才开始普及。最初的应用主要是基于 NLP 技术的聊天机器人和客服机器人。随后,中英文翻译、语音识别、人脸识别等技术取得突破,在日常生活中的应用广泛,如语音助手、智能翻译设备、人脸识别支付系统等。但以前的技术突破大多限于特定领域,模型应用范围相对狭窄。而随着 OpenAI ChatGPT 等大型语言模型的突破,展示了通过大规模模型预训练涌现出广泛智能应用的新发展路线,一个模型就能实现多种能力。 此外,在法律法规方面,某些用于司法和民主进程的 AI 系统应被归类为高风险,考虑到其对民主、法治、个人自由以及有效补救和公平审判权利的潜在重大影响。但某些用于纯辅助行政活动且不影响个别案件实际司法管理的 AI 系统不应被归类为高风险。
2025-02-24
大模型的发展历史
大模型的发展历史如下: 2017 年,发布了 Attention Is All You Need 论文,开启了大模型发展的序幕。 2018 年,Google 提出 BERT(Bidirectional Encoder Representations from Transformers),通过双向预训练并行获取上下文语义信息和掩码语言建模,开创了预训练语言表示范式,参数规模在 110M 到 340M 之间。 2018 年,OpenAI 提出 GPT(Generative Pretrained Transformer),开创了仅使用自回归语言建模作为预训练目标而无需额外监督信号的方式,展示了强大的语言生成能力,参数规模达 1750 亿。 2021 年,Meta 提出 Large LAnguage Model Approach(LLAMA),这是首个开源模型,为构建更大规模、更通用的语言模型提供了系统化的方法与工具,参数规模在十亿到千亿之间。 2023 年是大模型澎湃发展的一年,从 22 年 11 月 ChatGPT 的惊艳面世,到 23 年 3 月 GPT4 作为“与 AGI(通用人工智能)的第一次接触”,到 23 年末多模态大模型的全面爆发,再到刚刚面世的 Sora 再次震惊世界。随着大模型技术的愈发成熟和规模增大,为 AI Agent 提供强大能力,有望构建具备自主思考、决策和执行能力的智能体,广泛应用于多个行业和领域。
2025-02-24
AI是什么,AI的历史
人工智能(Artificial Intelligence)是一门研究如何使计算机表现出智能行为,例如做一些人类所擅长的事情的科学。 其历史始于二十世纪中叶,最初符号推理流行,带来了专家系统等重要进展,但因从专家提取知识并表现和保持知识库准确性复杂且成本高,20 世纪 70 年代出现“人工智能寒冬”。 随着时间推移,计算资源更便宜,数据更多,神经网络方法在计算机视觉、语音理解等领域展现出卓越性能,过去十年中,“人工智能”常被用作“神经网络”的同义词。 例如在创建国际象棋计算机对弈程序时,方法不断变化。最初,查尔斯·巴贝奇发明了计算机,用于按照明确程序运算,现代计算机虽先进但仍遵循相同受控计算理念。但像“根据照片判断一个人的年龄”这类任务无法明确编程,因为我们不知大脑完成此任务的具体步骤,而这类任务正是人工智能感兴趣的。
2025-02-24
文生图历史
文生图技术的发展历史如下: 1. 早期发展(2014 年以前):最初的文生图尝试集中在将简单文本描述转化为图像。这些早期方法依赖于基本的图像处理技术和简单的模型,效果有限,生成的图像质量通常不高。 2. 深度学习的崛起(2014 年 2018 年):随着深度学习的发展,尤其是卷积神经网络(CNN)的成功应用,文生图模型开始采用神经网络来改进图像生成的质量和多样性。在这一时期,如生成对抗网络(GAN)及其变体层出不穷,开始被用于文生图任务,展示了生成更逼真图像的潜力。 3. 引入 Transformer(2019 年 2021 年):Transformer 架构原本在自然语言处理(NLP)领域取得巨大成功,开始被应用于文生图模型,提高模型处理复杂文本和生成高质量图像的能力。如 OpenAI 的 DALLE 模型,采用了 Transformer 结构来生成与文本描述匹配的图像,成为这一时期的标志性进展。与此同时,以 DDPM 为代表的工作,为 Diffusion Model 奠定了理论基础,众多基于 Transformer 和 Diffusion Model 的研究成果从 2021 下半年开始如雨后春笋般涌现。 4. LLM 与文生图模型的结合(2022 年 2023 年):大型语言模型(LLM)如 GPT3 开始与文生图模型结合,利用 LLM 强大的语言理解能力来提升图像生成的相关性和创造性。 文生图模型的演进历史整体上反映了计算机视觉(CV)和自然语言处理(NLP)的融合与发展。从早期的基础尝试到结合了深度学习、Transformer 和大型语言模型的先进方法,文生图模型在技术上实现了巨大的飞跃,不断延伸 AI 在艺术和创造力方面的边界。我们预计,未来的文生图模型将进一步提升在复杂文本理解和高质量图像生成方面的能力,为多模态交互和创意表达提供更加强大的工具。 此外,在星流一站式 AI 设计工具中,生图历史按照每日进行记录。点击日期对应的区域可以查看当日生成的图像,可通过输入提示词搜索相关的图像。点击单个图像可以查看具体的生图信息与参数一键导入使用。在生图历史中收藏的图像,会收集在特定区域。拖动图像可以直接导入无限画布。
2025-02-23
我是高中历史老师,我想知道用什么AI模型可以“将自己的PPT变成一篇论文”
目前在将 PPT 转换为论文方面,GPT 模型可能会有所帮助。例如,在“教育:一个历史老师用 GPT 给学生讲课”的案例中,学生利用 GPT 相关功能进行模拟体验,并根据要求撰写论文,包括分析模拟的准确性、进行事实核查等。 另外,Claude 模型也能在相关工作中发挥作用。比如可以帮助快速寻找符合条件的论文、提取精炼论文中的信息,甚至找到适合的 PPT 制作工具并指导使用。 此外,一些神经网络大模型通过预测下一个字的方式生成文字,这种方式具有一定的创意性,且可拓展到图像、声音等领域。但需要注意的是,AI 的预测不一定保证完全正确。
2025-02-22