Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

人工智能与机器学习具体是什么

Answer

人工智能是一种目标,旨在让机器展现智慧,简称 AI。它包括多种实现方法,如自上而下的方法,即对推理过程进行建模,将其形式化为计算机程序,依赖于知识表示和推理;自下而上的方法,模拟大脑中的神经元,构建人工神经网络,通过举例让其学习解决问题。

机器学习是人工智能的一个子领域,是一种让机器自动从资料中找到公式的手段。机器学习模型分为监督和无监督两种,监督模型使用标记的数据学习并预测未来值,无监督模型则专注于发现原始数据中的模式。深度学习是机器学习的一个子集,使用人工神经网络处理更复杂的模式,可使用标记和未标记的数据进行半监督学习。

生成式人工智能是人工智能的一个子集,试图学习数据和标签之间的关系以生成新内容,如自然语言、图像或音频等,其输出不是数字或类别。生成式人工智能模型使用统计模型预测预期响应,并根据训练数据生成新内容,但可能产生幻觉,即无意义或语法错误的单词或短语。

大语言模型是具有大量参数的“深度学习”模型。ChatGPT 是基于大型语言模型的对话机器人,是 AIGC 技术在文本生成领域的一个应用实例。AIGC 是利用人工智能技术生成包括文本、图像、音频和视频等内容的新型生产方式。

Content generated by AI large model, please carefully verify (powered by aily)

References

1. 生成式人工智能简介

视频学习地址:https://youtu.be/G2fqAlgmoPo中文版本推荐[宝玉XP翻译版本](https://www.bilibili.com/video/BV15a4y1u77v/)和超正经学术君(以下是两个版本):这个名为"生成式人工智能简介"的视频是由Gwendolyn Stripling博士主讲的。她介绍了生成式人工智能的概念,这是一种可以产生各种类型内容的人工智能,包括文本、图像、音频和合成数据。她解释了人工智能和机器学习的区别,机器学习是人工智能的一个子领域,它通过输入数据训练模型,使计算机能够在没有明确编程的情况下学习。机器学习模型可以是监督的,也可以是无监督的,监督模型使用标记的数据从过去的例子中学习并预测未来的值,而无监督模型则专注于发现原始数据中的模式。深度学习是机器学习的一个子集,它使用人工神经网络处理比传统机器学习模型更复杂的模式。这些神经网络可以使用标记和未标记的数据,从而允许半监督学习。生成式人工智能是适用于这个学科的人工智能的一个子集。它试图学习数据和标签之间的关系,以生成新的内容。生成式人工智能输出自然语言、图像或音频,而非生成式人工智能输出数字或类别。生成式人工智能模型使用统计模型预测预期的响应,并根据它们接受训练的数据的基础结构生成新的内容。他们可以根据接收到的输入生成文本、图像、音频和决策的新颖组合。生成式人工智能的力量来自于使用了Transformers,这种技术在2018年彻底改变了自然语言处理(Transformer模型的核心思想是“自注意力机制”/Self-Attention Mechanism,也被称为“自我注意力”或“注意力”。这种机制允许模型在处理一个词或短语时,同时考虑到与它相关的其他词或短语的信息。这种方式使得模型能够更好地理解语言的上下文,从而更准确地进行翻译或生成文本)。然而,Transformers也可能产生幻觉,这些是模型生成的无意义或语法错误的单词或短语。

人工智能简介和历史

在自上而下的方法中,我们尝试对推理过程进行建模。由于我们在推理时可以知道自己的思考步骤,因此我们可以尝试将这一过程形式化,并转化为计算机程序。这就是所谓的符号推理(symbolic reasoning)。人们的头脑中往往有一些指导决策过程的规则。例如,当医生对病人进行诊断时,他/她可能会通过发烧症状意识到病人身体内部可能有一些炎症。通过将大量规则应用于特定问题,医生有可能得出最终的诊断结果。这种方法在很大程度上依赖于知识表示和推理。从人类专家那里提取知识可能是最困难的部分,因为医生在很多情况下并不清楚自己为什么会得出特定的诊断结果。有时,他/她只是直接在脑海中浮现出解决方案,而并未经过明确的思考。类似“根据照片判断一个人的年龄”这样的任务,根本无法简化为对知识的操作。[heading2]自下而上的方法[content]我们还有另一种选择,就是模拟大脑中最简单的元素——神经元。我们可以在计算机中构建一个人工的神经网络,然后通过举例教它解决问题。这类似于新生儿通过观察周围环境来学习的过程。✅对婴儿的学习方式做一个小调研。婴儿大脑中的基本要素有哪些?那么机器学习(ML)呢?人工智能的一部分方法是基于数据来使计算机学会解决问题,这样的方法称为机器学习。我们在本课程中将不讨论经典机器学习,建议你可以学习单独的《[机器学习入门](https://github.com/microsoft/ML-For-Beginners)》课程。

快速学习 AIGC,有料通俗易懂版!

人工智能:一种目标,让机器展现智慧,Artificial Intelligence,简称AI生成式人工智能GenAI:一种目标,让机器产生复杂有结构的内容,Generative AI简称GenAI机器学习:一种手段,让机器自动从资料中找到公式深度学习:一种更厉害的手段,类神经网络-非常大量参数的函数大语言模型:是一类具有大量参数的“深度学习”模型,Large Language Models,简称LLMsChatGPT:一个应用实例,形象比喻:通过投喂大量资料预训练后,ChatGPT会通过聊天玩“文字接龙游戏”了。英文解释:Chat聊天,G:Generative生成,P:Pre-trained预训练,T:Transformer类神经网络模型以上概念之间的关系如下图:AIGC(Artificial Intelligence Generated Content,人工智能生成内容)是利用人工智能技术生成内容的新型生产方式,包括文本、图像、音频和视频等内容。AIGC技术可以用于多种应用,如自动撰写新闻文章、生成艺术画作、创作音乐、制作视频游戏内容等。ChatGPT是AIGC技术的一个应用实例,它代表了AIGC在文本生成领域的进展。ChatGPT是美国OpenAI公司开发的一款基于大型语言模型(Large Language Model,简称LLM)的对话机器人,它能够根据用户的输入生成连贯且相关的文本回复。用户界面如下:AGI、GenAI、AIGC几个概念的区别与理解可参考下图:更多概念可问Kimi、通义千问、文心一言等大模型,也可以继续往下看,会逐步讲解更多概念。国内主要模型公司及地址如下:

Others are asking
给我30份中央人民政府网站和工业和信息部网站2020~2023年期间发布的重要的国家层面与人工智能相关政策文件,列个清单
以下是中央人民政府网站和工业和信息部网站 2020 2023 年期间发布的部分重要的国家层面与人工智能相关政策文件清单: 1. 互联网信息服务算法推荐管理规定(算法推荐规定),于 2023 年 3 月 1 日生效。 2. 互联网信息服务深度合成管理规定(深度合成规定),于 2023 年 1 月 10 日生效。 3. 生成式人工智能服务管理暂行办法(生成式 AI 办法),于 2023 年 7 月 13 日公布并于 2023 年 8 月 15 日生效。 4. 生成式人工智能服务安全基本要求(征求意见稿),于 2023 年 10 月 11 日公开征求意见,意见反馈截止日期为 2023 年 10 月 25 日。 5. 科技伦理审查办法(试行)(征求意见稿)(伦理审查办法(草案)),于 2023 年 4 月 14 日公开征求意见,意见反馈截止时间为 2023 年 5 月 3 日。 6. 国家人工智能产业综合标准化体系建设指南(征求意见稿),于 2024 年 1 月 17 日公开征集意见,意见反馈截止时间为 2024 年 1 月 31 日。 由于未能获取到 30 份相关政策文件,建议您通过中央人民政府网站和工业和信息部网站的搜索功能,以获取更全面和准确的信息。
2025-02-25
有没有一个人工智能工具,可以针对某个网站的更新内容进行分析
以下是为您找到的一些可能针对网站更新内容进行分析的人工智能工具: 1. NotebookLM:可以综合不同材料生成笔记,但存在交互设计不够清晰的问题。 2. Excel 中的 Copilot:能帮助写复杂公式、创建可视化图表及书写 Python 代码完成复杂任务。 3. Loop:可以生成对应内容的表格和其他 Office 软件链接。 4. Stream 中的 Copilot:能够帮助理解视频内容,询问并跳转到对应时间点。 5. Bard:推出了英语版 Bard Extensions,可从 Google 工具中查找并显示相关信息,还能使用“Google it”按钮核实答案,分享聊天时可继续对话并询问。 6. PaLM 2 模型:根据用户反馈应用强化学习技术训练,更加直观和富有想象力。 7. Youtube 的 AI 工具:包括 Dream Screen 可添加背景、YouTube Create 编辑手机视频、AI Insights 获取创意和大纲建议、Aloud 自动配音、创作者音乐中的辅助搜索找到配乐。 8. Dzine:更新了 Insert Character 能力,可快速替换画面角色。 9. 谷歌 IOS 中 Google Lens:在手机 Chrome 浏览器中可更快视觉搜索,还将 AI Overviews 广泛集成到搜索结果中。
2025-02-24
怎么进入人工智能这个行业
要进入人工智能行业,可以从以下几个方面入手: 1. 学习基础知识:了解人工智能的发展历史、基本概念和原理,包括神经网络、机器学习等。 2. 掌握相关技能:例如编程(如 Python)、数学(如线性代数、概率论)等。 3. 深入研究特定领域:如计算机视觉、自然语言处理等,选择自己感兴趣的方向进行钻研。 4. 实践项目:通过实际参与项目,积累经验和提升能力。 5. 持续学习:人工智能领域发展迅速,要不断跟进最新的技术和研究成果。 人工智能作为一个领域始于二十世纪中叶,最初符号推理流行,后因方法局限性出现“人工智能寒冬”。随着计算资源便宜和数据增多,神经网络方法在多个领域展现出色性能,过去十年“人工智能”常被视为“神经网络”的同义词。
2025-02-20
2024 年中国人工智能+产业规模
目前关于 2024 年中国人工智能+产业规模的相关信息如下: 国家统计局数据显示,2022 年全国研究与试验发展(R&D)经费投入总量首次超过 3 万亿元,达到 30782.9 亿元,比上年增加 2826.6 亿元,增长 10.1%,表明国家对科技创新和算力设施的重视和持续投入。我国算力设施产业链规模巨大,已达到万亿元级别。2022 年我国算力核心产业规模达到 1.8 万亿元,预计到 2023 年,中国算力产业规模将超过 3 万亿元。 在企业数量方面,截至 2024 年 3 月,全国算力存量企业共有 75,343 家。其中,广东省、北京市和江苏省的企业数量位居前三,分别有 10,315 家、7,167 家和 6,728 家。此外,人工智能企业数量也超过 4400 家。 德勤的报告指出,中国 AI 产业快速发展,得益于政策支持、经济增长和技术创新。成长型 AI 企业作为产业创新的重要力量,数量占比高达九成,活跃于各行业领域。预计到 2025 年,中国人工智能核心产业规模将突破 5000 亿元。 在影视行业,若假设 2027 年 AI 影视市场可以获得国内总市场份额的 10%,则国内 AI 影视总市场规模预计将达约 380 亿元以上;若假设 2030 年可以获得 25%以上市场份额,则国内 AI 影视总市场规模将达千亿级别。 营销行业或成生成式 AI 最早实现商业化落地的行业之一,未来,AI 技术还将持续推动营销行业的深刻变革。
2025-02-20
人工智能(AI)、机器学习(ML)、深度学习(DL)、生成式AI(AIGC)的区别与联系
AI(人工智能)是一个广泛的概念,旨在让机器模拟人类智能。 机器学习(ML)是AI的一个分支,指计算机通过数据找规律进行学习,包括监督学习(使用有标签的训练数据,学习输入和输出之间的映射关系,如分类和回归)、无监督学习(处理无标签数据,让算法自主发现规律,如聚类)和强化学习(从反馈中学习,以最大化奖励或最小化损失,类似训练小狗)。 深度学习(DL)是一种机器学习方法,参照人脑构建神经网络和神经元,由于网络层数较多被称为“深度”。神经网络可用于监督学习、无监督学习和强化学习。 生成式 AI(AIGC)能够生成文本、图片、音频、视频等内容形式。 它们之间的联系在于:深度学习是机器学习的一种重要方法,机器学习又是实现人工智能的重要途径,而生成式 AI 是人工智能的一个应用领域。例如,生成式 AI 中的一些技术可能基于深度学习和机器学习的算法。2017 年 6 月,谷歌团队发表的论文《Attention is All You Need》首次提出了 Transformer 模型,它基于自注意力机制处理序列数据,不依赖于循环神经网络或卷积神经网络,对相关技术的发展具有重要意义。大语言模型(LLM)如谷歌的 BERT 模型,可用于语义理解(如上下文理解、情感分析、文本分类),但不擅长文本生成,对于生成式 AI,生成图像的扩散模型不属于大语言模型。
2025-02-19
人工智能简史
人工智能作为一个领域始于二十世纪中叶。最初,符号推理流行,带来了如专家系统等重要进展,但因从专家提取知识并以计算机可读形式表现及保持知识库准确的复杂性和高成本,20 世纪 70 年代出现“人工智能寒冬”。 随着时间推移,计算资源便宜、数据增多,神经网络方法在计算机视觉、语音理解等领域展现卓越性能,过去十年中“人工智能”常被视为“神经网络”的同义词。 在国际象棋对弈程序方面,早期以搜索为基础,发展出阿尔法贝塔剪枝搜索算法,后来采用基于案例的推理,如今能战胜人类棋手的程序基于神经网络和强化学习。 在创建“会说话的程序”方面,早期如 Eliza 基于简单语法规则,现代助手如 Cortana、Siri 或谷歌助手是混合系统,未来有望出现完整基于神经网络的模型处理对话,如 GPT 和 TuringNLG 系列神经网络已取得巨大成功。 最初,查尔斯·巴贝奇发明计算机用于按明确程序运算,现代计算机仍遵循相同理念。但有些任务如根据照片判断人的年龄无法明确编程,这正是人工智能感兴趣的。 译者:Miranda,原文见 https://microsoft.github.io/AIForBeginners/lessons/1Intro/README.md
2025-02-17
用机器人一起直播会爆火吗
之前有过相关观点的文章《 。“人何以为人”是关注 AI 的教育届朋友们频频探讨的话题,今晚一起聊 AI 的教育创新,预计会碰撞出不少火花。但关于用机器人一起直播是否会爆火,目前无法给出确切的结论,其效果可能受到多种因素的影响,如直播内容的质量、机器人的表现、观众的兴趣和需求等。
2025-02-25
稍微技术点的科普书,机器学习一类的
以下为您推荐两本关于机器学习的科普书: 1. 《入门|机器学习研究者必知的八个神经网络架构》 神经网络是机器学习文献中的一类模型,受到生物神经网络的启发,目前深度神经网络效果很好,可应用于任何从输入到输出空间复杂映射的机器学习问题。 学习神经计算的三个理由:了解大脑工作原理、了解受神经元及其适应性连接启发的并行计算风格、使用受大脑启发的新颖学习算法解决实际问题。 一般来说,神经网络架构可分为三类:前馈神经网络(是实际应用中最常见的类型,若有多个隐藏层则称为“深度”神经网络)、循环网络(连接图中定向了循环,动态复杂,更具生物真实性)。 2. 《这是一份「不正经」的深度学习简述》 深度学习是使用不同类型神经网络的表征学习,通过优化网络的超参数来获得对数据的更好表征。 列举了几个经典案例,如反向传播(相关参考阅读:、A theoretical framework for BackPropagation——Yann Lecun:http://yann.lecun.com/exdb/publis/pdf/lecun88.pdf)、更好的初始化网络参数(初始化策略需根据所使用的激活函数选择)。
2025-02-25
微信机器人
以下是关于微信机器人的相关内容: 测试和重新配置: 登录成功后,找另一个人私聊或者在群中@您,就可以看到机器人的正常回复,此时已通。若不通,可检查 config.json 文件中的配置或跳到“第四章,第 3 步”重启服务。 可为 AI 赋予不一样的提示词,返回“第三章,第 7 步”更改设置。 任何更改都需要“返回首页 右上角 点击重启,重启一下服务器”,熟悉 Linux 操作也可通过重启进程的方式重启服务。 然后在“文件”的【终端】里,输入“nohup python3 app.py&tail f nohup.out”重新扫码登录。 想退出机器人,在手机微信上找到桌面版已登录的信息,点击退出桌面版即可。 帮助:若遇到问题,可先查询社区知识库,或加“通往 AGI 之路”群,社区小伙伴会尽力帮助。也可加 Stuart 个人微信询问。 第一天教程:COW 部署 完成: 登录成功后,找另一个人私聊或者在群中@您,就可以看到机器人的正常回复,此时已通。 若想为 AI 赋予提示词,返回“目录 4 里的第 17 步”更改设置。 此后任何更改,都需要重新打印登陆二维码才会生效,建议多次重新登录后在宝塔“首页 右上角 点击重启,重启一下服务器”清理进程。 然后在“文件”的【终端】里,输入“nohup python3 app.py&tail f nohup.out”重新扫码登录。 若没有手机登录,可使用夜神模拟器模拟手机登录。 一个月内,不要上来就加好友、最好不要私聊聊天。 报错“wxsid”是因为微信未实名,实名即可。 Link AI 提供 100 个,合计 3500 万 GPT3.5 Token 的礼品码,可用于实现画图、搜索、识图等功能,COW 插件几乎都支持使用 LinkAI 平台。完成机器人搭建,机器人拉群里可领兑换码。 添加微信,拉您进机器人群先行体验。 第四天教程:FastGPT 教学 功能使用教程: 积分系统:此项目因加入积分系统,只有积分用户才可发起 AI 对话,主管理员大号可对别人进行加减积分操作,使用方式:@用户 加 100(加字后边有空格)。 群聊推送:原版本只支持公众号信息推送,二开在内测中。大号在群里发送“开启推送”即可在此群开启推送服务,然后大号在与小号私聊中发送任意公众号卡片,小号可转发到群聊中(目前仅支持公众号卡片)。 小工具使用示例(部分):发送 Help 查看使用方式。 登录失败: 若登录失败提示版本不对,执行以下步骤: 下载文件,放到 NGCbot 文件夹里()。 打开微信,先不要登录,保持在扫码/登录页面。 在文件夹空白处,shift + 鼠标右键,点击“在此处打开 Powershell 窗口”,然后输入相关命令,点击回车。 然后,回到文件夹下,双击 main.py 。 登录微信即可。 若群满,加我,回复“机器人”拉您进机器人群,回复“人类群”拉您进人类群。
2025-02-25
rpa机器人提醒每日计划如何实现
目前知识库中没有关于“RPA 机器人提醒每日计划如何实现”的相关内容。但一般来说,要实现 RPA 机器人提醒每日计划,可以考虑以下步骤:首先,明确每日计划的具体内容和格式,例如任务清单、时间安排等。然后,选择适合的 RPA 工具和技术,根据工具的特点和功能进行相应的配置和编程。在编程过程中,设置触发条件,如特定的时间点,以启动提醒功能。同时,确保 RPA 机器人能够与相关的应用程序或系统进行交互,获取和更新计划信息。还需要对提醒的方式进行设定,如弹窗、邮件、短信等,以满足用户的需求。最后,进行充分的测试和优化,确保提醒功能的准确性和稳定性。
2025-02-25
MacBook 如何搭建机器人进行日常事务操作
以下是在 MacBook 上搭建机器人进行日常事务操作的详细步骤: 搭建前准备: 硬件准备: MacBook(需能科学上网) 一部 iPhone 手机 主板 Arduino UNO R4 Wifi(200RMB) 舵机 9g(32RMB) 杜邦线,公对公 7 条(手残党可多备) (可选)八爪鱼支架(10RMB) (二选一)usbtypeC 转接头,或一根两头 typeC 的线 Arduino UNO R4 WIFI 开发板 MG90s/SG90 舵机 9g 云台支架 可选八爪鱼手机支架 杜邦线公对公 搭建步骤: 完成代码: 在 Github 上下载完整代码。 根据需求修改文件: 【必改】在 head.py 中找到填写主板串口的地方,改成串口地址(可通过主板写入的第 3 步里的小字或 Tools>Get Board Info 重新查询,复制 sn 号替换 usbmodem 后面的编码)。 【必改】查询 iPhone 的 ip 地址,填到 talk.py 里(iPhone 设置>无线局域网>点击当前 wifi 旁的感叹号>找到 ipv4 地址里写的 ip 地址)。 【必改】把 open ai key 填到 talk.py 里。 【可选】在 talk.py 里,可以修改: Openai 调用的 model。 system prompt(机器人的人设)。 机器人的音色。 录音的设置。 【可选】在 head.py 里,可以修改不对话后,等待多久恢复人脸追踪。 运行程序: 1. 在 MacBook 上按下 command+space(空格)打开一个新的终端,依次输入如下代码(每一次代码运行完以后再输入下一个),全部完成后,关闭端口。 2. 将 iPhone 的屏幕关闭时间设置为 5 分钟或永不。 3. 打开 iPhone 的 pythonista 并复制 face.py 的代码进去,运行。注意:每一次如果需要重新运行 pythonista,请先杀后台再运行,否则会因为端口已经被占用而无法播放声音。 4. 找到下载下来的 AIinhindsightGPTEmbodimentRobot 文件夹,control+单击文件夹,选择最后一项“新建位于文件夹位置的终端端口”。 5. 将 arduino R4 与 MacBook 相连,在终端中输入以下代码,运行后程序会申请一次摄像头权限,点击允许,然后出现运行失败,再运行一次即可。这个程序一旦运行,无法自然退出,建议直接拔掉 R4 的线或者终端输入 control+c 或者直接关闭终端,但多强制退出几次以后运行就会卡住需要重启或清进程。 6. 再次在 AIinhindsightGPTEmbodimentRobot 文件夹,control+单击文件夹,选择最后一项“新建位于文件夹位置的终端端口”,在终端中输入以下代码,运行后程序会申请一次录音权限,点击允许,然后出现运行失败,再运行一次即可。如果运行中出现任何报错,将本文档,代码,报错信息给到 GPT4,让他帮助你就好~可能是有一些库没有预装。 7. 把 talk.py 的终端放在最前面你能看到,出现 recording...的时候就可以说话了。 8. 三个程序同时运行、iPhone 和 MacBook 在同一 wifi,iPhone 没有调静音的情况下,就可以正常对话啦。
2025-02-25
微信机器人
以下是关于微信机器人的相关内容: 测试和重新配置 1. 登录成功后,找另一个人私聊或者在群中@您,就可以看到机器人的正常回复,此时表示已通。若未通过,可检查 config.json 文件中的配置或跳到“第四章,第 3 步”重启服务。 2. 为机器人设置不同的提示词,可返回“第三章,第 7 步”或“目录 4 里的第 17 步”,修改其中双引号内的 value 部分。 3. 此后任何更改,都需要“返回首页 右上角 点击重启,重启一下服务器”,或者若熟悉 linux 操作,可通过重启进程的方式来重启服务。然后,重新在“文件”的【终端】里,直接输入“nohup python3 app.py&tail f nohup.out”重新扫码登录即可。 4. 若想退出机器人,在手机微信上找到桌面版已登录的信息,点击退出桌面版即可。 帮助 如果遇到问题,可以先查询社区知识库,或者加“通往 AGI 之路”群,社区小伙伴们(比如梦飞大佬,熊猫大侠)会尽力帮助。也可以加 Stuart 个人微信询问。 第一天教程:COW 部署 完成 1. 登录成功后,找另一个人私聊或者在群中@您,就可以看到机器人的正常回复,此时表示已通。 2. 若想设置提示词,可返回“目录 4 里的第 17 步”修改。 3. 此后任何更改,都需要重新打印登陆二维码才会生效。建议在多次重新登录后,在宝塔“首页 右上角 点击重启,重启一下服务器”清理进程。 4. 然后,重新在“文件”的【终端】里,直接输入“nohup python3 app.py&tail f nohup.out”重新扫码登录即可。 5. 如果没有手机登录,可以使用夜神模拟器模拟手机登录。 6. 一个月内,不要上来就加好友、最好不要私聊聊天! 7. 报错“wxsid”是因为微信未实名,实名即可。 8. Link AI 提供 100 个,合计 3500 万 GPT3.5 Token 的礼品码,可用于实现画图、搜索、识图等功能,COW 插件里几乎都支持使用 LinkAI 平台。完成机器人搭建,机器人拉群里,可领兑换码。 9. 添加微信,拉您进机器人群,先行体验。 第四天教程:FastGPT 教学 功能使用教程 1. 积分系统:此项目因加入积分系统,只有积分用户才可发起 AI 对话,主管理员大号可对别人进行加减积分操作,使用方式:@用户 加 100(加字后边有空格)。 2. 群聊推送:原版本只支持公众号信息推送,二开版本在内测中。大号在群里发送“开启推送”,即可在此群开启推送服务。然后,大号在与小号的私聊中发送任意公众号卡片,小号就可以把信息转发到群聊中(目前仅支持公众号卡片)。 3. 小工具使用示例(部分):其他功能,可发送 Help 查看使用方式。 登录失败 如果登录失败提示版本不对,执行以下步骤: 1. 下载文件,放到 NGCbot 文件夹里。 2. 打开微信,先不要登录,保持在扫码/登录页面。 3. 在文件夹空白处,shift + 鼠标右键,点击“在此处打开 Powershell 窗口”,然后输入相关命令,点击回车。 4. 然后,回到文件夹下,双击 main.py 。 5. 登录微信即可。 若群满,加我,回复“机器人”拉您进机器人群,回复“人类群”拉您进人类群。
2025-02-24
怎么学习AI普及性课程
以下是学习 AI 普及性课程的建议: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,您可以根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 此外,如果您对特定的 AI 课程感兴趣,比如“野菩萨”的课程: 1. 预习周课程:包括 AI 绘画电脑配置要求、高效 AIGC 创意者的数字人工具包、SD 插件安装方法、画静为动的 AIGC 视频制作讲解等。 2. 基础操作课:涵盖 AI 绘画通识课、AI 摄影虚拟的真实、AI 电影 穿越的大门等内容。 3. 核心范式课程:涉及词汇的纸牌屋、核心范式应用、控制随机性等方面。 4. SD WebUi 体系课程:包括 SD 基础部署、SD 文生图、图生图、局部重绘等。 5. ChatGPT 体系课程:有 ChatGPT 基础、核心 文风、格式、思维模型等内容。 6. ComfyUI 与 AI 动画课程:包含部署和基本概念、基础工作流搭建、动画工作流搭建等。 7. 应对 SORA 的视听语言课程:涉及通识 欢迎参加电影的葬礼、影像赏析、基础戏剧影视文学等。 如果想要免费获得这门课程,可以来参与 video battle,每期的 video battle 的评委野菩萨老师都非常严格,需要寓意深度审美并存。获胜者将获得相应奖励,包括冠军奖励 4980 课程一份、亚军奖励 3980 课程一份、季军奖励 1980 课程一份、入围奖励 598 野神殿门票一张。您可以扫码添加菩萨老师助理,了解更多课程信息。
2025-02-26
怎么学习AI
以下是关于新手学习 AI 的建议: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛(比如图像、音乐、视频等),根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 6. 对于中学生学习 AI 的建议: 从编程语言入手学习,如 Python、JavaScript 等,学习编程语法、数据结构、算法等基础知识。 尝试使用 AI 工具和平台,如 ChatGPT、Midjourney 等,探索面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 学习 AI 基础知识,包括基本概念、发展历程、主要技术如机器学习、深度学习等,以及在教育、医疗、金融等领域的应用案例。 参与 AI 相关的实践项目,参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动,尝试利用 AI 技术解决生活中的实际问题。 关注 AI 发展的前沿动态,关注权威媒体和学者,思考 AI 技术对未来社会的影响。 记住,学习 AI 是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,您将逐渐建立起自己的 AI 知识体系,并能够在这一领域取得成就。完整的学习路径建议参考「通往 AGI 之路」的布鲁姆分类法,设计自己的学习路径。
2025-02-26
如何快速学习AI进行数据分析
以下是快速学习 AI 进行数据分析的方法: 1. 了解数据分析流程: 逻辑流程图包括 SQL 分析和个性化分析。 SQL 分析:用户描述分析内容,后台连接数据库,让 AI 输出并校验 SQL 语句,执行后将数据传给 GPT 分析,最后返回分析结论和建议并在前端展示。 个性化分析:用户上传文件并描述,前端解析后传给 GPT 分析,后续步骤与 SQL 分析一致。 2. 掌握提示词技巧: 提供大模型可访问的数据源或上传数据表格。 用清晰的提示词说明分析维度和结果输出格式。 观察生成结果,迭代优化提示词,满意后导出结果。 3. 分环节处理: 将数据清洗、提取、模型选择、训练和结果解释等环节分开处理,便于优化性能和发现问题。 4. 逐步深化和细化提问: 先提出宽泛问题,再根据回答进一步细化。 5. 提供学习内容: 为 AI 系统提供大量数据、示例、高质量参考材料和详细流程、知识(knowhow)。 6. 利用专业术语引导: 在 Prompt 中使用专业领域术语引导 AI 回答方向。 7. 进行验证与反馈: 大模型语料有滞后性,使用 AI 回答后要交叉验证,结合自身专业知识筛选判断,确保符合法律伦理等要求。
2025-02-25
有没有 旅游规划智能体项目 可以学习
以下是一些关于旅游规划智能体项目的学习内容: 对于旅游路线规划的 Bot 智能体,其自带插件可根据目的地做出合适规划,包括路线规划、周边规划、历史文化普及及热门打卡点搜索等。通过输入 Prompt 描述并使用官方优化功能,能获得不错效果。 在多智能体模式设置方面,包括全局设置和多个代理之间的编排协调。全局设置涉及角色设定与回复逻辑、记忆管理及对话体验等。在全局设置中,人物设定与回复逻辑应侧重于角色塑造。智能体的交互流程应形成完整互动链条,设计为闭环结构,以确保用户能自由在不同智能体间切换。以旅游场景为例,可设计分别负责景点推荐、路线规划和食宿安排的三个智能体,并写好提示词和做好全局人物设定。
2025-02-25
雪梅May的Ai 100天学习笔记
以下是关于雪梅 May 的 AI 100 天学习笔记的相关内容: 作者介绍: 适合纯 AI 小白,可参考此日记,学习模式为输入→模仿→自发创造。 学习内容因 AI 节奏快可能不适用,可去 waytoAGI 社区找感兴趣的最新内容。 学习时间并非每天依次进行,有空就学,作者已进行到 90 天。 2024 年保持较好学习状态,不仅学 AI 还看了 33 本书。 学习资源免费开源。 第一阶段: DAY5 2024.5.26:开始使用 kimi,抱着每天问 100 个问题的心态调整思考模式,养成问 AI 问题的习惯,参考。 DAY6 2024.5.31:应朋友推荐学习吴恩达生成式人工智能课程,在 B 站搜索对应关键词有课程资源,学习笔记,抽空 3 天学完。 DAY7 2024.6.1:探索用 AI 解决真实问题,团队要写行业研究报告,尝试用 AI 帮忙。 2024 年 12 月 31 日历史更新(归档): ,日记分三个阶段,学习路线图适合新人参考。 ,Yann LeCun 直指当前 AI 根本局限,阐述不同技术路径。 ,强调将 AI 视为方法,用哲学视角构建理解与方法论。
2025-02-25
ai智能体学习
以下是关于 AI 智能体学习的相关内容: DeepMind 开发出可以向人类学习的人工智能,其在 3D 模拟环境中使用神经网络和强化学习,展示了 AI 智能体在没有直接从人类获取数据的情况下,通过观察来学习和模仿人类行为,被视为向人工通用智能迈进的一大步。其研究背景在于智力包括有效的知识获取,通常依赖于文化传播,人类智力很大程度上依赖此过程来吸收文化知识。 结合“一人公司”的愿景,未来的 AI 数字员工会以大语言模型为大脑,串联所有工具,创造者的学习方向是用大模型和 Agent 模式把工具串起来,着重关注创造能落地 AI 的 agent 应用。Agent 工程如同传统软件工程学,有迭代范式,包括梳理流程、任务工具化、建立规划和迭代优化。 现在接触到的智能体大多建立在大模型之上,从基于符号推理的专家系统逐步演进而来,具有强大学习能力、灵活性和泛化能力。智能体的核心在于有效控制和利用大型模型以达到设定目标,这通常涉及精确的提示词设计,其设计直接影响智能体的表现和输出结果。
2025-02-25
当前DEEPSEEK发展壮大情况下,个人应具备AI方面什么能力避免被时代淘汰,如何提升这些能力,细化具体可执行的步奏
在 DEEPSEEK 发展壮大的情况下,个人为避免被时代淘汰,应具备以下 AI 方面的能力并通过以下具体可执行的步骤来提升: 1. 善用工具: 历史表明,使用工具的人通常表现更优,人类发展就是工具演化的过程。 不会用 AI 工具自动化重复性任务,可能面临被淘汰,应适应这种转变。 因自动化效率提升,可腾出时间进行高层次思考。 具体步骤:积极学习和掌握 AI 工具的使用方法,将重复性工作交给工具处理,培养利用工具提升效率的习惯。 2. 抽象与整合: “大语言模型”压缩了大量知识,可快速回放,无需直接学习所有知识细节,要在更高层次学习并抽象更多细节。 AI 能使人类更易学习技能或知识,技术进步使“整合”而非专业化成为可能,人们在更高层次工作,为 AI 提供方向并作选择。 具体步骤:锻炼高层次的思维能力,学会从复杂信息中提炼关键要点,不断提升整合能力,将精力集中于制定“策略”,把执行细节交给自动化系统。
2025-02-24
chatgpt-on-wechat接入企业微信应用的具体操作
以下是 chatgptonwechat 接入企业微信应用的具体操作: 1. 登录宝塔面板,在其中可视化控制云服务器,部署 docker 容器,启动 COW 项目与微信取得关联。 2. 点击“Docker”中的“项目模板”中的“添加”按钮。 3. 项目模板代码示例如下:将编译好的内容复制进来。 4. 在容器中创建容器,选择容器编排,填入模板和名称,确定。 5. 运行成功后,点击容器,可以看到运行的是两个服务。 6. 点击“wcandyaibot”后面的日志按钮,在弹出层中用提前预备好的微信进行扫码。 7. 手动刷新界面,点击“刷新日志”,若看到“WeChat login success”,则成功将 Bot 接入微信中。 此外,还需注意: 1. chatgptonwechat 项目是基于大模型的智能对话机器人,支持微信公众号、企业微信应用、飞书、钉钉接入,可选择多种模型,能处理多种形式的内容,并通过插件访问外部资源,支持基于自有知识库定制企业 AI 应用。 2. 点击“Docker”中的“编排模板”中的“添加”按钮,可参考相关代码示例进行操作。若无法正常启动,可查看文档后面的“常见问题”。
2025-02-21
怎样利用AI进行广州小学语文数学英文各科的学习辅导,请给出具体可操作方案,及安排一个学期的日程。
目前没有关于利用 AI 进行广州小学语文、数学、英语各科学习辅导的具体可操作方案及学期日程的相关内容。但一般来说,可以考虑以下步骤: 首先,确定学习目标和重点。针对每门学科,明确本学期需要掌握的知识点和技能。 然后,选择适合的 AI 学习工具。例如,有一些在线学习平台或教育类的 APP ,它们可能提供课程讲解、练习题、智能辅导等功能。 在日程安排方面,可以每周安排一定的时间使用 AI 工具进行学习。比如,周一至周五每天晚上安排 12 小时,分别用于语文、数学、英语的学习。周末可以进行复习和总结。 具体到每天,可以先通过 AI 工具进行知识点的学习,然后做相关的练习题进行巩固,最后利用工具的智能辅导功能解决疑难问题。 需要注意的是,AI 只是辅助工具,不能完全替代教师和家长的指导与监督。
2025-02-17
即梦ai里,关于智能画布中的参考图的具体作用
在即梦 AI 中,智能画布中的参考图具有以下重要作用: 1. 实现多种商业创意设计:只需上传一张参考图,就能快速生成多种创意设计,例如模特图的变装、换发型、换脸、换发色和调整人物姿势;产品图的材质和背景改变;电商海报的背景、元素更改等。 2. 提升设计的灵活性和可塑性:在奶茶宣传图的制作中,参考图在制作步骤中发挥了关键作用,如在第 1 步找参考图,为后续的生成和融合等操作提供基础。 基础操作包括: 1. 打开即梦官网 https://jimeng.jianying.com/ 。 2. 选择图片生成。 3. 选择导入参考图(上传一张参考图,点击智能参考)。 相关案例: 1. 模特图自由定制:通过智能参考,轻松实现模特图的多种变化。 2. 产品图随心变化:可以改变产品材质和画面背景。 3. 电商海报一键搞定:支持随意更改背景、元素,适应不同营销主题。 原文链接:https://mp.weixin.qq.com/s/sD0RFMqnFZ6Bj9ZcyFuZNA
2025-02-17
即梦ai里,关于智能画布中的参考图的具体作用
在即梦 AI 中,智能画布中的参考图具有以下重要作用: 1. 实现多种商业创意设计:只需上传一张参考图,就能快速生成多种创意设计,例如模特图的变装、换发型、换脸、换发色和调整人物姿势;产品图的材质和背景改变;电商海报的背景、元素更改等。 2. 提升设计的灵活性和可塑性:在奶茶宣传图的制作中,参考图在制作步骤中发挥了关键作用,如在第 1 步找参考图,为后续的生成和融合等操作提供基础。 基础操作包括: 1. 打开即梦官网 https://jimeng.jianying.com/ 。 2. 选择图片生成。 3. 选择导入参考图(上传一张参考图,点击智能参考)。 相关案例: 1. 模特图自由定制:通过智能参考,轻松实现模特图的多种变化。 2. 产品图随心变化:可以改变产品材质和画面背景。 3. 电商海报一键搞定:支持随意更改背景、元素,适应不同营销主题。 原文链接:https://mp.weixin.qq.com/s/sD0RFMqnFZ6Bj9ZcyFuZNA
2025-02-17
开一个AI数据标注公司的落地和具体实操应当如何
开设一家 AI 数据标注公司需要以下落地和具体实操步骤: 1. 市场调研 了解当前 AI 数据标注市场的需求和趋势。 分析竞争对手的优势和不足。 2. 团队组建 招聘具备数据标注技能和经验的人员,包括标注员、质检员等。 对团队进行培训,确保他们熟悉标注规范和流程。 3. 制定标注规范 明确不同类型数据的标注标准和要求。 建立质量控制流程和标准。 4. 技术和工具准备 选择适合的数据标注工具和软件。 搭建稳定的 IT 基础设施,保障数据安全和存储。 5. 寻找客户和项目 与 AI 企业、科研机构等建立联系,争取合作机会。 展示公司的标注能力和优势。 6. 项目管理 合理安排标注任务,确保按时交付。 及时处理项目中的问题和变更。 7. 质量监控 定期对标注结果进行抽检和评估。 依据质量反馈对标注流程和人员进行调整和优化。 8. 合规与法律事务 确保公司的运营符合相关法律法规。 处理好数据隐私和知识产权等问题。 9. 财务管理 制定合理的预算和成本控制策略。 确保公司的资金流稳定。 10. 持续改进 关注行业动态,不断改进标注技术和流程。 提升公司的竞争力和服务质量。
2025-02-17