Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

我想成为ai产品经理该怎么学习

Answer

如果您想成为 AI 产品经理,可以从以下几个方面进行学习:

  1. 了解相关技术概念:
    • 思维链:谷歌在 2022 年的论文中提到,思维链能显著提升大语言模型在复杂推理方面的能力,即便不用小样本提示,也可在问题后加一句“请你分步骤思考”。
    • RAG(检索增强生成):外部知识库切分成段落后转成向量,存在向量数据库。用户提问并查找到向量数据库后,段落信息会和原本的问题一起传给 AI,可搭建企业知识库和个人知识库。
    • PAL(程序辅助语言模型):2022 年一篇论文中提出,对于语言模型的计算问题,不让 AI 直接生成计算结果,而是借助 Python 解释器等工具作为计算工具。
    • ReAct:2022 年一篇《React:在语言模型中协同推理与行动》的论文提出了 ReAct 框架,即 reason 与 action 结合,让模型动态推理并采取行动与外界环境互动,比如用搜索引擎对关键字进行搜索,观察行动结果,可借助 LangChain 等框架简化构建流程。
  2. 关注技术论文:很多大佬认为要关注或直接阅读技术论文,比如产品经理转型 AI 产品经理,需要懂技术脉络。但小白直接看技术论文有难度,虽然现在可让 AI 辅助阅读,仍要完成一定知识储备。林粒粒呀的相关视频是很好的科普入门。
  3. 学习技术框架与未来想象:比如了解 Transformer 是仿生算法的阶段性实现,10 年、20 年后可能不再使用。
Content generated by AI large model, please carefully verify (powered by aily)

References

【AI学习笔记】小白如何理解技术原理与建立框架(通俗易懂内容推荐)

4)思维链——谷歌在2022年一篇论文提到思维链可以显著提升大语言模型在复杂推理的能力(即有推理步骤),即使不用小样本提示,也可以在问题后面加一句【请你分步骤思考】5)RAG——检索增强生成Retrieval-Augmented Generation,外部知识库切分成段落后转成向量,存在向量数据库。用户提问并查找到向量数据库后,段落信息会和原本的问题一块传给AI;可搭建企业知识库和个人知识库。6)PAL——程序辅助语言模型Program-Aided Language Model,2022年一篇论文中提出;比如对于语言模型的计算问题,核心在于不让AI直接生成计算结果,而是借助其他工具比如Python解释器作为计算工具。7)ReAct——2022年一篇《React:在语言模型中协同推理与行动》的论文提出了ReAct框架,即reason与action结合,核心在于让模型动态推理并采取行动与外界环境互动。比如用搜索引擎对关键字进行搜索,观察行动得到的结果。可借助LangChain等框架简化构建流程。个人总结:看很多大佬的发言,都说要关注或直接阅读技术论文,比如产品经理转型AI产品经理,也需要懂技术脉络。而小白直接看技术论文还是有难度,虽然现在可以让AI辅助阅读,不过还是要完成一定的知识储备。而林粒粒呀的这期视频是一个很好的科普入门,欢迎大家给她点赞。二、视频二——技术框架与关于未来的想象写在前面:我之前对安克创新的印象就是一个卖充电宝的公司,还有卖安防设备;但看了这期访谈,被CEO阳萌的认知震撼了,很多观点对我有启发,强烈建议看原访谈视频。1、观点——Transformer是仿生算法的阶段性实现,10年、20年后大家将不再用TA

【AI学习笔记】小白如何理解技术原理与建立框架(通俗易懂内容推荐)

4)思维链——谷歌在2022年一篇论文提到思维链可以显著提升大语言模型在复杂推理的能力(即有推理步骤),即使不用小样本提示,也可以在问题后面加一句【请你分步骤思考】5)RAG——检索增强生成Retrieval-Augmented Generation,外部知识库切分成段落后转成向量,存在向量数据库。用户提问并查找到向量数据库后,段落信息会和原本的问题一块传给AI;可搭建企业知识库和个人知识库。6)PAL——程序辅助语言模型Program-Aided Language Model,2022年一篇论文中提出;比如对于语言模型的计算问题,核心在于不让AI直接生成计算结果,而是借助其他工具比如Python解释器作为计算工具。7)ReAct——2022年一篇《React:在语言模型中协同推理与行动》的论文提出了ReAct框架,即reason与action结合,核心在于让模型动态推理并采取行动与外界环境互动。比如用搜索引擎对关键字进行搜索,观察行动得到的结果。可借助LangChain等框架简化构建流程。个人总结:看很多大佬的发言,都说要关注或直接阅读技术论文,比如产品经理转型AI产品经理,也需要懂技术脉络。而小白直接看技术论文还是有难度,虽然现在可以让AI辅助阅读,不过还是要完成一定的知识储备。而林粒粒呀的这期视频是一个很好的科普入门,欢迎大家给她点赞。二、视频二——技术框架与关于未来的想象写在前面:我之前对安克创新的印象就是一个卖充电宝的公司,还有卖安防设备;但看了这期访谈,被CEO阳萌的认知震撼了,很多观点对我有启发,强烈建议看原访谈视频。1、观点——Transformer是仿生算法的阶段性实现,10年、20年后大家将不再用TA

【AI学习笔记】小白如何理解技术原理与建立框架(通俗易懂内容推荐)

4)思维链——谷歌在2022年一篇论文提到思维链可以显著提升大语言模型在复杂推理的能力(即有推理步骤),即使不用小样本提示,也可以在问题后面加一句【请你分步骤思考】5)RAG——检索增强生成Retrieval-Augmented Generation,外部知识库切分成段落后转成向量,存在向量数据库。用户提问并查找到向量数据库后,段落信息会和原本的问题一块传给AI;可搭建企业知识库和个人知识库。6)PAL——程序辅助语言模型Program-Aided Language Model,2022年一篇论文中提出;比如对于语言模型的计算问题,核心在于不让AI直接生成计算结果,而是借助其他工具比如Python解释器作为计算工具。7)ReAct——2022年一篇《React:在语言模型中协同推理与行动》的论文提出了ReAct框架,即reason与action结合,核心在于让模型动态推理并采取行动与外界环境互动。比如用搜索引擎对关键字进行搜索,观察行动得到的结果。可借助LangChain等框架简化构建流程。个人总结:看很多大佬的发言,都说要关注或直接阅读技术论文,比如产品经理转型AI产品经理,也需要懂技术脉络。而小白直接看技术论文还是有难度,虽然现在可以让AI辅助阅读,不过还是要完成一定的知识储备。而林粒粒呀的这期视频是一个很好的科普入门,欢迎大家给她点赞。二、视频二——技术框架与关于未来的想象写在前面:我之前对安克创新的印象就是一个卖充电宝的公司,还有卖安防设备;但看了这期访谈,被CEO阳萌的认知震撼了,很多观点对我有启发,强烈建议看原访谈视频。1、观点——Transformer是仿生算法的阶段性实现,10年、20年后大家将不再用TA

Others are asking
如何权构建个人AI知识库,请提供详尽的方案,并提供相关工具应用案例。
以下是构建个人 AI 知识库的详尽方案及相关工具应用案例: 方案: 1. 知识收集:学习如何有效地收集、整理和检索信息,例如分新闻、观点、访谈、论文翻译来进行提炼。 2. 知识管理:通过实际操作,体验工具在知识管理方面的应用。 3. 数据处理:使用工具对数据进行转换、提取和呈现,如从图像和图形中提取数据。 4. 内容总结:总结视频内容、翻译和改换风格等。 工具应用案例: 1. 知识收集与整理: 通义听悟整理录音笔记:https://tingwu.aliyun.com 用 React 实现选中即解释 本机跑大语言模型工具:https://ollama.com 选词翻译、解读、拓展:https://snapbox.app 与各种 AI 机器人聊天:https://opencat.app 、https://chathub.gg/ 、https://www.elmo.chat/ 定义提示语,根据不同类型提取有用信息:https://memo.ac/zh/ 2. 数据获取与处理: 下载视频:Mac 用 Downie,Windows 推荐 IDM 淘宝数码荔枝店购买 开源免费屏幕录制工具 OBS:https://obsproject.com/ 用 losslessCut 快速切块 3. 构建知识库: 将文本转换成向量(如使用 embeddings API),先把大文本拆分成若干小文本块(chunk),将小文本块转换成 embeddings 向量并在向量储存库中保存,当用户提问时,通过比对向量提取关联度最高的文本块与问题组合成新的 prompt 发送给 GPT API。 例如对于一篇包含多个文本块的文章,如“文本块 1:本文作者:越山。xxxx。”“文本块 2:公众号越山集的介绍:传播效率方法,分享 AI 应用,陪伴彼此在成长路上,共同前行。”等,当提问“此文作者是谁?”时,可通过比较 embeddings 向量找出关联度最高的文本块。 4. 工具入门: 提示词:现成好用的 Prompt: AI Agent:Agent 工具 小白的 Coze 之旅: AI Pic:现在主流的 AI 绘图工具网站:
2025-02-22
学习AI大模型
以下是关于学习 AI 大模型的相关知识: 1. 概念 生成式 AI 生成的内容称为 AIGC。 2. 概念与关系 AI 即人工智能。 机器学习是电脑找规律学习,包括监督学习、无监督学习、强化学习。 监督学习:使用有标签的训练数据,算法目标是学习输入和输出之间的映射关系,包括分类和回归。 无监督学习:学习的数据没有标签,算法自主发现规律,经典任务如聚类,例如让模型将一堆新闻文章根据主题或内容特征分成相似特征的组。 强化学习:从反馈中学习,以最大化奖励或最小化损失,类似训小狗。 深度学习是一种参照人脑有神经网络和神经元(因有很多层所以叫深度)的方法,神经网络可用于监督学习、无监督学习、强化学习。 生成式 AI 可以生成文本、图片、音频、视频等内容形式。 LLM 是大语言模型,对于生成式 AI,生成图像的扩散模型不是大语言模型;对于大语言模型,生成只是其中一个处理任务,如谷歌的 BERT 模型可用于语义理解(不擅长文本生成),像上下文理解、情感分析、文本分类。 3. 技术里程碑 2017 年 6 月,谷歌团队发表论文《Attention is All You Need》,首次提出 Transformer 模型,它完全基于自注意力机制(SelfAttention)处理序列数据,不依赖于循环神经网络(RNN)或卷积神经网络(CNN)。
2025-02-22
AI在国企的应用
AI 在国企的应用场景广泛,以下为您列举一些常见的应用领域: 1. 医疗保健方面: 医学影像分析:辅助诊断疾病。 药物研发:加速研发过程,识别潜在药物候选物和设计新治疗方法。 个性化医疗:为患者提供个性化治疗方案。 机器人辅助手术:提高手术精度和安全性。 2. 金融服务方面: 风控和反欺诈:降低金融机构风险。 信用评估:帮助做出更好的贷款决策。 投资分析:辅助投资者做出明智决策。 客户服务:提供 24/7 服务,回答常见问题。 3. 零售和电子商务方面: 产品推荐:根据客户数据推荐可能感兴趣的产品。 搜索和个性化:改善搜索结果,提供个性化购物体验。 动态定价:根据市场需求调整产品价格。 聊天机器人:回答客户问题并解决问题。 4. 制造业方面: 预测性维护:预测机器故障,避免停机。 质量控制:检测产品缺陷,提高产品质量。 供应链管理:优化供应链,提高效率和降低成本。 机器人自动化:控制工业机器人,提高生产效率。 此外,在国企中,AI 还可以应用于工作流程自动化、提高运营效率、优化资源配置等方面。随着技术的不断发展,未来有望看到更多创新的应用场景和解决方案。
2025-02-22
我是一个小学教师,我要写一个值周小结,推荐用哪款AI软件
以下是为您推荐的一些可能有助于写值周小结的 AI 软件: 1. 可画软件:提供多种排版模板和 AI 功能,方便图片处理和尺寸调整,如将海报尺寸调为 1080 乘 1440。 2. Request 软件:具有锐化清晰度等 PS 中有的功能,可自定义尺寸、选择风格模型、创建风格,支持中文输入但部分提示词用谷歌翻译更准确,还具有文字输入、样机等功能。每天登录有 50 点积分,生成一次图像需 1 点积分,可创建系列图像。 3. 吉梦智能画板:具有消除、图层、一键抠图等功能,抠图效果较好。 此外,还有一些辅助工具: 1. IAIFONT、自由等字体软件:可及时预览和切换字体,注意使用免费字体和避免版权问题。 2. 内容排版大师的 GPTs:只需在聊天框粘贴文字内容,然后点击发送即可。GPTs 链接:https://chat.openai.com/g/gt9dIHp4Ntneirongpaibandashi 。 3. 小作卡片 app:官网链接:https://kosaku.imxie.club/ 。操作步骤为:①打开软件点击「自制卡片」;②在「记录些什么...」中粘贴 AI 生成文本内容;③点击右下角的保存图标即可导出。
2025-02-22
软件工程师如何从ai上获得帮助
软件工程师可以从以下几个方面在 AI 上获得帮助: 1. 辅助编程的 AI 工具: GitHub Copilot:由 GitHub 联合 OpenAI 和微软 Azure 团队推出,支持多种语言和 IDE,能快速提供代码建议。 通义灵码:阿里巴巴团队推出,提供多种编程相关能力。 CodeWhisperer:亚马逊 AWS 团队推出,由机器学习技术驱动,提供实时代码建议。 CodeGeeX:智谱 AI 推出的开源免费工具,基于大模型可快速生成代码。 Cody:Sourcegraph 推出,借助强大的代码语义索引和分析能力为开发者服务。 CodeFuse:蚂蚁集团支付宝团队提供的免费 AI 代码助手。 Codeium:由 AI 驱动,提供代码建议、重构提示和代码解释等帮助。 更多工具可查看:https://www.waytoagi.com/category/65 。每个工具功能和适用场景不同,可根据需求选择。 2. 生成性 AI 作为助手:模型在大量代码库上训练,在编码时给出建议,但要注意生成代码的正确性,在提高生产力的同时限制生成量以检查正确性。例如 GitHub Copilot 帮助提高了开发人员的生产力,估计增长在 2 倍或更少的范围内。 Sam Altman 的三点观察表明: 1. AI 模型的智能大致等于用于训练和运行它的资源的对数,预测这一规律的缩放定律在多个数量级上都准确。 2. 使用给定水平的人工智能的成本每 12 个月下降约 10 倍,较低价格导致使用量大幅增加。 3. 社会经济上线性提升智力的价值具有超指数性质,这一结果导致看不到指数式投资在不久将来会停止的理由。 未来可能会推出人工智能代理,如软件工程师代理人,虽然存在一些不足,但仍可能产生重大影响。生成性 AI 作为程序员助手是最早应用之一,成果出色,但相对于图像生成,生产力提升相对较小,且要注意代码正确性。
2025-02-22
工作10多年了,英语生疏了,如何利用AI学好英语应对国外出差、商务谈判
以下是利用 AI 学好英语以应对国外出差和商务谈判的一些建议: 1. 进行自然语言对话:让 AI 模拟真实的交流场景,与您进行英语对话,帮助您提高口语表达和听力理解能力。 2. 提供深入全面的解释:要求 AI 对您提出的问题和知识点提供深入的见解和全面的理解,可能的话还可以为您寻找并提供相关的网络图片来增强解释效果。 3. 构建复杂的句子:让 AI 巧妙地运用复杂的句子结构来模拟真实的人类对话,丰富语言的多样性和复杂性。 4. 创意和多样的语言运用:避免语言的重复,使用多样的短语和词汇,并适当加入幽默、讽刺等元素,展现个性化。 5. 基于事实和引用:让 AI 在回答中包含事实和著名的引语,增加回答的可信度。 6. 详细和个性化的回应:AI 的回答应包含具体而细致的内容,并根据您之前的交流历史进行个性化定制。 7. 模仿人类的不完美:偶尔让 AI 模仿人类的小拼写错误、语法错误和轻微的逻辑不一致。 8. 富有表现力和个性化的交流:让 AI 在交流中注入情感,使用随意的语言和各种语气词,展示其推理过程。 9. 多样的结构和语言格式:让 AI 采用多种句子结构和表达方式,使语言更丰富自然。 10. 分享个人故事和独特观点:让 AI 补充个人经历和独特的观点,使交流更丰富和个性化。
2025-02-22
ai产品经理学习路径
以下是为您提供的 AI 产品经理学习路径: 1. 入门级: 可以通过 WaytoAGI 等开源网站或一些课程来了解 AI 的概念。 学会使用 AI 产品,并尝试动手实践应用搭建。对应的画像可能是喜欢听小宇宙 APP 的播客或浏览 AI 相关的文章。 2. 研究级: 有两个路径,一个是技术研究路径,一个是商业化研究路径。 这个阶段对应的画像可能是对某一领域有认知,可以根据需求场景选择解决方案,或利用 Hugging face 等工具手搓出一些 AI 应用来验证想法。 3. 落地应用: 这一阶段的画像就是有一些成功落地应用的案例,如产生商业化价值。 对应传统互联网 PM 也有三个层级: 负责功能模块与执行细节。 负责整体系统与产品架构。 熟悉行业竞争格局与商业运营策略。 总结来说,对 AI 产品经理要求懂得技术框架,不一定要了解技术细节,而是对技术边界有认知,最好能知道一些优化手段和新技术的发展。AI 是工具和手段,产品经理要关注的还是场景、痛点、价值。
2025-02-22
转行做AI产品经理的自学指南,并帮我找到学习资源途径
以下是一份转行做 AI 产品经理的自学指南及学习资源途径: 自学指南: 1. 了解 AI 基础知识,包括常见的概念、技术和应用。 2. 学习产品管理的核心知识,如需求分析、用户体验设计等。 3. 关注技术原理,例如思维链、RAG、PAL、ReAct 等,可通过相关论文和科普视频进行学习。 4. 积累实践经验,尝试参与实际项目或模拟项目。 学习资源途径: 1. WaytoAGI(通往 AGI 之路):这是一个致力于人工智能学习的中文知识库和社区平台,提供系统全面的 AI 学习路径,涵盖从基础概念到实际应用的各个方面。 汇集了上千个人工智能网站和工具,提供最新的 AI 工具、AI 应用、AI 智能体和行业资讯。 提供丰富的学习资源,包括文章、教程、工具推荐以及最新的 AI 行业资讯等。 定期组织实践活动,如视频挑战赛、模型创作大赛等,鼓励成员在实践中学习,促进交流与合作。 2. 相关技术论文:虽然对于小白有难度,但可以借助 AI 辅助阅读,完成一定知识储备。 3. 科普视频:如林粒粒呀的相关科普视频。 4. 行业访谈:例如安克创新 CEO 阳萌的访谈,获取前沿观点和启发。 此外,您还可以参考北京分队中相关人员的经验,如 Sundy 从产品运营转行当 AIGC 产品经理的经历。
2025-02-21
AI产品经理
以下是为您整理的关于 AI 产品经理的相关信息: Kelton 是一位 AI 产品经理,深耕 NLP 方向 2 年,作为 Owner 从 0 1 打造过两款 AIGC 产品,还完成过 LLM 评测体系的从零搭建。技术出身,曾在云计算、元宇宙领域工作 2 年,坐标在海淀(北四环)。 银海是一位 AI 产品经理,是通往 AGI 之路社区共建者,5+大模型厂商资深讲师,全网粉丝量 3W+,在 AI Agent、多模态大模型、企业级 AI 应用等多领域具备丰富实战经验。 ElliotBai 以前是一位有趣的 AI 产品经理,刚从大厂离职,现在全职煮夫,是最大的中文 GPTs 导航网站站长(快荒废了),其公众号为:GLBai 。
2025-02-21
作为产品经理小白 我该如何学习成为一名合格的aipm
以下是为您提供的关于产品经理小白如何学习成为一名合格的 AI PM 的建议: 首先,了解一些重要的 AI 技术概念和框架: 1. 思维链:谷歌在 2022 年的论文中提到,思维链能显著提升大语言模型在复杂推理方面的能力,即便不用小样本提示,也可在问题后加一句“请你分步骤思考”。 2. RAG(检索增强生成):外部知识库切分成段落后转成向量,存在向量数据库。用户提问并查找到向量数据库后,段落信息会和原本的问题一起传给 AI,可搭建企业知识库和个人知识库。 3. PAL(程序辅助语言模型):2022 年一篇论文中提出,对于语言模型的计算问题,不让 AI 直接生成计算结果,而是借助如 Python 解释器等工具作为计算工具。 4. ReAct:2022 年《React:在语言模型中协同推理与行动》的论文提出了 ReAct 框架,即 reason 与 action 结合,让模型动态推理并采取行动与外界环境互动,比如用搜索引擎对关键字进行搜索,观察行动结果,可借助 LangChain 等框架简化构建流程。 个人总结:很多大佬都强调要关注或直接阅读技术论文,像产品经理转型为 AI 产品经理,需要懂技术脉络。但小白直接看技术论文有难度,虽可让 AI 辅助阅读,但仍需一定知识储备。林粒粒呀的相关视频是很好的科普入门,值得观看。 此外,还可以观看一些关于技术框架与未来想象的访谈视频,比如安克创新 CEO 阳萌的访谈,其观点可能会给您带来启发。
2025-02-19
我想当一名ai产品经理 我该从哪学起
如果您想成为一名 AI 产品经理,可以从以下几个方面学起: 1. 掌握算法知识: 理解产品核心技术,了解基本的机器学习算法原理,有助于做出更合理的产品决策。 与技术团队有效沟通,掌握一定的算法知识,减少信息不对称带来的误解。 评估技术可行性,在产品规划阶段做出更准确的判断。 把握产品发展方向,了解算法前沿更好地规划产品未来。 提升产品竞争力,发现产品独特优势,提出创新特性。 提升数据分析能力,很多 AI 算法涉及数据处理和分析。 2. 学习相关案例:可以参考一些成功的 AI 产品经理的经验,比如 Kelton 作为 AIPM 一枚,深耕 NLP 方向 2 年,从 0 1 打造过两款 AIGC 产品,还完成过 LLM 评测体系的搭建。 3. 了解技术原理与框架: 如思维链,谷歌在 2022 年论文提到其能显著提升大语言模型在复杂推理的能力。 了解 RAG(检索增强生成),将外部知识库切分成段落后转成向量存于向量数据库。 学习 PAL(程序辅助语言模型)和 ReAct 框架等。 同时,建议您关注或直接阅读技术论文,虽然有难度,但完成一定知识储备后,可借助 AI 辅助阅读。也可以通过一些通俗易懂的科普内容入门,比如相关的科普视频。
2025-02-19
想要入行ai产品经理,要学的东西很多,还有本职工作,很焦虑,怎么办
如果您想要入行 AI 产品经理但感到焦虑,以下是一些建议: 1. 合理规划时间:在本职工作之余,制定一个合理的学习计划,将学习 AI 产品经理所需的知识和技能分解为小目标,逐步实现。 2. 明确学习重点:根据行业需求,例如参考 AI 提示词工程师的岗位技能要求,包括本科及以上学历,计算机科学、人工智能、机器学习相关专业背景;熟悉 ChatGPT、Llama、Claude 等 AI 工具的使用及原理,并具有实际应用经验;熟练掌握 ChatGPT、Midjourney 等 AI 工具的使用及原理;负责制定和执行 AI 项目,如 Prompt 设计平台化方法和模板化方法;了解并熟悉 Prompt Engineering,包括常见的 Prompt 优化策略(例如 CoT、Fewshot 等);对数据驱动的决策有深入的理解,能够基于数据分析做出决策;具有创新思维,能够基于业务需求提出并实践 AI first 的解决方案;对 AIGC 领域有深入的理解与实际工作经验,保持对 AI 技术前沿的关注;具备一定的编程和算法研究能力,能应用新的 AI 技术和算法于对话模型生成;具有一定的编程基础,熟练使用 Python、Git 等工具。明确自己需要重点学习和提升的方面。 3. 掌握算法知识:理解产品核心技术,了解基本的机器学习算法原理,有助于更好地理解 AI 产品的核心技术,从而做出更合理的产品决策;掌握一定的算法知识,可以帮助与开发团队进行更有效的沟通,减少信息不对称带来的误解;在产品规划阶段,能够评估某些功能的技术可行性;了解算法前沿可以帮助更好地把握产品的未来发展方向;了解算法可以帮助发现产品的独特优势,提出创新的产品特性,从而提升产品的竞争力;掌握相关知识可以提升数据分析能力。 4. 借鉴他人经验:可以参考身边 AI 产品经理的工作内容和经验,例如从 01 打造产品、完成 LLM 评测体系的搭建等。 5. 调整心态:认识到学习和成长需要时间,不要过分焦虑,保持积极的心态,逐步积累和进步。
2025-02-19
我是一名教师,是一个AI小白,现在想系统学习相关内容,请帮我规划好
以下是为您规划的系统学习 AI 的方案: 第一阶段:迈出第一步,打好基础 1. 学习指南 系统性学习:避免碎片化输入,系统地阅读相关书籍、听取优质课程,了解 AI 的底层原理和发展历程。 2. 初步探索 避免弯路:不要仅依赖刷短视频学习,对于 B 站等平台上的内容要有选择性,注重质量高的系统性内容。 3. 加入 AI 社区 例如“通往 AGI 之路”开源知识库,参考新手指引入门。 第二阶段:深入学习 1. 了解 AI 基本概念 阅读「」,熟悉术语和基础概念,包括主要分支及相互联系。 浏览入门文章,了解历史、应用和发展趋势。 2. 开始学习之旅 参考「」,学习生成式 AI 等基础知识,推荐李宏毅老师的课程。 利用在线教育平台(如 Coursera、edX、Udacity)按自己节奏学习,并争取获得证书。 第三阶段:选择感兴趣的模块深入 1. 领域选择 AI 领域广泛,如图像、音乐、视频等,根据兴趣选择特定模块深入学习。 掌握提示词技巧,因其上手容易且实用。 第四阶段:实践和尝试 1. 巩固知识 理论学习后通过实践巩固,尝试使用各种产品创作作品。 分享实践成果。 第五阶段:体验 AI 产品 1. 互动学习 尝试使用如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解工作原理和交互方式,获取实际应用体验,激发对 AI 潜力的认识。
2025-02-22
我想利用ai做自媒体来销售产品从哪开始学习
如果您想利用 AI 做自媒体来销售产品,可以从以下几个方面开始学习: AI 绘画方面: 1. 个体成为自媒体博主。 2. 个体商户应用。 3. 实体印刷(如 T 恤、杯子实物等)。 4. AI 摄影。 5. 设计接单。 6. AI 定制萌娃头像。 7. 电商商品。 8. 自媒体素材。 9. AI 服装预售。 10. AI 视频接单。 11. 培训老师。 在阿里巴巴营销方面: 1. 市场分析:利用 AI 分析工具研究市场趋势、消费者行为和竞争对手情况,快速识别关键信息。 2. 关键词优化:利用 AI 分析和推荐高流量、高转化的关键词,优化产品标题和描述。 3. 产品页面设计:借助 AI 设计工具生成吸引人的产品页面布局。 4. 内容生成:使用 AI 文案工具撰写有说服力的产品描述和营销文案。 5. 图像识别和优化:依靠 AI 图像识别技术选择或生成高质量的产品图片。 6. 价格策略:通过 AI 分析不同价格点对销量的影响,制定有竞争力的价格策略。 7. 客户反馈分析:利用 AI 分析客户评价和反馈,优化产品和服务。 8. 个性化推荐:借助 AI 根据用户购买历史和偏好提供个性化产品推荐。 9. 聊天机器人:使用 AI 驱动的聊天机器人提供 24/7 客户服务。 10. 营销活动分析:依靠 AI 分析不同营销活动的效果。 11. 库存管理:利用 AI 预测需求,优化库存管理。 12. 支付和交易优化:通过 AI 分析不同支付方式对交易成功率的影响,优化支付流程。 13. 社交媒体营销:借助 AI 在社交媒体上找到目标客户群体,进行精准营销。 14. 直播和视频营销:利用 AI 分析观众行为,优化直播和视频内容。 AI 写作方面: 1. 项目启动:确定目标客户群体,选择合适的 AI 写作工具。 2. 准备阶段:学习并实践 AI 写作技术,构建团队。 3. 商业模式构建:确定服务内容,制定质量控制标准。 4. 运营与推广:在电商平台开设店铺,建立写作培训社群,通过社交媒体和线下活动进行品牌和社群建设,与其他团队合作。 5. 项目优化与发展:持续关注 AI 技术进展,根据市场需求拓展新服务和产品,收集客户反馈并改进服务。
2025-02-22
AI学习路径
以下是为新手提供的 AI 学习路径: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛(比如图像、音乐、视频等),根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,通过实践巩固知识,尝试使用各种产品做出作品。 在知识库分享实践后的作品和文章。 5. 体验 AI 产品: 与现有的 AI 产品(如 ChatGPT、Kimi Chat、智谱、文心一言等)进行互动,了解其工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 另外,如果您偏向技术研究方向,学习路径包括: 1. 数学基础:线性代数、概率论、优化理论等。 2. 机器学习基础:监督学习、无监督学习、强化学习等。 3. 深度学习:神经网络、卷积网络、递归网络、注意力机制等。 4. 自然语言处理:语言模型、文本分类、机器翻译等。 5. 计算机视觉:图像分类、目标检测、语义分割等。 6. 前沿领域:大模型、多模态 AI、自监督学习、小样本学习等。 7. 科研实践:论文阅读、模型实现、实验设计等。 如果您偏向应用方向,学习路径包括: 1. 编程基础:Python、C++等。 2. 机器学习基础:监督学习、无监督学习等。 3. 深度学习框架:TensorFlow、PyTorch 等。 4. 应用领域:自然语言处理、计算机视觉、推荐系统等。 5. 数据处理:数据采集、清洗、特征工程等。 6. 模型部署:模型优化、模型服务等。 7. 行业实践:项目实战、案例分析等。 无论是技术研究还是应用实践,数学和编程基础都是必不可少的。同时需要紧跟前沿技术发展动态,并结合实际问题进行实践锻炼。 记住,学习 AI 是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,您将逐渐建立起自己的 AI 知识体系,并能够在这一领域取得自己的成就。完整的学习路径建议参考「通往 AGI 之路」的布鲁姆分类法,设计自己的学习路径。
2025-02-21
亚马逊卖家爱用的生成产品图片工具
以下是一些亚马逊卖家爱用的生成产品图片工具: Flair(https://flair.ai/) Booth(https://www.booth.ai/) Bloom(https://bloom.ai/) 这些工具可以帮助品牌创建引人注目的产品照片,比如将挂在衣架上的连衣裙的静态照片变成女人穿着裙子在花园里行走的形象。未来,预计这些用途将变得极度个性化,例如一张沙发的登陆页面将展示该沙发摆放在您的公寓中的照片。 此外,对于阿里巴巴的营销技巧和产品页面优化,可以使用 AI 采取以下步骤: 1. 市场分析:利用 AI 分析工具研究市场趋势、消费者行为和竞争对手情况,快速识别关键信息。 2. 关键词优化:AI 分析和推荐高流量、高转化的关键词,优化产品标题和描述。 3. 产品页面设计:AI 设计工具根据市场趋势和用户偏好生成吸引人的页面布局。 4. 内容生成:AI 文案工具撰写有说服力的产品描述和营销文案。 5. 图像识别和优化:AI 图像识别技术选择或生成高质量产品图片。 6. 价格策略:AI 分析不同价格点对销量的影响,制定有竞争力的价格策略。 7. 客户反馈分析:AI 分析客户评价和反馈,优化产品和服务。 8. 个性化推荐:AI 根据用户购买历史和偏好提供个性化产品推荐。 9. 聊天机器人:AI 驱动的聊天机器人提供 24/7 客户服务。 10. 营销活动分析:AI 分析不同营销活动效果,了解哪些活动更吸引顾客并产生销售。 11. 库存管理:AI 帮助预测需求,优化库存管理。 12. 支付和交易优化:AI 分析不同支付方式对交易成功率的影响,优化支付流程。 13. 社交媒体营销:AI 帮助在社交媒体上找到目标客户群体,精准营销提高品牌知名度。 14. 直播和视频营销:AI 分析观众行为,优化直播和视频内容,提高观众参与度和转化率。
2025-02-22
有什么支持多模态输入和输出的C端产品
以下是一些支持多模态输入和输出的 C 端产品: 1. 宝玉日报:支持文本或音频输入,输出可为文本、音频或混合数据。价格方面,1 小时音频输入成本为$12.8,输出为$25.6。相关链接: 2. Imagic 发布的 AI 驱动的无代码应用构建工具:支持多模态输入输出,包括文本、图片、3D 和视频。创建出来的应用立刻就能使用和发布。相关链接:https://get.imagica.ai/s 3. 面壁智能推出的 MiniCPMo 2.6:具有多模态能力,如 OCR、视频理解、连续视频与音频流处理,实时直播与多模态上下文理解,支持 30 多种语言的文本和语音输入输出。资源链接: 4. 世界首个支持手持产品展示的 AI 数字人 Product Avatar:上传产品图片,数字人即可手持产品进行口播展示,支持多语言,覆盖 28 种语言,可快速生成产品宣传视频。相关链接:
2025-02-21