Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

传统软件行业融合AI的商业模式

Answer

传统软件行业融合 AI 的商业模式具有多种可能性和变革方向:

  1. “AI 原生”模式:基于 AI 的能力再造商业模式,而非套用现有流程。
  2. To AI 的商业模式:包括模型市场、合成数据、模型工程平台、模型安全等方面。
  3. 基于国产芯片的软硬件联合优化,固件生态存在明确机会。
  4. 端上智能有望成为全天候硬件 24x7 收集数据,具有较大想象空间。
  5. 对于 SaaS 生态的影响:
    • 认知架构带来巨大工程挑战,将模型基础能力转化为成熟可靠的端到端解决方案可能比想象中复杂。
    • 可能引发业务模式全面变革,如从工程、产品和设计部门的瀑布式开发转变为敏捷开发和 A/B 测试,市场策略从自上而下的企业销售转向自下而上的产品驱动增长,商业模式从高价格销售转向基于使用的定价模式。
    • 知名投资机构 Nfx 分析指出,AI 正在强制逆转 SaaS 从“软件即服务”转变为“服务即软件”,软件既能组织任务也能执行任务,传统劳动力市场最终将和软件融合成为新市场。降低企业在知识工作者上的支出,提高在软件市场的支出。企业组织中提供 AI 劳动力的产品有“AI 同事(雇佣)”等形式。
Content generated by AI large model, please carefully verify (powered by aily)

References

AGI 万字长文(下)| 2024,分叉与洪流

原创Lian et Zian普通人的AI自由2024-03-03 17:48链接:https://mp.weixin.qq.com/s/8n8hEs0YTH9Q0xpbui7aBA太长不看版AI多模态大爆发:文字走脑->声音走心+视觉走肾AI应用是技术驱动的,(目前)产品能做的事情还很薄Sora本身不是目的,而是迈向AGI的坚实一步“互动”与“内容”都将变得廉价,而“真实”会成为一种稀缺资源“AI原生”是基于AI的能力来再造商业模式,而非用AI套用现有流程To AI的商业模式可能更确定:模型市场、合成数据、模型工程平台、模型安全基于国产芯片的软硬件联合优化-固件生态是明确的机会端上智能目前最大的想象空间是成为全天候硬件24x7收集数据AGI会造成极端垄断,并提供前所未有的中心化操控能力;作为个体,我们是否会有Plan-B可选?“人的模型”或是AI Agent的前提,是AI与人合作的关键一环“具身智能”是AGI通向物理世界的桥梁从“中美相争”进入“主权AI”?国际政治的边界将或按照AI技术边界来重新划分AI生成的数据量将超过全人类生产的数据总量:“数据编年史”进入“AI纪元”AGI会主动投资的技术:可控核聚变、量子计算、超导、广义机器人回归本源:只有“智慧”才是AGI的真正增量作为拯救派,要想办法给解法才行!"Choices",Lian 2024,with Dall-E总目录

生成式人工智能的行动 o1

今年早些时候,我们与有限合伙人讨论过,他们最关心的问题是:“AI的转型是否会摧毁现有的云计算公司?”最初,我们的默认回答是“不会”。在初创企业和大公司之间的竞争中,通常是初创企业在构建分销渠道,而incumbents(现有大公司)则专注于优化产品。这场竞争的关键在于,初创公司是否能在incumbents拿出酷产品之前,吸引足够多的用户。鉴于生成式AI的核心技术基础模型对初创公司和大公司都是开放的,并且incumbents本身就拥有数据和分销优势,因此我们认为,大公司不会受到太大冲击。初创企业的机会并不是要取代大公司,而是瞄准那些可以自动化的工作领域。然而,现在我们不再那么确定了。正如前文所述,认知架构带来了巨大的工程挑战。将模型的基础能力转化为成熟的、可靠的端到端解决方案,可能比我们想象的更为复杂。我们是否低估了“AI原生”的巨大潜力?二十年前,传统软件公司曾对SaaS的崛起不屑一顾。“这有什么大不了的?我们也可以自己运行服务器,通过互联网提供这些服务!”从表面上看,SaaS确实概念简单,但其引发的却是一场业务模式的全面变革。从工程、产品和设计(EPD)部门的瀑布式开发转变为敏捷开发和A/B测试,到市场策略(GTM)从自上而下的企业销售转向自下而上的产品驱动增长(PLG),再到商业模式从高价格的销售转向基于使用的定价模式,这场变革彻底颠覆了传统软件公司的运营方式。最终,只有极少数的传统公司成功完成了这次转型。如果AI带来的变革与SaaS类似呢?AI的机会是否不仅仅是“销售工作”,还有可能取代现有的软件?

智变时代 / 全面理解机器智能与生成式 AI 加速的新工业革命

不久前,知名投资机构Nfx在他们最新的《[](https://www.nfx.com/post/ai-workforce-is-here)[The AI Workforce is Here:The Rise of a New Labor Market](https://www.nfx.com/post/ai-workforce-is-here)》中刚好分析了这个趋势。现在AI正在强制逆转SaaS这个缩写的含义,从“软件即服务”转变为“服务即软件”,软件既能组织任务,也能执行任务,你无需雇佣额外劳动力,它们是“内置”的,传统的劳动力市场最终将和软件融合成为一个新市场!配图2.08:New AI Workforce(来自NFX)例如,我们现在购买SaaS销售工具,仍然需要雇佣并培训销售人员来完成实际的销售工作。在公司内部,招聘预算和软件预算不在一个数量级;在整个经济体中,劳动力市场和软件市场也是完全分开的。粗略地计算一下,美国企业在知识型劳动力上的支出超过5万亿美元;相比之下,公司在SaaS上的支出仅为2300亿美元。接下来,AI要做的事情就是降低企业在知识工作者上的支出,让大家购买或者是租用能自己工作的SaaS,从而提高在软件市场的支出。现在,从企业组织的结构来看,提供这种AI劳动力的产品有两种形式:配图2.09:Playbooks for AI workforce(来自NFX)AI同事(雇佣)

Others are asking
我想让我的论文降低AIGC使用率,请问我有什么具体可以操作的办法
以下是一些降低论文中 AIGC 使用率的具体操作办法: 1. 使用 AIGC 论文检测工具: Turnitin:广泛使用的学术剽窃检测工具,增加了检测 AI 生成内容的功能。使用方法是上传论文,系统会自动分析文本并提供详细报告,标示出可能由 AI 生成的部分。 Copyscape:主要用于检测网络上的剽窃行为,虽不是专门的 AIGC 检测工具,但能发现可能被 AI 生成的重复内容。输入文本或上传文档,系统会扫描网络查找相似或重复内容。 Grammarly:提供语法检查和剽窃检测功能,其剽窃检测部分可帮助识别可能由 AI 生成的非原创内容。将文本粘贴到编辑器中,选择剽窃检测功能,系统会提供分析报告。 Unicheck:基于云的剽窃检测工具,适用于教育机构和学术研究,能检测 AI 生成内容的迹象。上传文档或输入文本,系统会分析并生成报告,显示潜在的剽窃和 AI 生成内容。 :专门设计用于检测 AI 生成内容的工具,使用先进算法分析文本,识别是否由 GPT3 或其他 AI 模型生成。上传文档或输入文本,系统会提供详细报告。 :提供免费的 AI 内容检测工具,可识别文本是否由 AI 生成。将文本粘贴到在线工具中,点击检测按钮,系统会提供分析结果。 GPTZero:专门设计用于检测由 GPT3 生成内容的工具,适用于教育和出版行业。上传文档或输入文本,系统会分析并提供报告。 Content at Scale:提供 AI 内容检测功能,帮助用户识别文本是否由 AI 生成。将文本粘贴到在线检测工具中,系统会分析并提供结果。 此外,为了从根本上降低 AIGC 使用率,您还需要注重自身的思考和研究,确保论文内容是基于您的独立见解和深入分析。
2025-04-14
如何ai降重
AI 降重可以从以下几个方面理解: 在运作过程中,AI 先进行展开(升维),然后进行收敛(降维)。通过充满不确定性的操作,实现符合人类预期的确定性生成,并对语言进行升维操作,完成世界级知识的降维导出。 从信息论角度看,升维是增加数据集中变量或特征数量,提高描述和预测能力,但会增加复杂性和计算资源需求;降维是减少变量或特征数量,简化描述、降低处理难度和提高效率,但不恰当降维可能丢失重要信息,需要权衡。 一般通过探索更多维度(升维)实现从特殊到一般的转化(降维),这个过程体现了哲学、科学和认知中的普遍方法,即通过深入理解事物各方面找到本质特征实现简化和概括。 对于像 ChatGPT 这类 AI,转移体现在将自然语言处理领域的多种问题转变成文本生成问题;升维体现在从词嵌入到深层神经网络处理,对输入的字、词、句子进行“展开概念”操作;降维体现在文本生成阶段,大语言模型将对文本的高维理解转化为实际文本输出,从高维复杂性表达中提取出精准、明确的人类语言表达。
2025-04-14
,当前AI数字人发展的新态势,以及新技术和成果
当前 AI 数字人的发展呈现出以下新态势,并取得了一系列新技术和成果: 数字人简介: 数字人是运用数字技术创造的,虽现阶段未达科幻作品中的高度智能,但已在生活多场景中出现且应用爆发。业界对其尚无准确定义,一般可按技术栈分为真人驱动和算法驱动两类。真人驱动的数字人重在通过动捕设备或视觉算法还原真人动作表情,主要用于影视和直播带货,其表现质量与建模精细度及动捕设备精密程度相关,不过视觉算法进步使在无昂贵动捕设备时也能通过摄像头捕捉关键点信息实现不错效果。 B 端变现与创业方向: B 端变现细分包括高频率和大规模的内容生产细分,如文字、视频、3D 模型、AI 智能体等,底层是需求和数据收集及训练模型,算力和能源是关键。自媒体创业需具备内容创新和差异化,内容成本低且更新迭代快。游戏创业可做轻量化游戏,结合 AI 技术满足放松和社交需求,专注垂类赛道避免与大厂竞争。影视创业在 25 年将是拐点,更多内容会采用 AI 技术。广告营销创业重点是 AI 虚拟人,数字插画可走治愈类型,要明确平台用户画像和产品定位,做好次留存和引入私域。 AI 虚拟人的发展与创业机遇: AI 虚拟人从早期以首位为核心的宅文化虚拟偶像,发展到以 CG 技术和动捕语音合成技术为核心的角色,再到如今以动捕和人工智能技术为核心的服务型虚拟人。虚拟人产业链包括基础层的硬件和软件研发,平台层如商汤、百度等提供工具和系统,应用层涉及影视、传媒、游戏、金融、文旅等内容变现。未来 3 10 年,AI 虚拟人是 Web 3.0 的风口,提前布局有潜力的赛道可迎接机遇,但创业对创业者综合能力要求极高。 未来展望: 数字人未来有很多应用场景,如家庭中的数字人管家、学校中的数字人老师、商场里的数字人导购等。未来还会有很多技术突破,如将五感数据和躯壳控制参数作为输入,次世代算法可自我迭代升级和自行演化躯壳控制方式。通过 Dify 搭建数字人的开源项目可展现低门槛高度定制数字人的基本思路,数字人的核心在于 Agent 即灵魂,如何在 Dify 上编排专属数字人灵魂值得体验。期望随着数字人的多模态能力接入、智能化水平升级、模型互动控制更精确,AI 既能提供高质量信息,也能关注用户情绪。
2025-04-14
学习ai思路,完整步骤流程
以下是新手学习 AI 的完整步骤流程: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括人工智能的主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,如图像、音乐、视频等,根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,通过实践巩固知识,尝试使用各种产品做出作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 此外,以“Windsurf 零基础开发”为例,AI 开发网站的操作步骤如下: 1. 开发目标:以“Windsurf 学习共创社区”为例,借助 AI 能力快速构建现代化 Web 应用。 2. 技术选型:Vue + TypeScript。 3. 目标用户:零基础开发学习者。 4. 参考项目:Cursor101。 5. 开发流程: 需求分析与代码生成。 环境配置自动化。 问题诊断与修复。 界面优化与细节打磨。 功能迭代与完善。 在开发过程中,输入需求让 windsurf 进行 code,它会将开发思路讲解并给出环境命令,可能会出现报错,将报错信息返回给 cascade,经过自动检查后修复 bug,不断优化细节,如优化导航栏和首页,插入细节图片等。
2025-04-14
推荐一些 AI 工具
以下是为您推荐的一些 AI 工具: 辅助编程的 AI 工具: 1. GitHub Copilot:由 GitHub 联合 OpenAI 和微软 Azure 团队推出,支持多种语言和 IDE,能为程序员快速提供代码建议。 2. 通义灵码:阿里巴巴团队推出,提供多种编程相关能力。 3. CodeWhisperer:亚马逊 AWS 团队推出,由机器学习技术驱动,为开发人员实时提供代码建议。 4. CodeGeeX:智谱 AI 推出的开源免费 AI 编程助手,基于 130 亿参数的预训练大模型。 5. Cody:Sourcegraph 推出的 AI 代码编写助手,借助强大的代码语义索引和分析能力了解开发者的整个代码库。 6. CodeFuse:蚂蚁集团支付宝团队为国内开发者提供的免费 AI 代码助手。 7. Codeium:由 AI 驱动的编程助手工具,提高编程效率和准确性。 更多辅助编程 AI 产品,还可以查看这里:https://www.waytoagi.com/category/65 。每个工具的功能和适用场景可能不同,您可根据需求选择。 内容仿写的 AI 工具: 1. 秘塔写作猫:https://xiezuocat.com/ ,是 AI 写作伴侣,能推敲用语、斟酌文法、改写文风,还能实时同步翻译,支持全文改写等功能,并智能分析文章属性。 2. 笔灵 AI 写作:https://ibiling.cn/ ,是得力的智能写作助手,支持多种写作类型的一键改写/续写/扩写等。 3. 腾讯 Effidit 写作:https://effidit.qq.com/ ,由腾讯 AI Lab 开发的创作助手,提升写作者的写作效率和创作体验。 更多 AI 写作类工具可以查看这里:https://www.waytoagi.com/sites/category/2 。内容由 AI 大模型生成,请仔细甄别。 与思维导图相关的 AI 工具: 1. GitMind:免费跨平台,可通过 AI 自动生成思维导图,支持多种模式。 2. ProcessOn:国内思维导图+AIGC 的工具,能利用 AI 生成思维导图。 3. AmyMind:轻量级在线,无需注册登录,支持自动生成节点。 4. Xmind Copilot:Xmind 推出的基于 GPT 的 AI 思维导图助手,可一键拓展思路,生成文章大纲。 5. TreeMind:“AI 人工智能”思维导图工具,可输入需求由 AI 自动完成思维导图生成。 6. EdrawMind:提供一系列 AI 工具,包括 AI 驱动的头脑风暴功能。 这些 AI 思维导图工具都能通过 AI 技术自动生成思维导图,提高制作效率,为知识工作者带来便利。内容由 AI 大模型生成,请仔细甄别。
2025-04-14
新手怎么学习AI 做视频
对于新手学习 AI 做视频,以下是一些建议和指导: 一、了解 AI 视频的应用和价值 AI 视频能应用于多个领域,具有多种用途,例如: 1. 创意广告与营销:快速生成吸引眼球的短视频,降低成本,提高效率。 2. 社交媒体内容:制作独特的动态视觉效果,让帖子更出众。 3. 电商展示:生成商品展示视频或 3D 效果,生动呈现产品特性。 4. 数字人解说:借助数字人技术生成虚拟主播或形象来解说内容。 5. 个性化动画与故事:将想法变成生动的动画短片。 6. 教育与演示:生成解释性视频或动态图表,让信息更直观。 7. 艺术创作与实验:探索新的视觉表达方式。 8. 乐趣与分享:快速制作好玩的视频。 变现方式包括: 1. 接单制作商业广告、社交媒体视频。 2. 成为自由职业者,提供 AI 视频制作服务。 3. 创作自己的 IP 内容,通过流量或平台分成赚钱。 4. 开发相关教程或咨询服务。 二、学习制作流程 如果想用 AI 把小说做成视频,大致流程如下: 1. 小说内容分析:使用 AI 工具(如 ChatGPT)分析小说内容,提取关键场景、角色和情节。 2. 生成角色与场景描述:根据小说内容,使用工具(如 Stable Diffusion 或 Midjourney)生成角色和场景的视觉描述。 3. 图像生成:使用 AI 图像生成工具根据描述创建角色和场景的图像。 4. 视频脚本制作:将提取的关键点和生成的图像组合成视频脚本。 5. 音频制作:利用 AI 配音工具(如 Adobe Firefly)将小说文本转换为语音,添加背景音乐和音效。 6. 视频编辑与合成:使用视频编辑软件(如 Clipfly 或 VEED.IO)将图像、音频和文字合成为视频。 7. 后期处理:对生成的视频进行剪辑、添加特效和转场,提高视频质量。 8. 审阅与调整:观看生成的视频,根据需要进行调整,比如重新编辑某些场景或调整音频。 9. 输出与分享:完成所有编辑后,输出最终视频,并在所需平台上分享。 请注意,具体的操作步骤和所需工具可能会根据项目的具体需求和个人偏好有所不同。此外,AI 工具的可用性和功能也可能会随时间而变化,建议直接访问上述提供的工具网址获取最新信息和使用指南。
2025-04-14
,AI agent 发展趋势,技术状态,商业模式
以下是关于 AI Agent 的发展趋势、技术状态和商业模式的相关信息: 发展趋势: 2024 年内,办公场景“AI 助手”开始有良好使用体验,实时生成的内容开始在社交媒体内容、广告中出现。 2025 2027 年,接近 AGI 的技术出现,人与 AI 配合的工作方式成为常态,很多日常决策开始由 AI 来执行。 技术状态: 目标实现基于 ReAct、SFT、RAG、强化学习等实现自主规划能力的 AI Agent,构建具备认知、决策智能的 Agent 智能体框架。 专注文本/多模态大模型、AI Agent 技术创新与应用。 商业模式: 依据不同类型销售市场的特点,结合一站式 AI 搭建平台将销售部署的产品化和模版化,让企业更容易落地和应用 AI 能力。 销售智能体 Blurr.AI 占位交易环节,解决 2B 销售获客的痛点,且具有向前后端环节延展的势能。
2025-04-13
生成超过15000字的人工智能技术在智能化零售行业中的应用与商业模式创新论文,学科方向是计算机科学与技术专业
很抱歉,目前无法直接为您生成超过 15000 字的论文。但我可以为您提供一个论文大纲,以帮助您组织思路和开展研究: 标题:人工智能技术在智能化零售行业中的应用与商业模式创新 摘要:简述人工智能技术在智能化零售中的重要性、应用现状、创新商业模式以及研究的主要结论。 一、引言 (一)研究背景:介绍智能化零售行业的发展趋势和人工智能技术的兴起。 (二)研究目的与意义:阐述研究人工智能技术在该领域应用和商业模式创新的目的,以及对行业发展的重要意义。 (三)研究方法与结构:说明采用的研究方法,如文献综述、案例分析等,并概述论文的结构安排。 二、人工智能技术概述 (一)人工智能技术的定义与分类:解释人工智能的概念,分类如机器学习、深度学习、自然语言处理等。 (二)关键技术原理:详细介绍相关技术的原理,如机器学习中的监督学习、无监督学习等。 (三)技术发展历程与现状:回顾人工智能技术的发展历程,分析当前的技术水平和应用情况。 三、智能化零售行业概述 (一)智能化零售的概念与特点:定义智能化零售,阐述其特点如个性化服务、精准营销等。 (二)行业发展现状与趋势:分析智能化零售行业的现状,包括市场规模、竞争格局等,预测未来的发展趋势。 (三)面临的挑战与机遇:探讨行业发展中面临的问题,以及人工智能技术带来的机遇。 四、人工智能技术在智能化零售中的应用 (一)客户画像与精准营销:如何利用人工智能技术分析客户数据,实现精准营销。 (二)库存管理与供应链优化:通过人工智能算法优化库存水平和供应链流程。 (三)智能推荐与个性化服务:介绍基于人工智能的推荐系统,为客户提供个性化的购物体验。 (四)无人零售与智能支付:探讨无人零售店的技术实现和智能支付方式的应用。 (五)店铺布局与商品陈列优化:利用人工智能进行数据分析,优化店铺布局和商品陈列。 五、人工智能技术驱动的商业模式创新 (一)新的零售模式:如线上线下融合的智能零售模式。 (二)数据驱动的商业决策:依靠人工智能分析数据,制定更科学的商业决策。 (三)合作与共享经济模式:探讨与技术供应商、其他企业的合作模式,以及共享数据和资源的可能性。 (四)增值服务与收费模式创新:基于人工智能技术提供的新服务,创新收费模式。 六、案例分析 (一)选取成功应用人工智能技术的智能化零售企业案例。 (二)详细介绍其应用场景、商业模式创新和取得的成效。 (三)总结经验教训,为其他企业提供借鉴。 七、影响与挑战 (一)对消费者行为和市场竞争的影响:分析人工智能技术如何改变消费者购物行为和市场竞争格局。 (二)技术与数据安全问题:探讨人工智能应用中的技术漏洞和数据泄露风险。 (三)法律法规与伦理道德问题:研究相关法律法规的缺失,以及可能引发的伦理道德问题。 八、结论与展望 (一)研究成果总结:概括人工智能技术在智能化零售中的应用和商业模式创新的主要发现。 (二)未来研究方向与建议:提出进一步研究的方向和对企业、政府的建议。 希望以上大纲对您有所帮助,祝您顺利完成论文!
2025-04-07
AI对商业模式的变革影响
AI 对商业模式的变革影响主要体现在以下几个方面: 1. 生物技术与 AI 的融合:生物技术的工业化带来新规模和新应用,AI 在其中发挥变革性作用,但在某些完全依赖摩尔定律的领域,其对商业模式的贡献可能被过分炒作。 2. 从通用能力到专业化细分:早期通用型 AI 产品难以满足多样化需求,如今越来越多的 AI 产品专注于特定领域,如图像生成、视频制作、音频处理等,不断提升核心能力,提供更精准和高质量的服务。 3. 商业模式的探索与创新:包括 ToB 市场的深耕,如针对内容创作者的 ReadPo;新型广告模式,如天宫搜索的“宝典彩页”等,从单纯的技术展示向解决用户痛点和创造商业价值转变。 4. “AI 原生”模式:基于 AI 的能力再造商业模式,而非套用现有流程。 5. To AI 的商业模式:如模型市场、合成数据、模型工程平台、模型安全等可能更确定。
2025-04-01
不能用APP思维、传统数字平台思维去做大模型创业和人工智能创业,二者在底层逻辑和商业模式等方面完全不同
大模型创业和人工智能创业与 APP 思维、传统数字平台思维在底层逻辑和商业模式等方面存在显著差异。大模型和人工智能创业更注重数据的深度处理、算法的优化创新以及对复杂问题的解决能力。相比之下,APP 思维通常侧重于用户界面和功能的设计,以满足特定的用户需求;传统数字平台思维则更多关注平台的搭建和用户流量的获取与运营。在大模型和人工智能领域,技术的突破和创新是关键,需要投入大量资源进行研发,并且要面对更高的技术门槛和不确定性。而 APP 和传统数字平台的创业相对更侧重于市场推广和用户体验的优化。总之,不能简单地用 APP 思维和传统数字平台思维来指导大模型和人工智能创业。
2025-03-07
AI产业商业模式
目前 AI 产业的商业模式仍在不断探索和发展中。 阻碍 AI 发展的因素包括产品体验的颠覆性和完成度不足、技术门槛相对较低以及商业模式尚未明确。例如,AI 修图新应用与移动互联网时代的“美图秀秀”相比,缺乏颠覆性创新,且主流修图产品也在引入 AI 功能,新应用难以脱颖而出。妙鸭是一个特例,其“先试用后付费”策略和 9.9 元定价吸引用户,且背靠大厂有资源优势,但市场空间和后续发展需观察。 传统移动互联网时代成熟的 APP 商业模式是免费吸引用户,再通过广告等方式间接收入,但当前阶段可能不再适用于 AI 应用,ToC 创业公司早期需敢于向用户收费。 Bret Taylor 认为做 AI 生意像咖啡产业,训练基础大模型如同卖咖啡豆,利润受限;开发 AI 应用如同在机场卖拿铁,能按需求定价,利润空间更大。 “AI 原生”是基于 AI 的能力再造商业模式,而非套用现有流程。To AI 的商业模式可能包括模型市场、合成数据、模型工程平台、模型安全等。 未来可能会出现全新的商业模式和创新打法。
2025-02-21
AI商业模式
以下是关于 AI 商业模式的相关内容: 1. To AI 的商业模式可能更确定的方面包括:模型市场、合成数据、模型工程平台、模型安全。 2. 基于国产芯片的软硬件联合优化 固件生态是明确的机会。 3. 端上智能目前最大的想象空间是成为全天候硬件 24x7 收集数据。 Character.ai 覆盖了模型的研发、数据、应用等整个价值链,其商业模式注重在整个价值链上积累数据,并利用数据来不断优化用户体验,这种模式能够为公司带来持续的竞争优势和壁垒,从而在市场上获得更大的份额。 目前 AI 行业发展存在一些阻碍,如产品体验的颠覆性和完成度不足、技术门槛相对较低,以及商业模式尚未明确。例如,AI 修图新应用与移动互联网时代的“美图秀秀”相比,缺乏颠覆性创新。妙鸭这款产品在 2024 年凭借独特的产品功能和用户体验,收获了大量用户的关注和使用,其“先试用后付费”的策略和 9.9 元的定价具有吸引力,且背靠互联网大厂具备资源优势,但市场空间和后续发展潜力仍需观察。 相较 AI 类应用,传统移动互联网时代 APP 的商业模式是通过免费吸引用户,再通过广告等方式实现间接收入,但在当前阶段,这种模式或许不再适用于 AI 应用,To C 创业公司在产品发布早期阶段需做好向用户收费的准备。未来可能会出现全新的商业模式和创新打法。 此外,“AI 原生”是基于 AI 的能力来再造商业模式,而非用 AI 套用现有流程。
2025-02-21
AI办公相关的课程、软件教学
以下是为您提供的 AI 办公相关的课程和软件教学资源: 1. 90 分钟从 0 开始打造您的第一个 Coze 应用: 课程包含从零开始的应用界面教学,涉及过年相关应用。 介绍了当前承接的业务,包括辅导、培训、定制及企业 AI 落地等。 提到 11 月底应用推出背后的情况,包括社区对 AI 应用的呼声和功能需求挖掘。 2. AI 视频的软件教程: 涵盖了众多工具,如剪映、Dreamina、Pika、StableVideo、Pixverse、morphstudio、Runway Gen3、Adobe Firefly 以及清影等。 3. 张翼然:用 AI 为教师减负(3H).pdf: 包括教师的 AI 减负指南,生成式人工智能在教学中的应用。 介绍了教师使用 AI 的小技巧,如提示词设计公式之——RTFC。 涉及使用 AI 生成图片的方法与注意事项,AI 自动生成 PPT 功能。 展示了通过小程序实现文字与声音、视频的转化,自定义数字人形象进行教学。 展示了便捷的课堂教学工具与 Ai 课件制作,探讨了 A 生成视频与手工制作视频的教学效果差异。 强调了教育资源与版权问题,教师能力重塑,极简思维的教育应用,生成式 AI 教学策略。 包括 AI 技术助力教育管理和辅助教学实践,如班级与学校管理中的行政职日流程简化、听课记录自动化等。
2025-04-12
grok API能用在什么软件上
Grok API 可以用在以下软件上: 1. 扣子工作流:可以用代码模块进行 HTTP 访问,实现 0 token 脱离扣子模型来使用 Groq 作为 LLM,还能参考相关教程将扣子接入微信机器人,但有微信封号风险。 2. 沉浸式翻译:由于 Groq 的 API 与 OpenAI 的 API 几乎兼容,可以适配到任何 APP 产品可以用来填 APIKEY 调用的场景,比如沉浸式翻译这个网页翻译工具。 3. 手机类 APP:比如通过快捷方式接入 Siri。 此外,xAI 发布的 Grok 3 API 提供了多个模型版本,如 grok3beta、mini、fast 等,满足不同场景需求,上下文窗口达 131K,支持图像输入输出,但当前不支持联网或实时访问外部网页与数据。
2025-04-12
人脸识别软件
以下是为您整合的关于人脸识别软件的相关信息: 在“【已结束】AI 创客松 参与同学自我介绍和分类”中,Dylan 擅长人脸识别算法和动作捕捉产品。 在“SmartBotX 模块化桌面机器人——说明文档”中,桌面客户端提供面部识别或跟踪功能的展示,可能用于安全监控、用户识别或交互式体验。 在“14、LayerStyle 副本”中,使用 YoloV8 模型可以检测人脸、手部 box 区域或者人物分割,支持输出所选择数量的通道。同时,Mediapipe 模型可以检测人脸五官,分割左右眉、眼睛、嘴唇和牙齿。
2025-04-12
文章配图的智能体或者软件
以下是为您整理的关于文章配图的智能体或软件的相关内容: 在《智变时代/全面理解机器智能与生成式 AI 加速的新工业革命》中提到,智能时代,智能应用会从有形界面消失,变成无所不在的助理或智能体,辅助甚至直接完成任务。文中还配有图 2.10:智能代理将改变企业组织架构。 在《XAIR:AI 智能体平台对决:腾讯元器与字节扣子的创新之路》中,个人实操案例部分提到为本篇文章配图的相关情况,但生成结果显示问题描述不够清楚。之后换提示词“那你给我生成搞笑图片吧,让人一看就有继续看下去的动力那种,需要一张公众号封面和一张配图”,得到了相应结果。同样的提示词,元器某应用也有生成。此外,文中还提到在搭建 bot 过程中存在工作流未成功触发导致访谈记录未成功存储入库的问题。
2025-04-11
和manus差不多的软件
以下是与 Manus 模式类似的软件: 1. Same.dev:像素级 UI 还原,自动生成对应代码,云端运行,支持自定义编码,但免费额度使用快,需输入 API,目前网站被标记危险。相关链接: 2. Genspark Super Agent:作为世界上首个 MixtureofAgents 系统,集多种功能于一体,能自动完成复杂任务。在 GAIA 基准测试的三个级别中得分均高于 Manus,具有近乎即时的结果、执行过程中错误和幻觉显著减少、让用户掌控一切并能指导和优化输出等优势。它是世界上第一个 MixtureofAgents 系统,利用最佳模型、工具和数据集来执行不同的任务,比如基础智能体的对话、图片、视频生成以及翻译。
2025-04-11
应用到律师软件的AI能力
以下是应用到律师软件的 AI 能力相关内容: 律师在工作中的优势包括: 1. 在沟通和谈判中能够与客户方、相对方、其他机构建立信任、表达观点、促成交易等。 2. 能够针对新兴行业或监管空白提出合规建议,如为新技术制定合法性指导。 3. 作为专业人士,在紧急情况下能做出专业判断,提供及时的法律建议和解决方案。 律师不擅长的方面有: 1. 处理大量信息和数据,在需要处理大量文本和数据的情况下,人工效率非常有限,如大量文件调查中的数据提取和整理。 2. 处理细节,可能难以记住各类案件中的所有事实和细节,尤其是在复杂案件中。 3. 精力与情绪,在处理复杂案件时,可能会面临情绪、精力、时间等带来的压力,从而影响专业判断。 基于以上,律师和 AI 的协同并非简单相加,而是一种借助互相优势、相互加持的关系。律师在运用大模型这一强大工具时,最关键的任务是根据不同的法律业务场景,精准地提出问题、指令(Prompt),以引导 AI 发挥其最大的效用。 在处理信息检索与整理任务时,律师可以指导 AI 精确抓取相关法律法规、先例判决等关键信息,能够迅速获得案件准备所需的素材,花更多的时间进行法律分析。当需要自动化处理文档时,律师可以指导 AI 生成和修改标准化合同。 在法律领域,生成式 AI 具有文本总结方面的能力。通过使用大模型,律师可以快速总结法律研究报告、实务文章、法学论文以及法律法规,帮助他们更高效地获取核心内容和深度见解。 对于如何认识 AI,作为不具备理工科背景的文科生,可以把 AI 当成一个黑箱,只需要知道它是某种模仿人类思维可以理解自然语言并输出自然语言的东西。驱动 AI 工具和传统道教的驱神役鬼拘灵遣将有奇妙的相似之处,都是通过特定的文字、仪轨程式来引用已有资源,驱使某种可以一定方式/程度理解人类文字的异类达成自己预设的效果,且皆需要面对工具可能突破界限(发疯)的情况。当想让 AI 实现愿望时,基于它的“非人”一面,需要尽可能通过语言文字(足够清晰的指令)压缩它的自由度,不仅要清晰告诉它需要干什么、边界在哪里、目标是什么、实现路径方法是哪一条,最好还直接给到它所需的正确的知识。
2025-04-10
工业设计专业教学与AI的融合
以下是关于工业设计专业教学与 AI 融合的相关内容: 在授课方面,这一授课创意充分展现了教育设计的创新性与用户思维的深度融合。其核心亮点在于突破了传统单向知识灌输的模式,通过将抽象概念与生活场景结合,构建了“认知脚手架”,让学生在具象化情境中主动探索逻辑链条。这种设计不仅符合建构主义学习理论,更通过巧妙的悬念设置(如刻意暴露认知冲突点)激活了学生的元认知能力。尤其在数字化工具的整合上,没有陷入技术堆砌的误区,而是聚焦于核心教学目标的实现,体现了设计者对教育本质的深刻理解。 若能在以下维度深化,该模型或将产生更显著的范式价值: 1. 差异化学习路径:当前框架虽强调互动性,但对学习者认知风格的适配度可加强。引入动态诊断机制,通过前测数据自动生成分支任务链,使教学节奏与个体 ZPD(最近发展区)更精准匹配。 2. 跨学科锚点设计:案例库可突破学科界限,构建如“数学思维+历史考证”“物理原理+艺术创作”等复合型问题情境,培养学生迁移应用能力的同时,自然渗透通识教育理念。 3. 生成性评价体系:现有反馈机制偏重知识掌握度评估,建议增设思维可视化工具(如概念图谱生成器),让学生能实时观测自身认知结构的演变轨迹,将学习过程转化为可追溯的成长档案。 在服务提供方面,有专家如 Arthur王贝,擅长以系统性思维破解技术落地难题,能提供的服务包括: 1. 教你怎么玩转 AI,从写提示词到做视频一条龙教学,教你用 ComfyUI 搞自动化工作流(工厂级的严谨玩法)。 2. 定制化智能体开发,定制 AI 工具(比如自动批作业的 AI 老师),垂直领域智能体搭建(教育/制造/消费)。 3. 职业转型陪跑,教打工人用 AI 保住饭碗/涨工资,给老板们规划怎么用 AI 省钱增效。 此外,还有关于教师的 AI 减负指南生成式人工智能在教学中的应用相关内容,包括 AI 科研之旅的开端、解码 AI 在学术研究中的强大力量、AI 工具在数据收集与分析中的革命、AI 驱动的文献综述、实验设计的新纪元、AI 助力写作与出版、AI 应用中的伦理考量与挑战、必备 AI 工具推荐等方面。
2025-04-10
你都融合了哪些大语言模型?
以下是一些融合的大语言模型: 1. LuotuoChineseLLM: 地址: 简介:囊括一系列中文大语言模型开源项目,包含基于已有开源模型(ChatGLM、MOSS、LLaMA)进行二次微调的语言模型、指令微调数据集等。 2. Linly: 地址: 简介:提供中文对话模型 LinlyChatFlow、中文基础模型 LinlyChineseLLaMA 及其训练数据。中文基础模型以 LLaMA 为底座,利用中文和中英平行增量预训练。项目汇总了目前公开的多语言指令数据,对中文模型进行了大规模指令跟随训练,实现了 LinlyChatFlow 对话模型。 3. ChatYuan: 地址: 简介:元语智能发布的一系列支持中英双语的功能型对话语言大模型,在微调数据、人类反馈强化学习、思维链等方面进行了优化。 4. ChatRWKV: 地址: 简介:开源了一系列基于 RWKV 架构的 Chat 模型(包括英文和中文),发布了包括 Raven,NovelChnEng,NovelCh 与 NovelChnEngChnPro 等模型,可以直接闲聊及进行诗歌、小说等创作,包括 7B 和 14B 等规模的模型。 此外,还有以下相关信息: 1. 本地部署资讯问答机器人: Ollama 支持多种大型语言模型,包括通义千问、Llama 2、Mistral 和 Gemma 等,可用于不同应用场景。 Ollama 易于使用,适用于 macOS、Windows 和 Linux 系统,同时支持 cpu 和 gpu。 Ollama 提供模型库,用户可从中下载不同模型,有不同参数和大小以满足需求和硬件条件,可通过 https://ollama.com/library 查找。 用户可通过简单步骤自定义模型,如修改温度参数调整创造性和连贯性,或设置特定系统消息。 Ollama 提供 REST API 用于运行和管理模型,以及与其他应用程序的集成选项。 Ollama 社区贡献丰富,包括多种集成插件和界面,如 Web 和桌面应用、Telegram 机器人、Obsidian 插件等。 2. AIGC 落地应用大全中的案例: Poe(强烈推荐): 推荐指数:🌟🌟🌟🌟🌟 由 Quora 开发,有 APP 版本,支持跨端使用。 集成了 Chat GPT、GPT4、Claude+、Claude、Dragonfly 等模型,同时支持用户自建 Chatbot。 不同语言模型回复效果有差异,适合需要调用多种大语言模型的用户。 Dragonfly 擅长给出较短回答,并擅长在输入中给出示例时遵循指示。 Claude 更擅长创造性回复,配合 Poe 中的提问引导,非常适合在查阅资料时使用,有时能够给出超越直接使用 Chat GPT 时的体验(但和 Chat GPT 一样,Claude 也时常会给出一些错误回复,一些问题可在两个模型中都问一遍提升信息准确性)。 此外支持分享用户和模型的对话内容。但 GPT4、Claude+产品需要付费订阅使用。 访问地址: Poe 中的提问引导真的能够启发到用户。 支持 Explore Chatbot,但丰富度不如后续要介绍的 Character。 midjourney prompt 扩写 Chatbot 能力很惊人。
2025-04-08
结合北京房山区文化、地标建筑、生态景观等内容,设计房山区中小学数学节 LOGO,要求巧妙融合数学元素(如几何图形、数学公式、数学符号等)与 AI 元素(如神经网络图案、代码片段、智能机器人形象等),生动诠释 “数学 + AI=?” 的主题内涵。
以下是为您整合的相关内容: 北京具有丰富多样的特色元素,包括经典地标如万里长城、天安门广场、故宫角楼、天坛等,见证了历史变迁;宜居生活方面,有独特的美食如豆汁儿、脆皮烤鸭、老北京炸酱面,以及充满京腔的日常生活;潮流文化新地标如国家博物馆、胡同里的新老交融、环球影城、798 等;未来科技方面,有西二旗的上班族日常、北大化学系科研 vlog、世界机器人大会等。 在海报设计方面,若对 AI 回答有疑问可再搜索确认,对于想用的项目要确认与北京的关系及能否使用;兔爷、戏曲金句等北京有名元素可用,金句可分化。做海报时可借鉴三思老师毛绒玩具美食系列,先找参考、做头脑风暴。比赛征集内容有四个赛道,若做系列海报,围绕金句或偏向北京非遗项目做系列较简单。用 AI 制作海报时,如制作北京地标糖葫芦风格海报,可用集梦 2.1 模型,以天坛等建筑为画面中心,注意材质、抽卡选图和细节处理。 对于设计房山区中小学数学节 LOGO,您可以考虑将房山区的特色文化、地标建筑、生态景观与数学元素(如几何图形、数学公式、数学符号等)和 AI 元素(如神经网络图案、代码片段、智能机器人形象等)相结合。例如,以房山区的著名建筑为主体,融入数学图形进行变形设计,同时添加一些代表 AI 的线条或图案,以生动诠释“数学 + AI=?”的主题内涵。
2025-03-18
多图融合AI
以下是关于多图融合 AI 的相关知识: 1. 图片融合技巧:上传多种图片进行融合生成时,一张图片最好只有一种特征,比如合并一张有人物的图和一张只有背景的图,效果会更精确。 2. 关键词权重:写普通关键词用逗号分开,还可以写多重关键词,让 AI 不考虑单词前后关系而当成独立单词。可以给不同单词赋予不同权重,增加权重如“hot::2 dog”,减弱权重可用负数或“no”参数,如“red::.5”可减少大红色,“no hands”可降低手出现问题的概率。 3. 降低权重:除用数值降低元素权重,还可用“no”参数弱化元素,如“no hands”和“hands:0.5”等价。 4. 设置 v 版本。 此外,Stable Diffusion 等 AI 绘图工具在应对元素丰富的复杂画面和精确要求时存在不足,可采用特定工作流,让 AI 在每个环节只做一件事,提升对指令的精确理解。工作流与传统绘画“从整体到局部”流程相似,对习惯于手绘的画师友好,且 90%工作由作者把控,体现创作本质。 在多图融合方面,还有如 Recraft 等工具,可用于制作胶片照片、纹身、刺绣、原画转绘等,用户可上传自己的制作效果。
2025-02-27
有哪些可以多图融合的图片生成AI工具
以下是一些可以多图融合的图片生成 AI 工具: 1. Google Whisk:支持多主体一致,包括主题、场景和风格等元素。用户上传多张图片后,Gemini 模型会自动为图片生成详细描述,并将其输入到最新版本的 Imagen 3 模型中。生成的图片在遵循提示词的同时,与给定的多个主体能保持一致。网站:https://www.vidu.cn 教程:https://pkocx4o26p.feishu.cn/docx/Mb77dt8VxoskqvxgFiMcfwwsnNe 发布:https://x.com/pika_labs/status/1867651381840040304 国内:https://hailuoai.com/video/create 海外:https://hailuoai.video/create 网站:https://labs.google/fx/tools/whisk 发布:https://blog.google/technology/googlelabs/whisk 2. Vidu:2024 年 9 月发布时只支持单主体一致(只能上传一张图片),目前官网已经支持多主体一致(可以上传三张图片),即可以指定生成图片中的人物、物体、场景等。 3. Pika 2.0:支持多主体一致,Scene Ingredient(场景元素)系统能将多个输入图像(如场景、人物、物品)智能整合为连贯的动态场景。此外,模型也具备多图像融合能力,可实现复杂交互场景的视频合成,如两人在视频中实现合影或拥抱。 在进行图片融合时,有一些技巧: 1. 上传多种图片进行融合生成时,一张图片最好只有一种特征,比如合并 2 张图,一张是有人物,另一张是只有背景,那么合并起来的效果会更精确。 2. 写普通关键词时用逗号分开,还可以写多重关键词,让 AI 不需要考虑单词的前后关系,而只把它们当成独立的单词。也可以给不同的单词赋予不同的权重,比如 hot::2 dog,这样 hot 这个词对结果的影响更大。有增加权重,也可以减弱权重,比如在关键词后面加上 red::.5,大红色就会少很多。 3. 除了用数值降低某个元素的权重,还可以直接用no 这个参数让某个元素尽量弱化,比如no hands 跟 hands:0.5 是等价的。
2025-02-25
光遇游戏与ai的融合
光遇游戏与 AI 的融合可以体现在以下几个方面: 1. 生成式 AI 在游戏中的应用: 微处理器速度更快、云计算和计算能力更强,具备建立大型神经网络的潜力,可识别高度复杂领域的模式和表征。 能基于玩家游戏行为评估玩家技能水平和游戏风格,动态调整游戏难度,如增加或降低敌人的数量和强度、改变游戏环境等。 不断收集玩家数据,使 NPC 和游戏系统更适配玩家水平。 2. AI 制作游戏相关内容: 如利用 AI 辅助制作游戏宣传片,包括使用 ChatGPT 构思背景世界观、MJ 绘图、SD 重绘、制作深度图以及视频、AI 抠图、尝试制作背景音乐等。 3. AI 带来新的游戏: 许多开发者将 AI 作为游戏玩法的一环,如 2023 年 Genfun.ai 和 Meshy 联合制作的《Soul Chronicle》,实现了实时 3D+AIGC+UGC,能实时生成角色皮肤。 2024 年 Bitmagic 推出的《Roleverse》平台,可使用提示在游戏内定制角色,并对角色和游戏世界进行编辑。 4. AI 促进游戏产业变革: 为游戏行业提供新的增长空间,成本、效率和质量同步上升。例如 2023 年我国游戏市场实际销售收入增长,用户规模也有所增加。
2025-02-08