以下是一些融合的大语言模型:
此外,还有以下相关信息:
Luotuo-Chinese-LLM:地址:[https://github.com/LC1332/Luotuo-Chinese-LLM](https://github.com/LC1332/Luotuo-Chinese-LLM)简介:囊括了一系列中文大语言模型开源项目,包含了一系列基于已有开源模型(ChatGLM,MOSS,LLaMA)进行二次微调的语言模型,指令微调数据集等。Linly:地址:[https://github.com/CVI-SZU/Linly](https://github.com/CVI-SZU/Linly)简介:提供中文对话模型Linly-ChatFlow、中文基础模型Linly-Chinese-LLaMA及其训练数据。中文基础模型以LLaMA为底座,利用中文和中英平行增量预训练。项目汇总了目前公开的多语言指令数据,对中文模型进行了大规模指令跟随训练,实现了Linly-ChatFlow对话模型。ChatYuan地址:[https://github.com/clue-ai/ChatYuan](https://github.com/clue-ai/ChatYuan)简介:元语智能发布的一系列支持中英双语的功能型对话语言大模型,在微调数据、人类反馈强化学习、思维链等方面进行了优化。ChatRWKV:地址:[https://github.com/BlinkDL/ChatRWKV](https://github.com/BlinkDL/ChatRWKV)简介:开源了一系列基于RWKV架构的Chat模型(包括英文和中文),发布了包括Raven,Novel-ChnEng,Novel-Ch与Novel-ChnEng-ChnPro等模型,可以直接闲聊及进行诗歌,小说等创作,包括7B和14B等规模的模型。
1.支持多种大型语言模型:Ollama支持包括通义千问、Llama 2、Mistral和Gemma等在内的多种大型语言模型,这些模型可用于不同的应用场景。2.易于使用:Ollama旨在使用户能够轻松地在本地环境中启动和运行大模型,适用于macOS、Windows和Linux系统,同时支持cpu和gpu。3.模型库:Ollama提供了一个模型库,用户可以从中下载不同的模型。这些模型有不同的参数和大小,以满足不同的需求和硬件条件。Ollama支持的模型库可以通过https://ollama.com/library进行查找。4.自定义模型:用户可以通过简单的步骤自定义模型,例如修改模型的温度参数来调整创造性和连贯性,或者设置特定的系统消息。5.API和集成:Ollama还提供了REST API,用于运行和管理模型,以及与其他应用程序的集成选项。6.社区贡献:Ollama社区贡献丰富,包括多种集成插件和界面,如Web和桌面应用、Telegram机器人、Obsidian插件等。7.总的来说,Ollama是一个为了方便用户在本地运行和管理大型语言模型而设计的框架,具有良好的可扩展性和多样的使用场景。后面在捏Bot的过程中需要使用Ollama,我们需要先安装,访问以下链接进行下载安装。https://ollama.com/download/安装完之后,确保ollama后台服务已启动(在mac上启动ollama应用程序即可,在linux上可以通过ollama serve启动)。我们可以通过ollama list进行确认,当我们还没下载模型的时候,正常会显示空:可以通过ollama命令下载模型,目前,我下载了4个模型:几个模型简介如下:
推荐指数:🌟🌟🌟🌟🌟由Quora(海外问答平台,类似国内知乎)开发,有APP版本,支持跨端使用。主要亮点在于集成了Chat GPT、GPT-4、Claude+、Claude、Dragonfly等模型,同时支持用户自建Chatbot。不同语言模型回复效果有差异,适合需要调用多种大语言模型的用户。Dragonfly擅长给出较短的回答,并擅长在输入中给出示例时遵循指示。Claude更擅长创造性回复,配合Poe中的提问引导,非常适合在查阅资料时使用,有时能够给出超越直接使用Chat GPT时的体验(但和Chat GPT一样,Claude也时常会给出一些错误回复,一些问题我会尝试在两个模型中都问一遍提升信息准确性)。此外支持分享用户和模型的对话内容。但GPT-4、Claude+产品需要付费订阅使用。访问地址:[https://poe.com/](https://poe.com/)Poe中的提问引导真的能够启发到用户支持Explore Chatbot,但丰富度不如后续要介绍的Charactermidjourney prompt扩写Chatbot能力很惊人[heading3]