目前 AI 的发展主要呈现以下几个方向和现状:
无论是技术研究还是应用实践,数学和编程基础都是必不可少的。同时需要紧跟前沿技术发展动态,并结合实际问题进行实践锻炼。
在硅谷101号公路旁,谷歌总部以南不到十分钟车程的地方,坐落着一座不太起眼的博物馆。从这里向北眺望,能看到Meta的蓝色标志,向南远眺,是苹果的太空环。在科技巨头的包围中,像一位沉默的长者,注视着周围新旧交替的浪潮,记录人类文明最壮丽的生长。这里是计算机历史博物馆,在幽静的展厅里,一个古老的算盘和一段打着绳结的麻绳,讲述着人类最原始的梦想:计算与连接。2024年,这两条线索在人工智能的浪潮中,终于完全交织在了一起。AI不仅在计算,更在创造;不仅在传递信息,更在理解和转化信息。当机器开始展现出类人的思维能力,曾经分立的计算与连接,在大模型中获得了新的统一。这是一个奇特的时刻:计算变成了对话,数据化作了智慧。自ChatGPT发布以来的人工智能的发展,已经远远超出了人类的预期。我们在年末回望,市场的关注焦点,从去年基础模型能力的提升,到今年模型的落地应用和场景化。AI的能力需要转化为实际的产品和服务,满足用户需求才是核心。这背后,是AI产业经历了从“训练时代”向“推理时代”的转变。本文将详述我们看到的AI发展三个关键维度可能性,与各位共享:一、技术范式的革新。当传统的Scaling Law遭遇瓶颈,OpenAI的o系列模型开创了新的道路——从大力出奇迹的“快思考”到“慢思考”训推双管齐下。二、多模态能力的跃迁。从Sora的视频生成到原生多模态的崛起,再到世界模型的尝试,AI开始真正理解和模拟这个立体的世界。
这半年来,除传统的文生视频、图生视频能力迭代外,当前的主要技术发展还围绕着通过转绘改变画风、视频内人物识别和替换方向。1.在服务头部创作者方面,各家产品未来会逐渐转向编辑器能力增强,强化视频细节可控性,并逐渐将剪辑、音效生成匹配等后期制作任务智能化,逐步转变当前AI创作者跨N个产品完成创作的现状。2.影视后期方向,未来可以将动捕演员的表演直接转化为虚拟角色,大大提高特效制作效率。3.专业领域,创作者未来可以快速通过草图分镜验证效果。例如动画制作产品Fable在今年4月试水了Prism Beta功能。用户可以制作简单的几何图形串联的动画逐帧渲染实现更丰富的动画效果。但目前效果还不够成熟。4.随着实时生成能力的进一步提升,生成成本的下降,AI实验性艺术在博物馆、展览等互动应用将会增多。5.在C端大众消费侧,看好AI视频在小说、网文阅读、短情景剧等内容消费方向发挥潜力;另外人物识别和替换也可以衍生电商平台虚拟试衣间能力。6.Viggle、DomoAI的产品中的模板套用能力若以更低成本开放在短视频产品中,可能会带来短视频平台效果模板新的爆发周期。
1.数学基础:线性代数、概率论、优化理论等2.机器学习基础:监督学习、无监督学习、强化学习等3.深度学习:神经网络、卷积网络、递归网络、注意力机制等4.自然语言处理:语言模型、文本分类、机器翻译等5.计算机视觉:图像分类、目标检测、语义分割等6.前沿领域:大模型、多模态AI、自监督学习、小样本学习等7.科研实践:论文阅读、模型实现、实验设计等[heading3]偏向应用方向[content]1.编程基础:Python、C++等2.机器学习基础:监督学习、无监督学习等3.深度学习框架:TensorFlow、PyTorch等4.应用领域:自然语言处理、计算机视觉、推荐系统等5.数据处理:数据采集、清洗、特征工程等6.模型部署:模型优化、模型服务等7.行业实践:项目实战、案例分析等无论是技术研究还是应用实践,数学和编程基础都是必不可少的。同时需要紧跟前沿技术发展动态,并结合实际问题进行实践锻炼。内容由AI大模型生成,请仔细甄别。