Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

AI在垂直领域的应用

Answer

AI 在垂直领域有广泛的应用,以下为您详细介绍:

  1. 医疗保健:
    • 医学影像分析:用于分析医学图像,辅助诊断疾病。
    • 药物研发:加速药物研发,识别潜在药物候选物和设计新治疗方法。
    • 个性化医疗:分析患者数据,提供个性化治疗方案。
    • 机器人辅助手术:控制手术机器人,提高手术精度和安全性。
  2. 金融服务:
    • 风控和反欺诈:识别和阻止欺诈行为,降低金融机构风险。
    • 信用评估:评估借款人信用风险,辅助贷款决策。
    • 投资分析:分析市场数据,帮助投资者做出明智投资决策。
    • 客户服务:提供 24/7 服务,回答常见问题。
  3. 零售和电子商务:
    • 产品推荐:分析客户数据,推荐可能感兴趣的产品。
    • 搜索和个性化:改善搜索结果,提供个性化购物体验。
    • 动态定价:根据市场需求调整产品价格。
    • 聊天机器人:回答客户问题,解决问题。
  4. 制造业:
    • 预测性维护:预测机器故障,避免停机。
    • 质量控制:检测产品缺陷,提高产品质量。
    • 供应链管理:优化供应链,提高效率和降低成本。
    • 机器人自动化:控制工业机器人,提高生产效率。
  5. 交通运输:暂未提及具体应用。

在 2024 年,AI 在以下领域有新的应用与发展趋势:

  1. 机器人研究:苹果 Vision Pro 成为必备工具,用于远程操作控制机器人的运动和动作。
  2. 医学:利用大模型生成合成数据,如微调 Stable Diffusion 生成高保真度和概念正确的合成 X 射线扫描数据。
  3. 企业自动化:新方法如 FlowMind 和 ECLAIR 使用基础模型解决传统机器人流程自动化的限制,提高工作流理解准确率和完成率。

在电子商务领域,AI 工具已被广泛整合,如 Flair、Booth 和 Bloom 帮助品牌创建产品照片,AdCreative、Pencil 制作营销材料,Frase 或 Writesonic 编写产品描述,未来有望通过简单描述创建完整电商商店及营销材料。

Content generated by AI large model, please carefully verify (powered by aily)

References

问:请问 AI 有哪些应用场景?

人工智能(AI)已经渗透到各行各业,并以各种形式改变着我们的生活。以下是一些人工智能的主要应用场景:1.医疗保健:医学影像分析:AI可以用于分析医学图像,例如X射线、CT扫描和MRI,以辅助诊断疾病。药物研发:AI可以用于加速药物研发过程,例如识别潜在的药物候选物和设计新的治疗方法。个性化医疗:AI可以用于分析患者数据,为每个患者提供个性化的治疗方案。机器人辅助手术:AI可以用于控制手术机器人,提高手术的精度和安全性。2.金融服务:风控和反欺诈:AI可以用于识别和阻止欺诈行为,降低金融机构的风险。信用评估:AI可以用于评估借款人的信用风险,帮助金融机构做出更好的贷款决策。投资分析:AI可以用于分析市场数据,帮助投资者做出更明智的投资决策。客户服务:AI可以用于提供24/7的客户服务,并回答客户的常见问题。3.零售和电子商务:产品推荐:AI可以用于分析客户数据,向每个客户推荐他们可能感兴趣的产品。搜索和个性化:AI可以用于改善搜索结果并为每个客户提供个性化的购物体验。动态定价:AI可以用于根据市场需求动态调整产品价格。聊天机器人:AI可以用于提供聊天机器人服务,回答客户的问题并解决他们的问题。4.制造业:预测性维护:AI可以用于预测机器故障,帮助工厂避免停机。质量控制:AI可以用于检测产品缺陷,提高产品质量。供应链管理:AI可以用于优化供应链,提高效率和降低成本。机器人自动化:AI可以用于控制工业机器人,提高生产效率。5.交通运输:

2024人工智能报告|一文迅速了解今年的AI界都发生了什么?

苹果Vision Pro成为必备的机器人研究工具尽管消费者对Vision Pro的需求平淡无奇,但它在机器人研究领域引起了轰动,在那里其高分辨率、高级跟踪和处理能力被研究人员用于远程操作控制机器人的运动和动作。如Open-TeleVision和Bunny-Vision Pro使用它来帮助实现精确控制多指机械手(例如前者距离为3000英里),展示比以前的方法更复杂的任务的改进性能,如实时控制、通过碰撞避免的安全性和有效的双臂协调。在医学中利用大模型生成合成数据微调Stable Diffusion中的U-Net和CLIP文本编码器,从大量真实胸部X射线(CXR)及其相应的放射科医生报告中生成一个大型数据集,从而产生由权威放射科医生评估为高保真度和概念正确性的合成CXR扫描数据,并且生成的X射线图像可用于数据增强和自监督学习。企业自动化获得人工智能后将优先升级传统的机器人流程自动化(RPA),如UiPath,面临着高昂的设置成本、脆弱的执行和繁重的维护。两个新颖的方法,FlowMind(JP Morgan)和ECLAIR(斯坦福大学),使用基础模型来解决这些限制。FlowMind专注于金融工作流,通过API使用LLM来生成可执行的工作流。在对NCEN-QA数据集进行实验时,FlowMind在工作流理解方面达到了99.5%的准确率。ECLAIR采取了更广泛的方法,使用多模态模型从演示中学习,并直接与各种企业环境中的图形用户界面交互。在网页导航任务上,ECLAIR将完成率提高了从0%到40%。

生成式 AI:下一个消费者平台

在这个领域,电子商务已经成为最富成效的垂直行业之一。这些企业大多完全在线运营,这使得它们很容易将AI工具整合到他们的工作流程的许多部分中。在客户获取成本不断上升的世界中,品牌渴望尝试可能有助于他们降低成本、转化更多购物者并提高客户保留率的产品。像[Flair](https://flair.ai/)、[Booth](https://www.booth.ai/)和[Bloom](https://bloom.ai/)这样的工具帮助品牌创建引人注目的产品照片,这对于向在线购物者销售产品非常重要。一个挂在衣架上的连衣裙的静态照片可以变成一个女人穿着这件裙子在花园里行走的形象。我们预期这些用途最终将变得极度个性化:一张沙发的登陆页面将展示该沙发摆放在你的公寓中的照片。除了产品照片之外,品牌还创作了许多现在可以通过AI大大提升的内容类型。例如,[AdCreative](https://www.adcreative.ai/)和[Pencil](https://www.trypencil.com/)可以制作用于电子邮件或社交媒体的营销材料,而[Frase](https://www.frase.io/tools/product-description-generator/)或[Writesonic](https://writesonic.com/tools/product-description-generator)可以编写经过SEO优化的产品描述。最终,我们预计用户将能够仅通过描述他们期望的审美并点击一个按钮,就能创建一个完整的电商商店——以及用于市场营销的材料。我们还处在生成式AI革命的早期阶段,但我们很兴奋地分享这项技术将如何影响我们工作、学习、创作和娱乐的方式。

Others are asking
爆款AI视频
以下是关于爆款 AI 视频的相关内容: 2025AI 春晚: 行业身份:首届 AI 春晚发起人&总导演,包括央视总台论坛&直播、TEDxAI 演讲、得到分享等。 爆款视频案例:快手&国家反诈中心合作,微博 650w+热搜,快手 520w+热搜(6 月 28 日);央视&海尔冰箱首支 AI 概念短片(6 月 29 日);个人制作视频,无推流,快手平台 636w 播放(6 月 29 日)。 社区与企业关系:涉及 WaytoAGI、AIGCxChina 等聚会,以及德必集团、万兴集团、福布斯 AItop50 等的论坛分享,还有嘉定区政府颁奖、温州 AI 音乐大会、腾讯研究院论坛、江西财经大学分享、宣亚集团分享等。 WTF:1w 粉 10w 粉仅仅用时 13 天,像素级拆解《动物时装秀》: 作者模仿动物时装秀账号效果不错并分享教程。一个爆款视频至少要满足以下几点: 切片:短视频通过不断切片,增加信息密度,从长视频和其他短视频中脱颖而出。 通感:利用人的直觉脑,不让观众动脑子,如头疗、水疗直播间靠声音让人舒服,美食直播间靠展示美食吸引人。 反差:可参考抖音航线里行舟大佬的相关文档。 视频模型:Sora: OpenAI 突然发布首款文生视频模型 Sora,能够根据文字指令创造逼真且充满想象力的场景,生成 1 分钟的超长一镜到底视频,女主角、背景人物等都有惊人的一致性和稳定性,远超其他 AI 视频工具。
2025-02-21
AI音频与数字人
以下是关于 AI 音频与数字人的相关信息: 数字人口播配音: 操作指引:输入口播文案,选择期望生成的数字人形象及目标语言,选择输出类型,点击开始生成。 支持的数字人形象和语言多样,能让视频制作更高效。 图片换脸: 操作指引:上传原始图片和换脸图片,点击开始生成。 图片大小上限 5M,支持 JPG、PNG 格式。 视频换脸: 操作指引:上传原始视频和换脸图片,点击生成。 音频合成数字人: 操作指引:上传音频文件,选择数字人角色和输出类型,点击开始生成。 支持 MP3 和 WAV 格式的音频文件,文件大小上限 5M,工具支持使用 100+数字人模板,可解决无素材冷启问题。 AI 配音: 多语种(包含菲律宾语、印地语、马来语等小语种)智能配音,同时支持区分男声和女声。 操作指引:输入需配音文案,选择音色,点击立即生成。 注意输入的配音文案需和选择音色语种保持一致。 AI 字幕: 操作指引:点击上传视频,开始生成,字幕解析完成后下载 SRT 字幕。 支持 MP4 文件类型,大小上限为 50M。 在数字人语音合成方面,提到了声音克隆,有新的声音克隆且音质很不错。算法驱动的数字人相关开源代码仓库有: ASR 语音识别:openai 的 whisper(https://github.com/openai/whisper)、wenet(https://github.com/wenete2e/wenet)、speech_recognition(https://github.com/Uberi/speech_recognition)。 大模型:ChatGPT、Claude、ChatGLM、文星一言、千帆大模型、通义千问等。 Agent 部分:可以使用 LangChain 的模块去做自定义(https://www.langchain.com/)。 TTS:微软的 edgetts(https://github.com/rany2/edgetts)、VITS(https://github.com/jaywalnut310/vits)、sovitssvc(https://github.com/svcdevelopteam/sovitssvc)。 构建简单数字人的方式包括通过手动建模(音频驱动)或者 AIGC 的方式生成人物的动态效果(例如 wav2lip 模型),但仍存在一些问题,如如何生成指定人物的声音、TTS 生成的音频如何精确驱动数字人口型以及做出相应的动作、数字人如何使用知识库做出某个领域的专业性回答等。
2025-02-21
现阶段最智能的AI工具是哪一款?
现阶段很难确切地指出哪一款 AI 工具是最智能的,因为这取决于不同的应用场景和需求。以下为您介绍一些表现出色的 AI 工具: Unity 推出的两款 AI 工具: Copliot 工具:可通过与 Muse Chat 聊天快速启动创建游戏项目,如生成塔防类游戏基础框架、创建人物角色动作,还能协助编码和熟悉工程环境。 Unity Sentis:能在 Unity 运行时为游戏或应用程序嵌入 AI 模型,增强玩法和功能,是首个将 AI 模型嵌入实时 3D 引擎的跨平台解决方案。 基于 2022 年 9 月至 2023 年 8 月访问量的 10 个最佳人工智能工具: ChatGPT:访问量达 146 亿次,在美国使用率最高,男性用户占比较大,多用于写作和内容创作、教育和常识等方面。 Character AI QuillBot Midjourney Hugging Face Google Bard NovelAI CapCut JanitorAI Civitai 不同类型的 AI 工具在不同领域各有优势,例如聊天机器人在流量份额上占比较大,而图像生成器、视频生成器、语音和音乐工具等也在各自领域表现出色。您可以根据具体需求选择适合的工具。
2025-02-21
AI智能体接入个人微信的应用
以下是关于 AI 智能体接入个人微信的应用的相关信息: 国内版的扣子是一款在 AI 应用领域知名度高的产品,功能丰富,支持知识库、工作流和插件等,其社区市场完善,用户可选择官方或其他用户创建的插件和 AI Agent,且支持多种接入方式,包括接入个人微信公众号,还支持接入企业服务号和企业微信。但普通版本和专业版主要接入国内模型,可能存在性能和稳定性问题。 Coze 可以实现多模态资讯的跨平台推送,通过登录宝塔面板,在上面部署 docker 容器,启动 COW 项目与微信取得关联。具体步骤包括在宝塔面板中进行可视化控制云服务器,添加 Docker 项目模板,创建容器并编排,扫码等操作。 熊猫大侠介绍了基于 COW 框架的 ChatBot 实现步骤,可实现多种功能,支持多平台、多模型、多消息类型和多部署方法。但需要注意接入大模型 API 需单独付费,微信端接入有封号风险,操作需依法合规,注意数据处理和遵守法律法规。 此外,张梦飞同学写了更适合小白的使用教程:【保姆级】一步一图,手把手教你把 AI 接入微信副本
2025-02-21
转行做AI产品经理的自学指南,并帮我找到学习资源途径
以下是一份转行做 AI 产品经理的自学指南及学习资源途径: 自学指南: 1. 了解 AI 基础知识,包括常见的概念、技术和应用。 2. 学习产品管理的核心知识,如需求分析、用户体验设计等。 3. 关注技术原理,例如思维链、RAG、PAL、ReAct 等,可通过相关论文和科普视频进行学习。 4. 积累实践经验,尝试参与实际项目或模拟项目。 学习资源途径: 1. WaytoAGI(通往 AGI 之路):这是一个致力于人工智能学习的中文知识库和社区平台,提供系统全面的 AI 学习路径,涵盖从基础概念到实际应用的各个方面。 汇集了上千个人工智能网站和工具,提供最新的 AI 工具、AI 应用、AI 智能体和行业资讯。 提供丰富的学习资源,包括文章、教程、工具推荐以及最新的 AI 行业资讯等。 定期组织实践活动,如视频挑战赛、模型创作大赛等,鼓励成员在实践中学习,促进交流与合作。 2. 相关技术论文:虽然对于小白有难度,但可以借助 AI 辅助阅读,完成一定知识储备。 3. 科普视频:如林粒粒呀的相关科普视频。 4. 行业访谈:例如安克创新 CEO 阳萌的访谈,获取前沿观点和启发。 此外,您还可以参考北京分队中相关人员的经验,如 Sundy 从产品运营转行当 AIGC 产品经理的经历。
2025-02-21
普通人的AI之路
普通人在 AI 领域有很多创造奇迹的机会和途径: 1. 参与 AI 艺术节:例如第一届 AI 艺术节 AIAF 面向全球创作者和 AI 爱好者发起了以“爱恨情仇”为命题的共同创作行动,收到了大量投稿,其中有相当比例的优秀作品来自此前并非从事视觉创作的跨界人士。 2. 让 AI 走进工作和生活: 万能公式法:问 AI 【一个(xxx 职业)需要具备哪些知识?】,获取知识框架,再针对小点提问,辅助深度思考。 寻找优质信息源:像没有技术背景的普通人,可在「即刻」App 的“”等免费圈子获取前沿信息,也可在必要时溯源至 Twitter 和相关官网。同时,为应对信息爆炸,可尝试只掌握最好的产品、解决具体问题、关注核心能力、关注需求和逻辑、先提升认知等技巧。 3. 了解 AGI 相关内容:如阅读 AGI 万字长文,了解 AI 多模态大爆发、应用现状、发展方向、可能带来的影响等多方面内容。
2025-02-21
我想做一个产品(生涯规划领域的垂直大模型),这个产品服务的对象是所有人:帮助所有人进行更好的职业规划。每个人都能通过使用这个产品更好地了解自己,了解自己的天赋、兴趣、优势,然后找到自己的热爱的领域和热爱的事业,并且能够个性化地推荐相关的行业和职业,包括职业的主要工作内容和核心能力要求等等。 请对这个产品进行可行性分析,并给出产品的发展规划,别忘了给这个项目起一个名字。
以下是对您提出的生涯规划领域垂直大模型产品的可行性分析和发展规划,并为项目取名为“生涯智途”。 可行性分析: 1. 需求广泛:帮助人们进行职业规划是一个普遍存在的需求,涵盖了各个年龄段和职业阶段的人群。 2. 数据可用性:可以通过各种渠道收集大量与职业相关的数据,包括行业报告、职位描述、人才需求等。 3. 技术支持:当前大模型技术的发展为实现这样的产品提供了可能,能够处理和分析大量复杂的数据。 发展规划: 1. 数据收集与整理:广泛收集各类职业数据,建立丰富的数据库,确保数据的准确性和完整性。 2. 模型训练与优化:利用收集到的数据进行模型训练,不断优化模型,提高预测和推荐的准确性。 3. 功能开发: 个性化测评:开发能够准确评估用户天赋、兴趣、优势的功能模块。 精准推荐:根据用户的特点,提供个性化的行业和职业推荐,并详细介绍职业的工作内容和核心能力要求。 持续学习与更新:随着行业变化,及时更新数据和模型,以提供最新的职业信息。 4. 用户体验优化:设计简洁、易用的界面,提供良好的用户交互体验。 5. 市场推广:通过线上线下多种渠道进行推广,提高产品的知名度和用户覆盖面。 希望以上分析和规划对您有所帮助。
2025-02-18
垂直领域大模型训练指南
以下是一份垂直领域大模型训练指南: 一、大模型入门 通俗来讲,大模型就是输入大量语料,让计算机获得类似人类的“思考”能力,能够进行文本生成、推理问答、对话、文档摘要等工作。 大模型的训练和使用过程可以用“上学参加工作”来类比: 1. 找学校:训练大模型需要大量计算,GPU 更合适,只有购买得起大量 GPU 的才有资本训练自己的大模型。 2. 确定教材:大模型需要的数据量特别多,几千亿序列(Token)的输入基本是标配。 3. 找老师:即用合适的算法讲述“书本”中的内容,让大模型更好理解 Token 之间的关系。 4. 就业指导:为了让大模型更好胜任某一行业,需要进行微调(fine tuning)指导。 5. 搬砖:就业指导完成后,进行如翻译、问答等工作,在大模型里称之为推导(infer)。 在 LLM 中,Token 被视为模型处理和生成的文本单位,可以代表单个字符、单词、子单词等,具体取决于所使用的分词方法。在将输入进行分词时,会对其进行数字化,形成一个词汇表。 二、LLM 开源中文大语言模型及数据集集合 1. 医疗领域 XrayGLM:首个会看胸部 X 光片的中文多模态医学大模型。 地址: 简介:该项目发布了 XrayGLM 数据集及模型,在医学影像诊断和多轮交互对话上显示出非凡潜力。 MeChat:中文心理健康支持对话大模型。 地址: 简介:该项目开源的中文心理健康支持通用模型由 ChatGLM6B LoRA 16bit 指令微调得到,数据集通过调用 gpt3.5turbo API 扩展真实的心理互助 QA 为多轮的心理健康支持多轮对话,提高了通用语言大模型在心理健康支持领域的表现,更加符合在长程多轮对话的应用场景。 MedicalGPT 地址: 简介:训练医疗大模型,实现包括二次预训练、有监督微调、奖励建模、强化学习训练。发布中文医疗 LoRA 模型 shibing624/ziyallama13bmedicallora,基于 ZiyaLLaMA13Bv1 模型,SFT 微调了一版医疗模型,医疗问答效果有提升,发布微调后的 LoRA 权重。 三、100 基础训练大模型 步骤三·Lora 生图: 1. 点击预览模型中间的生图会自动跳转到相应页面。 2. 模型上的数字代表模型强度,可在 0.6 1.0 之间调节,默认为 0.8。 3. 可以自己添加 lora 文件,点击后会显示训练过的所有 lora 的所有轮次。 4. VAE 不需要替换。 5. 正向提示词输入所写的提示词,可以选择基于这个提示词一次性生成几张图。 6. 选择生成图片的尺寸,包括横板、竖版、正方形。 7. 采样器和调度器新手小白可以默认不换。 8. 迭代步数可以按照需求在 20 30 之间调整。 9. CFG 可以按照需求在 3.5 7.5 之间调整。 10. 随机种子 1 代表随机生成图。 11. 所有设置都完成后,点击开始生成,生成的图会显示在右侧。 12. 如果有某次生成结果不错,想要微调或者高分辨率修复,可以点开那张图,往下滑,划到随机种子,复制下来,粘贴到随机种子这里,下次生成的图就会和这次的结果近似。 13. 如果确认了一张很合适的种子和参数,想要高清放大,则点开高清修复,可以选择放大的倍数。新手小白可以默认算法,迭代步数建议在 20 30 之间,重回幅度根据需求在 0.3 0.7 之间调整。 今日作业:按照比赛要求,收集六个主题中一个主题的素材并且训练出 lora 模型后提交 lora 模型与案例图像。 提交链接:https://waytoagi.feishu.cn/share/base/form/shrcnpJAtTjID7cIcNsWB79XMEd
2025-02-07
法律类的垂直AI大模型
以下是一些法律类的垂直 AI 大模型: Lawyer LLaMA:首先在大规模法律语料上进行了 continual pretraining,然后借助 ChatGPT 收集了一批对中国国家统一法律职业资格考试客观题的分析和对法律咨询的回答,利用这些数据对模型进行指令微调,让模型习得将法律知识应用到具体场景中的能力。 ChatLaw:由北大开源的一系列法律领域的大模型,包括 ChatLaw13B、ChatLaw33B、ChatLawText2Vec 等。其中,ChatLaw13B 基于姜子牙 ZiyaLLaMA13Bv1 训练而来,ChatLaw33B 基于 Anima33B 训练而来,逻辑推理能力大幅提升。此外,还使用 93w 条判决案例做成的数据集基于 BERT 训练了一个相似度匹配模型,可将用户提问信息和对应的法条相匹配。
2024-07-12
PPT制作怎么插入垂直直线
在PPT中插入垂直直线,您可以按照以下步骤操作: 1. 打开您的Microsoft PowerPoint程序,并打开您想要插入直线的演示文稿。 2. 选择您想要插入直线的幻灯片。 3. 在菜单栏中,找到“插入”选项,点击它。 4. 在“插入”菜单中,您可以看到“形状”选项。点击它,会弹出一个形状列表。 5. 在形状列表中,找到“直线”或者“垂直直线”的图标。通常,“直线”图标是一个水平的直线,而“垂直直线”则是一条垂直的直线。 6. 点击“垂直直线”图标后,您的鼠标指针会变成一个十字准线,同时会有一个提示框显示“拖动鼠标绘制形状”。 7. 在幻灯片的适当位置点击并拖动鼠标,绘制出您想要的垂直直线。 8. 当您释放鼠标按钮时,直线就会被插入到幻灯片中。 9. 您可以点击直线以选择它,然后在格式工具栏中调整它的颜色、粗细、样式等属性,以符合您的演示需求。 10. 完成后,您就可以继续编辑您的演示文稿或进行演示了。 注意:不同的PowerPoint版本可能在界面和选项上有所不同,但基本的插入直线操作是相似的。如果您使用的是其他版本的PowerPoint或者在线的PowerPoint替代品,步骤可能会有所不同。
2024-05-23
现在有什么垂直行业Agent吗,真正有在应用的
目前,AI Agent 已逐步应用于电商、电信服务、银行、核能制造和新零售等多个行业领域。以新零售客户为例,实在 AI Agent 能够提供全域数据自动化采集、全平台竞店、竞品、竞对的数据分析和回溯,通过自动化采集、分析数据,并以可视化呈现用户评论数据,帮助企业解决数据分散和处理效率低的问题,助力客户提效降本、敏捷精准优化营销策略。此外,该应用还能协助企业进行财务处理、客服互动、自动退换货等工作,极大提高工作效率。 在 AI 应用的开发过程中,实在智能团队充分发挥了在 RPA 领域的专业优势,开发团队成员包括流程开发工程师、AI 框架搭建师、接口开发工程师等,共同协作以确保应用高效运行。实在智能高级产品经理张译颢介绍,在喂数据库和调试阶段,团队通过模拟各种业务场景,不断优化 AI 模型,以确保准确理解和执行用户指令。实在智能的 AI 应用不仅显著提高流程性工作的效率,还降低了人为错误的可能性。通过自动化流程,企业能够更快响应市场变化,提升服务质量,在激烈的市场竞争中占据优势。 现代的 Agent 已经被广泛应用于游戏、机器人和其他领域。吴恩达在红杉美国 AI 峰会谈上表示,自己已经在使用研究 Agent,虽然不总是可靠,但有时会非常有用,可以帮助他节省时间和提高效率。
2024-05-23
如何运用知识图谱搭建垂直领域的知识库智能问答
知识图谱是一种结构化的知识表示方法,它通过节点和边来表示实体之间的关系。在垂直领域的知识库智能问答中,知识图谱可以作为问答系统的基础,帮助系统理解用户的问题,并从知识库中检索相关信息。以下是一些关键步骤和考虑因素: 1. 数据收集和预处理: 收集与垂直领域相关的数据,包括文本、图像、音频和视频等。 对数据进行清洗、去噪和标准化处理,确保数据的质量和一致性。 2. 实体识别和关系抽取: 使用实体识别技术识别文本中的关键实体,如人名、地点、组织等。 通过关系抽取技术识别实体之间的关系,如“作者写了书籍”。 3. 构建知识图谱: 根据实体和关系,构建知识图谱的节点和边。 使用图数据库(如Neo4j)来存储和管理知识图谱。 4. 问答系统设计: 设计一个能够理解自然语言问题的问答系统。 使用自然语言处理(NLP)技术,如命名实体识别、意图识别、槽填充等,来解析用户的问题。 5. 查询和推理: 使用知识图谱查询语言(如SPARQL)进行查询,以检索与用户问题相关的信息。 利用图神经网络等方法进行知识图谱上的推理,以生成更准确的答案。 6. 答案生成和优化: 将从知识图谱中检索到的信息转化为自然语言回答。 对回答进行优化,使其更加清晰、准确和易于理解。 7. 系统集成和部署: 将问答系统集成到垂直领域的应用中,如在线客服、教育平台等。 部署问答系统,并进行持续的监控和优化,以提高系统的性能和用户体验。 在构建垂直领域的知识库智能问答时,需要充分考虑该领域的特点和需求,并利用先进的AI技术和工具,如深度学习、知识图谱、自然语言处理等,来提高问答系统的准确性和效率。随着技术的发展,未来可能会出现更多创新的方法和工具,以进一步优化垂直领域的知识库智能问答系统。
2024-04-18
chatgpt-on-wechat接入企业微信应用的具体操作
以下是 chatgptonwechat 接入企业微信应用的具体操作: 1. 登录宝塔面板,在其中可视化控制云服务器,部署 docker 容器,启动 COW 项目与微信取得关联。 2. 点击“Docker”中的“项目模板”中的“添加”按钮。 3. 项目模板代码示例如下:将编译好的内容复制进来。 4. 在容器中创建容器,选择容器编排,填入模板和名称,确定。 5. 运行成功后,点击容器,可以看到运行的是两个服务。 6. 点击“wcandyaibot”后面的日志按钮,在弹出层中用提前预备好的微信进行扫码。 7. 手动刷新界面,点击“刷新日志”,若看到“WeChat login success”,则成功将 Bot 接入微信中。 此外,还需注意: 1. chatgptonwechat 项目是基于大模型的智能对话机器人,支持微信公众号、企业微信应用、飞书、钉钉接入,可选择多种模型,能处理多种形式的内容,并通过插件访问外部资源,支持基于自有知识库定制企业 AI 应用。 2. 点击“Docker”中的“编排模板”中的“添加”按钮,可参考相关代码示例进行操作。若无法正常启动,可查看文档后面的“常见问题”。
2025-02-21
能源领域的ai应用
以下是能源领域的 AI 应用: 1. 优化能源使用:AI 可用于提高能源效率,例如优化工业生产中的能源消耗,或者在家庭和商业建筑中实现智能能源管理。 2. 可控核聚变:在可控核聚变技术方面,AI 协助进行预测,如普林斯顿大学等离子体物理实验室通过 AI 成功在离子体撕裂前 300ms 进行了预测。 3. 能源预测和规划:AI 可以分析能源需求和供应数据,为能源的生产、分配和存储提供更准确的预测和规划。 4. 能源系统的监测和维护:通过分析实时数据,AI 能够预测潜在的故障和维护需求,减少停机时间和维修成本,提高能源系统的可靠性。
2025-02-21
AI应用
AI 的应用场景非常广泛,主要包括以下几个方面: 1. 医疗保健: 医学影像分析:用于分析医学图像辅助诊断疾病。 药物研发:加速药物研发,识别潜在药物候选物和设计新治疗方法。 个性化医疗:分析患者数据提供个性化治疗方案。 机器人辅助手术:控制手术机器人提高手术精度和安全性。 2. 金融服务: 风控和反欺诈:识别和阻止欺诈行为,降低金融机构风险。 信用评估:评估借款人信用风险,帮助做出贷款决策。 投资分析:分析市场数据辅助投资决策。 客户服务:提供 24/7 服务并回答常见问题。 3. 零售和电子商务: 产品推荐:分析客户数据推荐可能感兴趣的产品。 搜索和个性化:改善搜索结果并提供个性化购物体验。 动态定价:根据市场需求调整产品价格。 聊天机器人:回答客户问题并解决问题。 4. 制造业: 预测性维护:预测机器故障避免停机。 质量控制:检测产品缺陷提高质量。 供应链管理:优化供应链提高效率和降低成本。 机器人自动化:控制工业机器人提高生产效率。 5. 交通运输:(此处未给出具体应用,可补充相关内容) 此外,还有众多具体的 AI 应用产品,例如: 1. 辅助创作与学习:AI 智能写作助手、AI 语言学习助手、诗歌创作助手、书法字体生成器、漫画生成器等。 2. 推荐与规划:AI 图像识别商品推荐、美食推荐平台、旅游行程规划器、时尚穿搭建议平台、智能投资顾问等。 3. 监控与预警:AI 宠物健康监测设备、家居安全监控系统、天气预报预警系统、医疗诊断辅助系统等。 4. 优化与管理:办公自动化工具、物流路径优化工具、家居清洁机器人调度系统、金融风险评估工具等。 5. 销售与交易:AI 艺术作品生成器、书法作品销售平台、摄影作品销售平台、汽车销售平台、房地产交易平台等。 以下是 81 100 部分的具体应用: 1. AI 摄影参数调整助手:利用图像识别、数据分析技术,在摄影 APP 中根据场景自动调整摄影参数。 2. AI 音乐情感分析平台:通过机器学习、音频处理技术,分析音乐的情感表达。 3. AI 家居智能照明系统:借助物联网技术、机器学习,如小米智能照明系统实现家居照明的智能化控制。 4. AI 金融风险预警平台:运用数据分析、机器学习,提前预警金融风险。 5. AI 旅游路线优化平台:基于数据分析、自然语言处理,像马蜂窝根据用户需求优化旅游路线。
2025-02-21
waytoAGI解决的核心场景是什么,有哪些应用案例
WaytoAGI 是一个 AI 开源社区,其核心场景包括: 1. 提供 AI 领域的最新进展、教程、工具和一线实战案例,引领并推广开放共享的知识体系。 2. 倡导共学共创等形式,孵化了如 AI 春晚、离谱村等大型共创项目。 3. 作为思想交流平台,汇聚行业顶尖创作者和 KOL。 应用案例方面: 1. 在上海国际 AIGC 大赛中,如《嘉定汇龙》项目中,利用多种 AI 技术如 stable diffusion 艺术字生成、comfyui 转绘、steerablemotion、runway 文生视频、图生视频等,并通过合成剪辑完成作品。 2. 社区内有像三思这样的高手分享具体教程。
2025-02-21
清华出品的deepseek应用手册在哪里下载
清华出品的 DeepSeek 相关应用手册的下载链接如下: 清华大学沈少阳:《 北航&清华大学:《 《 其它一些报告发布在 。
2025-02-20
不好量化反馈的领域怎么设计reward model
在不好量化反馈的领域设计 reward model 可以参考以下方法: 推测 OpenAI 可能已经找到了一些非数理学科的 Reward 定义方法,并将这个方法通过 RL 拓展到更多领域。针对不好量化的领域,可以通过写一些文字类的判断标准或规则,让大模型读懂并遵循它,以此来作为是否给予 Reward 的标准,符合标准则 Reward 高,否则 Reward 低。例如,针对写作文,可以列出好文章的标准(结构清晰、文笔优美等规则),让大模型据此来给 Reward,如此就能拓展到很多领域。 可能需要分步骤,先用好给 Reward 的数理问题增强模型的复杂推理能力到一定层级,使其能看懂规则,然后再做那些不好量化 Reward 的领域。 需要注意的是,以上部分内容是猜测,没有依据。同时,ChatGPT 在进行 RLHF 时也存在一定的局限性,其思想还是基于符号 tokenize 在语言交互的范畴上来完成 RL 的,并通过额外训练一个 Reward Model 来进行奖励的反馈。
2025-02-21
目前通过AI给自己擅长的领域赋能,且已经产生收益的案例有哪些
以下是一些通过 AI 给自己擅长的领域赋能且已经产生收益的案例: 在法律法规领域,AI 已在多个方面带来重大进展和效率提升,如交通监控、银行账户欺诈检测、工业大规模安全关键实践的控制,以及加速新药发现和应对气候变化的技术等。 在企业应用方面,工作流程自动化平台 ServiceNow 通过 AI 驱动的 Now Assist 实现了近 20%的事件避免率;Palo Alto Networks 利用 AI 降低了处理费用的成本;Hubspot 利用 AI 扩大了能够支持的用户规模;瑞典金融科技公司 Klarna 通过将 AI 融入用户支持,在运行率方面节省了 4000 多万美元。如今,成千上万的公司正在将 AI 整合到他们的工作流程中,以扩张规模和降低成本。
2025-02-20
我想创业,花多少钱,能够搭建一个视频领域的AI模型
在视频领域搭建 AI 模型的成本因多种因素而异。对于创业者或小公司来说,这个领域存在一定的挑战。 腾讯的混元 AI 视频模型目前只支持文生视频,且已开源免费。 在模型供应商方面,不同供应商的特点和成本有所不同: 智谱 GLM4V 是通用视觉类大模型,为拍立得最早使用的模型,接口响应速度快,指令灵活性差一些,调用成本为 0.05 元/千 tokens。 阿里云百炼 qwenvlplus 也是通用视觉类大模型,是拍立得目前使用的模型,指令灵活性比较丰富,接口调用入门流程长一些,密钥安全性更高,调用成本为 0.008 元/千 tokens,训练成本为 0.03 元/千 tokens。 阶跃星辰是通用视觉类大模型,响应速度快,支持视频理解,输入成本为 0.005 0.015 元/千 tokens,输出成本为 0.02 0.07 元/千 tokens。 百度 PaddlePaddle 是 OCR 垂直小模型,文本识别能力补齐增强,私有化部署有服务费,API 调用在 0.05 0.1 元/次。 此外,获取高质量数据的难度较高,大厂在该领域的护城河深厚。大公司在争取大模型 API 客户方面更具优势,且开源大模型的发展可能会影响创业公司的业务。去年为大客户定制一个大模型的最高订单额可达 1000 万元,而今年则快速降到了百万元级别乃至更低。
2025-02-18
如何构建自己领域的微调数据集
构建自己领域的微调数据集可以参考以下步骤: 1. 确定目标领域和应用需求:明确您希望模型在哪个细分领域进行学习和优化。 2. 数据收集:广泛收集与目标领域相关的数据。例如,若要训练二次元模型,需收集二次元优质数据;若要微调 Llama3 ,可参考相关文档获取数据集。 3. 数据标注:对收集的数据进行准确标注,以便模型学习到有效的特征。 4. 数据清洗:去除无效或错误的数据,提高数据质量。 5. 特殊处理:如为数据添加特殊 tag 等。 以 Stable Diffusion 为例,可收集如 833 张宝可梦数据,并按照特定步骤进行清洗、标注和添加特殊 tag 。对于 Llama3 ,获取数据集后上传到服务器,编写并执行微调代码即可进行微调。 在微调过程中,还需注意一些问题,如大型语言模型微调可能面临训练时间长、成本高等挑战,此时可考虑参数有效调优等创新方法。
2025-02-17