Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

0基础中老年学习者必须知道的AI基本概念和知识 是哪几个

Answer

对于 0 基础的中老年学习者,以下是必须知道的 AI 基本概念和知识:

一、Python 基础

  1. 基本语法:包括变量命名、缩进等规则。
  2. 数据类型:如字符串、整数、浮点数、列表、元组、字典等。
  3. 控制流:条件语句(if)、循环语句(for 和 while)控制程序执行流程。
  4. 函数:定义和调用函数,理解参数和返回值,以及作用域和命名空间。
  5. 模块和包:导入模块,使用包来扩展程序功能。
  6. 面向对象编程(OOP):类和对象的定义与实例化,属性和方法的定义与调用。

二、AI 背景知识

  1. 基础理论:了解人工智能、机器学习、深度学习的定义及相互关系。
  2. 历史发展:回顾 AI 的发展历程和重要里程碑。

三、数学基础

  1. 统计学基础:熟悉均值、中位数、方差等统计概念。
  2. 线性代数:了解向量、矩阵等基本概念。
  3. 概率论:掌握基础的概率论知识,如条件概率、贝叶斯定理。

四、算法和模型

  1. 监督学习:了解常用算法,如线性回归、决策树、支持向量机(SVM)。
  2. 无监督学习:熟悉聚类、降维等算法。
  3. 强化学习:了解其基本概念。

五、评估和调优

  1. 性能评估:知道如何评估模型性能,如交叉验证、精确度、召回率等。
  2. 模型调优:学习使用网格搜索等技术优化模型参数。

六、文件操作

  1. 文件读写:学习打开文件、读取文件内容和写入文件。
  2. 文件与路径操作:理解如何处理文件路径,列举目录下的文件。

七、异常处理

  1. 理解异常:了解什么是异常以及在 Python 中的工作方式。
  2. 异常处理:学会使用 try 和 except 语句处理程序错误。
Content generated by AI large model, please carefully verify (powered by aily)

References

写给不会代码的你:20分钟上手 Python + AI

继承和多态:了解类之间的继承关系以及如何实现多态。异常处理理解异常:了解什么是异常,以及它们在Python中是如何工作的。异常处理:学习如何使用try和except语句来处理程序中可能发生的错误。文件操作文件读写:学习如何打开文件、读取文件内容以及写入文件。文件与路径操作:理解如何使用Python来处理文件路径,以及如何列举目录下的文件。对于AI,可以尝试了解以下内容,作为基础AI背景知识基础理论:了解人工智能、机器学习、深度学习的定义及其之间的关系。历史发展:简要回顾AI的发展历程和重要里程碑。数学基础统计学基础:熟悉均值、中位数、方差等统计概念。线性代数:了解向量、矩阵等线性代数基本概念。概率论:基础的概率论知识,如条件概率、贝叶斯定理。算法和模型监督学习:了解常用算法,如线性回归、决策树、支持向量机(SVM)。无监督学习:熟悉聚类、降维等算法。强化学习:简介强化学习的基本概念。评估和调优性能评估:了解如何评估模型性能,包括交叉验证、精确度、召回率等。模型调优:学习如何使用网格搜索等技术优化模型参数。神经网络基础

写给不会代码的你:20分钟上手 Python + AI

属性和方法:学习如何为类定义属性和方法,以及如何通过对象来调用它们。继承和多态:了解类之间的继承关系以及如何实现多态。异常处理理解异常:了解什么是异常,以及它们在Python中是如何工作的。异常处理:学习如何使用try和except语句来处理程序中可能发生的错误。文件操作文件读写:学习如何打开文件、读取文件内容以及写入文件。文件与路径操作:理解如何使用Python来处理文件路径,以及如何列举目录下的文件。对于AI,可以尝试了解以下内容,作为基础AI背景知识基础理论:了解人工智能、机器学习、深度学习的定义及其之间的关系。历史发展:简要回顾AI的发展历程和重要里程碑。数学基础统计学基础:熟悉均值、中位数、方差等统计概念。线性代数:了解向量、矩阵等线性代数基本概念。概率论:基础的概率论知识,如条件概率、贝叶斯定理。算法和模型监督学习:了解常用算法,如线性回归、决策树、支持向量机(SVM)。无监督学习:熟悉聚类、降维等算法。

写给不会代码的你:20分钟上手 Python + AI

在本份教程中,你会发现,在AI的帮助下,你本就可以完成很多基础的编程工作。但希望再深入一点,最好还是可以体系化的了解一下编程以及AI。至少熟悉以下内容:Python基础基本语法:了解Python的基本语法规则,比如变量命名、缩进等。数据类型:熟悉Python中的基本数据类型,如字符串(String)、整数(Integer)、浮点数(Float)、列表(List)、元组(Tuple)、字典(Dictionary)等。控制流:学习如何使用条件语句(if)、循环语句(for和while)来控制程序的执行流程。函数定义和调用函数:学习如何定义自己的函数,以及如何调用现有的函数。参数和返回值:理解函数如何接收参数和返回结果。作用域和命名空间:了解局部变量和全局变量的概念,以及它们是如何在Python中工作的。模块和包导入模块:学习如何导入Python标准库中的模块或者第三方库。使用包:理解如何安装和使用Python包来扩展程序的功能。面向对象编程(OOP)类和对象:了解面向对象编程的基本概念,包括类的定义和实例化。属性和方法:学习如何为类定义属性和方法,以及如何通过对象来调用它们。

Others are asking
AI生图
以下是关于 AI 生图的详细教程: 一、Liblibai 简易上手教程 1. 定主题:明确您想要生成的图片主题、风格和表达的信息。 2. 选择 Checkpoint:根据主题选择贴近内容的 Checkpoint,如麦橘、墨幽的系列模型。 3. 选择 lora:寻找与生成内容重叠的 lora,以控制图片效果和质量。 4. 设置 VAE:选择 840000 那一串。 5. CLIP 跳过层:设为 2。 6. Prompt 提示词:用英文写需求,使用单词和短语组合,用英文半角逗号隔开,无需考虑语法和长句。 7. 负向提示词 Negative Prompt:同样用英文单词和短语组合,用英文半角逗号隔开。 8. 采样方法:一般选 DPM++2M Karras,也可参考模型作者推荐的采样器。 9. 迭代步数:使用 DPM++2M Karras 时,在 30 40 之间,过多意义不大且慢,过少出图效果差。 10. 尺寸:根据个人喜好和需求选择。 11. 生成批次:默认 1 批。 二、AI 线上绘画教程 1. 背景:工作中需要大量图片时,AI 生图是高效解决办法,主流工具如 midjourney 付费成本高,stable diffusion 硬件门槛不低,可选择免费在线 SD 工具网站如。 2. 目标:让入门玩家在半个小时内自由上手创作绘图。 3. 注意事项:本教程适用于入门玩家,若有疑问可在评论区联系或加微信 designurlife1st 沟通,教程内容会持续更新。 三、Tusiart 简易上手教程 1. 图生图:上传图片后,sd 根据图片、模型、prompt 等信息重绘,重绘幅度越大,输出图与输入图差别越大。 2. 尺寸:太小生成内容有限,太大 AI 易放飞自我,如需高清图,可设中等尺寸并用高分辨率修复。 3. 采样算法:即让 AI 用何种算法生图。 4. 采样次数:次数越多调整越精密,效果理论上更好但耗时越长,并非越多越好。 5. 提示词相关性:数字增大图像更接近提示词,但过高会使图像质量下降。 6. 随机种子 seed:固定种子可对图片进行“控制变量”操作,首次生成图时无种子。 7. Clip Skip:一般设为 2,早期无需过多关注。 8. ENSD:eta 噪声种子增量,默认 0 即可。
2025-02-17
可以用ai做商务服务么,比如帮用户申请个商标
AI 可以在一定程度上辅助商务服务,比如商标申请。商标申请要有区分度,能区分自家与别家产品,不像著作权需考虑独创性等。 关于 AI 作品的相关问题: 微链区块链存证流程: 登录方式:用微信扫码即可登录微链,登录后无需在个人中心完善信息。 存证选择:在页面左上角选择区块链存证,AI 作品一般选此选项。 信息填写:包括存证内容类型、存证附件、存证名称、作品作者、作品简介、著作权人等信息,著作权人可委托登记。 发表信息:填写发表地区、首次发表日期、权力取得方式等。 提交付款:确认存证上传,勾选并提交存证,手机扫码付款 10 元。 查看订单:在个人中心的版权订单中查看处理状态,处理完成后可在区块链版权存证处查看证书。 版权登记:带有 AI 性质或名字的作品无法做著作权登记,选择微链区块链存证有法律效应,且一次存证无需每年续费。 关于侵权问题: AI 生成肖像侵权:用他人著名肖像生成特定形象可能侵犯肖像权和名誉权,用自己肖像则相对安全。 AI 生成人脸相似侵权:若生成的人脸世界上不存在,侵权可能性小;若提示词相同且生成相似,可能侵权,需具体情况具体分析。 简单提示词作品版权:简单提示词生成的作品,法律可能不保护其版权,被搬运时难以有效维权。 以图生图的鉴定:若生成的图与原图看不出相同,一般不侵权,但用与原图无相似之处的图做底图的原因值得思考。 AI 生成音乐侵权:AI 音乐中歌词和旋律与某首歌有相似部分,是否侵权需多元素、多因素整体判断,如相似部分占比、整体结构等。 使用逝者肖像:逝者肖像权永远受保护,使用需谨慎,未造成不良影响且增益的情况下权利人可能不追究。
2025-02-17
写微信小程序,用哪个 ai 代码助手最好
以下是一些适用于写微信小程序的 AI 代码助手推荐: 1. DIN: 搭建 OneAPI 以汇聚整合多种大模型接口。 搭建 FastGpt 作为知识库问答系统。 搭建 chatgptonwechat 接入微信,并配置 FastGpt 把知识库问答系统接入到微信。 2. Cursor: 可通过任意 AI 工具获得代码,专业代码模型表现更优。 网址:https://www.cursor.com/ 3. Deepseek(新手推荐): 网址:https://www.deepseek.com/zh 方便获取游戏代码,国内能访问,网页登录方便,目前完全免费。 4. 通义灵码: 在 Pytharm 中,“文件”“设置”“插件”红色框位置搜索“通义灵码”进行安装(目前免费)。 5. JetBrains 自身的助手插件: 在 Pytharm 中,“文件”“设置”“插件”红色框位置搜索“Jetbrains AI assistant”进行安装(收费,目前有 7 天免费试用)。 6. Marscode 及 Tencent cloud AI code Assistant 等。 7. 无影的晓颖 AI 助手: 内置在云电脑里,使用流畅,但需要在无影的云电脑中。 需要注意的是,不同的 AI 代码助手在生成特定代码时可能有不同的表现,您可以根据自己的需求和实际使用体验进行选择。
2025-02-17
分析化验单的AI
以下是关于分析化验单的 AI 和专利审查方面的 AI 的相关信息: 分析化验单的 AI: 目前没有直接针对分析化验单的具体内容,但在教育领域,AI 已展现出强大的能力。例如,借助大模型可以生成个性化学习和定制化作业,教师拥有 AI 就拥有了源源不断的真题库,学生也拥有了源源不断的错题练习库。 专利审查方面的 AI: 近年来,AI 在专利审查领域得到广泛应用,通过自动化和智能化手段,帮助专利审查员更高效地处理大量专利申请、检索相关文献、评估专利性和创新性等任务。以下是一些具体的应用和平台: 1. 专利检索与分类:AI 可通过自然语言处理和机器学习算法,自动识别和分类专利文献。示例平台如 Google Patents、IBM Watson for IP。 2. 专利分析和评估:AI 能够分析专利文本,评估专利的新颖性和创造性,预测专利的授权可能性。示例平台如 TurboPatent、PatentBot。 3. 自动化专利申请:AI 可以帮助自动生成专利申请文件,减少人工编写和审查时间。示例平台如 Specifio、PatentPal。 4. 专利图像和图表分析:AI 能分析专利申请中的图像和图表,帮助识别和分类技术内容。示例平台如 Aulive、AIpowered image recognition tools。 5. 专利趋势分析和预测:AI 可以分析大量专利数据,识别技术发展趋势和竞争情报,帮助企业和研究机构制定战略决策。示例平台如 Innography、PatSnap。 具体使用这些平台的步骤如下: 1. 注册和登录:在对应的平台上注册账户并登录。 2. 上传专利文献:上传待审查的专利文献或输入检索关键词。 3. 选择分析功能:根据需要选择专利检索、分析、评估或生成功能。 4. 查看结果和报告:查看 AI 生成的检索结果、分析报告和评估结果。 5. 进一步处理:根据分析结果进行进一步的人工审查和处理,或者直接生成专利申请文件。 需要注意的是,以上内容由 AI 大模型生成,请仔细甄别。
2025-02-17
能分析医学化验单的AI有哪些?
以下是一些能够分析医学化验单的 AI 工具: 1. Scite.ai:这是一个为研究人员、学者和行业专业人员打造的创新平台,提供引用声明搜索、自定义仪表板和参考检查等工具,能简化学术工作。 2. Scholarcy:一款科研神器,能从文档中提取结构化数据,并通过知识归纳引擎生成文章概要,包含关键概念、摘要、学术亮点、学术总结、比较分析、局限等板块的内容。 3. ChatGPT:强大的自然语言处理模型,可以提供有关医学课题的修改意见。您可以向它提供您的文章,并提出您的问题和需求,它将尽力为您提供帮助。 需要注意的是,内容由 AI 大模型生成,请仔细甄别。
2025-02-17
如何可以通过ai语音转文字
以下是关于通过 AI 实现语音转文字的相关内容: 可以使用 GVoice 提供的语音录制和识别能力,其中文识别率优秀。语音识别的少量错误,ChatGPT 能正常理解和纠错,衔接较为流畅。 推荐 OpenAI 的 wishper,相关链接:https://huggingface.co/openai/whisperlargev2 。还有一个项目:https://huggingface.co/spaces/sanchitgandhi/whisperjax ,此项目在 JAX 上运行,后端支持 TPU v48,与 A100 GPU 上的 PyTorch 相比,快 70 多倍,是目前最快的 Whisper API。 对于有字幕的 B 站视频,可通过安装油猴脚本获取字幕,然后将字幕文字内容复制发送给 GPTs 进行总结。
2025-02-17
如果你是一个AI学习者,你会提出哪些问题?让自己的学习更有策略?
以下是作为 AI 学习者可能会提出的一些问题,以使学习更有策略: 1. 如何评估不同 AI 模型的性能和适用场景? 2. 怎样选择适合自己需求的 AI 工具和技术? 3. 在 AI 领域,哪些基础知识是必须牢固掌握的? 4. 如何将 AI 应用于实际项目中,以获得更好的效果? 5. 对于 AI 产生的结果,如何进行有效的评估和验证? 6. 怎样跟上 AI 领域快速发展的步伐,及时更新知识? 7. 在学习 AI 时,如何避免常见的错误和陷阱? 8. 如何培养自己在 AI 方面的创新思维和解决问题的能力? 9. 对于不同学习水平(如高中生、大学生、专业人士),学习 AI 的重点和方法有何不同? 10. 在 AI 学习中,如何平衡理论学习和实践操作?
2025-02-17
那请帮我列举Ai下有哪几个子领域(他们必须是并列关系),机器学习下又有哪几个子领域
以下是 AI 的子领域: 1. 机器学习 2. 计算机视觉 3. 自然语言处理 4. 语音识别 5. 智能机器人 机器学习的子领域包括: 1. 监督学习,常用算法如线性回归、决策树、支持向量机(SVM)。 2. 无监督学习,如聚类、降维等算法。 3. 强化学习
2025-01-21
那请帮我列举Ai下有哪几个子领域,机器学习下又有哪几个子领域
AI 包含以下几个子领域: 1. 机器学习:让计算机通过数据学习来提高性能。 2. 深度学习:模拟人脑工作方式,创建人工神经网络处理数据。 3. 自然语言处理:涉及对自然语言的认知、理解和生成。 机器学习包含以下几个子领域: 1. 监督学习:通过有标记的训练数据进行学习和预测。 2. 无监督学习:在无标记的数据中发现模式和结构。 3. 强化学习:通过与环境交互并根据奖励信号来学习最优策略。
2025-01-21
学习AI可以从哪几个方面去学习
学习 AI 可以从以下几个方面入手: 1. 编程语言:从 Python、JavaScript 等编程语言开始学习,掌握编程语法、数据结构、算法等基础知识。 2. 工具和平台:使用 ChatGPT、Midjourney 等 AI 生成工具,体验 AI 的应用场景。探索面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. 基础知识: 了解 AI 的基本概念、发展历程、主要技术(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 学习 AI 在教育、医疗、金融等领域的应用案例。 4. 实践项目: 参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动。 尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 5. 关注前沿动态:关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展,思考其对未来社会的影响。 对于新手学习 AI: 1. 了解 AI 基本概念: 阅读相关入门文章,熟悉术语和基础概念。 了解人工智能的主要分支及它们之间的联系。 2. 开始学习之旅: 参考为初学者设计的课程,如李宏毅老师的课程。 通过在线教育平台按自己节奏学习,并争取获得证书。 3. 选择感兴趣的模块深入学习: 根据自身兴趣选择特定模块,如图像、音乐、视频等。 掌握提示词技巧。 4. 实践和尝试: 理论学习后进行实践,巩固知识。 分享实践成果。 5. 体验 AI 产品: 与 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人互动,了解其工作原理和交互方式。 如果希望继续精进,对于不会代码的人,可以尝试了解以下基础内容: 1. AI 背景知识: 基础理论:了解人工智能、机器学习、深度学习的定义及其关系。 历史发展:回顾 AI 的发展历程和重要里程碑。 2. 数学基础: 统计学基础:熟悉均值、中位数、方差等统计概念。 线性代数:了解向量、矩阵等基本概念。 概率论:掌握基础的概率论知识,如条件概率、贝叶斯定理。 3. 算法和模型: 监督学习:了解常用算法,如线性回归、决策树、支持向量机(SVM)。 无监督学习:熟悉聚类、降维等算法。 强化学习:了解基本概念。 4. 评估和调优: 性能评估:掌握如何评估模型性能,包括交叉验证、精确度、召回率等。 模型调优:学习使用网格搜索等技术优化模型参数。 5. 神经网络基础: 网络结构:理解神经网络的基本结构,包括前馈网络、卷积神经网络(CNN)、循环神经网络(RNN)。 激活函数:了解常用的激活函数,如 ReLU、Sigmoid、Tanh。
2024-12-25
哪几个AI工具擅长网站前端网页设计?
以下是一些擅长网站前端网页设计的 AI 工具: 1. Wix ADI(Artificial Design Intelligence) 网址:https://www.wix.com/ 特点:基于用户提供的信息自动生成定制化网站,提供多个设计选项和布局,集成了 SEO 工具和分析功能。 2. Bookmark 网址:https://www.bookmark.com/ 特点:AIDA(Artificial Intelligence Design Assistant)通过询问用户几个简单问题快速生成网站,提供直观的拖放编辑器,包括多种行业模板和自动化营销工具。 3. Firedrop 网址:https://firedrop.ai/ 特点:Sacha 是 Firedrop 的 AI 设计助手,可根据用户指示创建和修改网站设计,提供实时编辑和预览功能,包含多种现代设计风格和自定义选项。 4. The Grid 网址:https://thegrid.io/ 特点:Molly 是 The Grid 的 AI 设计助手,可自动调整网站的设计和布局,基于内容和用户互动进行优化,支持多种内容类型。 5. Zyro 网址:https://zyro.com/ 特点:使用 AI 生成网站内容,包括文本、图像和布局建议,提供 AI 驱动的品牌和标志生成器,包含 SEO 和营销工具。 6. 10Web 网址:https://10web.io/ 特点:基于 AI 的 WordPress 网站构建工具,可自动生成网站布局和设计,提供一键迁移功能,集成了 AI 驱动的 SEO 分析和优化工具。 7. Jimdo Dolphin 网址:https://www.jimdo.com/ 特点:Dolphin 是 Jimdo 的 AI 网站构建器,通过询问用户问题定制网站,提供自动生成的内容和图像,包含电子商务功能。 8. Site123 网址:https://www.site123.com/ 特点:简单易用,适合初学者,提供多种设计模板和布局,包括内置的 SEO 和分析工具。 此外,以下是一些推荐的网页原型图生成工具: 1. 即时设计:https://js.design/ 一款可在线使用的「专业 UI 设计工具」,为设计师提供更加本土化的功能和服务,注重云端文件管理、团队协作,并将设计工具与更多平台整合,一站搞定全流程工作。 2. V0.dev:https://v0.dev/ Vercel Labs 推出的 AI 生成式用户界面系统。每个人都能通过文本或图像生成代码化的用户界面。它基于 Shadcn UI 和 Tailwind CSS 生成复制粘贴友好的 React 代码。 3. Wix:https://wix.com/ Wix 是一款用户友好的 AI 工具,可在没有任何编码知识的情况下轻松创建和自定义自己的网站,提供广泛的模板和设计供选择,以及移动优化和集成电子商务功能等功能。Wix 建站工具通过拖放编辑、优秀模板和 250 多种 app,能帮助不同领域的用户创建所有种类的网站。 4. Dora:https://www.dora.run/ 使用 Dora AI,可以通过一个 prompt,借助 AI 3D 动画,生成强大网站。支持文字转网站,生成式 3D 互动,高级 AI 动画。但内容由 AI 大模型生成,请仔细甄别。
2024-10-31
阿里巴巴开发的AI有哪几个
阿里巴巴开发的 AI 包括以下几个: 1. 通义灵码:一款基于通义大模型的智能编程辅助工具,提供行级/函数级实时续写、自然语言生成代码、单元测试生成、代码注释生成、代码解释、研发智能问答、异常报错排查等能力。 2. CodeFuse:蚂蚁集团支付宝团队为国内开发者提供智能研发服务的免费 AI 代码助手,该产品是基于蚂蚁集团自研的基础大模型进行微调的代码大模型。 此外,在其他领域,阿里巴巴和蚂蚁集团也有相关的 AIGC 实践,例如: 电商设计师视角下的 AI 解读与应用 AI 引领,畅想未来办公的无限可能 当 AI 成为大众的新朋友 AI 新形态,数字人带你探索未来生活体验升级 让 AI 模型更加平易近人|ModelScope 模型开源社区设计实践 S03E05:当设计遇见 AI,智能设计的践行者——2022 阿里云设计中心年鉴 一览无遗,让收银更快捷支付宝智能 AI 秤 玩转 AI,探索绘图新世界 在编程辅助方面,还有其他一些常见的 AI 工具,如 GitHub Copilot(由 GitHub 联合 OpenAI 和微软 Azure 团队推出)、CodeWhisperer(亚马逊 AWS 团队推出)、CodeGeeX(智谱 AI 推出)、Cody(代码搜索平台 Sourcegraph 推出)、Codeium 等。每个工具的功能和适用场景可能会有所不同,您可以根据自己的需求来选择最适合您的工具。 如果您想使用 AI 完成阿里巴巴营销技巧和产品页面优化,可以采取以下步骤: 1. 市场分析:利用 AI 分析工具来研究市场趋势、消费者行为和竞争对手情况。 2. 关键词优化:AI 可以分析和推荐高流量、高转化的关键词,帮助卖家优化产品标题和描述,提高搜索排名和可见度。 3. 产品页面设计:AI 设计工具可以根据市场趋势和用户偏好自动生成吸引人的产品页面布局。 4. 内容生成:AI 文案工具可以撰写有说服力的产品描述和营销文案,提高转化率。 5. 图像识别和优化:AI 图像识别技术可以帮助选择或生成高质量的产品图片,这些图片能够更好地吸引顾客并展示产品特点。 6. 价格策略:AI 可以分析不同价格点对销量的影响,帮助卖家制定有竞争力的价格策略。 7. 客户反馈分析:AI 可以分析客户评价和反馈,帮助卖家了解客户需求,优化产品和服务。 8. 个性化推荐:AI 可以根据用户的购买历史和偏好提供个性化的产品推荐,增加销售额。 9. 聊天机器人:AI 驱动的聊天机器人可以提供 24/7 的客户服务,解答疑问,提高客户满意度。 10. 营销活动分析:AI 可以分析不同营销活动的效果,帮助卖家了解哪些活动更能吸引顾客并产生销售。 11. 库存管理:AI 可以帮助预测需求,优化库存管理,减少积压和缺货情况。 12. 支付和交易优化:AI 可以分析不同的支付方式对交易成功率的影响,优化支付流程。 13. 社交媒体营销:AI 可以帮助卖家在社交媒体上找到目标客户群体,通过精准营销提高品牌知名度。 14. 直播和视频营销:AI 可以分析观众行为,帮助卖家优化直播和视频内容,提高观众参与度和转化率。
2024-10-20
学习新手从哪几个维度了解知识库
对于学习新手来说,可以从以下几个维度了解知识库: 1. 知识库的整体构成: 知识库是一整套领域知识,是 Bot 加载的最小单位。 单元是知识库的一部分,可上传的最小内容单位可以是一个.txt、.pdf、.csv 文件或一个网页。 分段是一个单元切分成多个分段,是模型查询的最小单位,分段内容的完整度和准确性会影响模型回答问题的准确性。 2. 具体知识内容: 如关于 transformer 的知识,计划从算法 1(NLP 中的 transformer 网络结构)、算法 2(CV 中的 transformer 网络结构)、算法 3(多模态下的 transformer 网络结构)、训练(transformer 的分布式训练)、部署(transformer 的 tvm 量化与推理)这五个方面进行介绍。 常见的 LLM 基座模型里的 3 种 transformer 架构,包括 encoderonly、encoderdecoder 和 decoderonly。 3. 与其他元素的关系: 在商业化问答场景中,模型、提示词、知识库三者相互配合。大语言模型像一个学习过无数知识的人,提示词是告知其角色和专注技能,使其成为所需“员工”,知识库则是给“员工”的工作手册。
2024-09-04
请为我推荐适合中老年人学习的AI课程,并提供对应的链接
以下为适合中老年人学习的 AI 课程推荐: 课程名称:野菩萨的 AIGC 资深课 课程由工信部下属单位【人民邮电出版社】开设,是全网技术更新较快的课程之一。 课程内容丰富,涵盖 AI 绘画、视听语言和 ChatGPT 等多个体系的知识。 预习周课程包括 AI 绘画电脑配置要求、高效 AIGC 创意者的数字人工具包、SD 插件安装方法、画静为动的 AIGC 视频制作讲解等。 基础操作课涵盖 AI 绘画通识课、AI 摄影虚拟的真实、AI 电影穿越的大门等内容。 核心范式课程涉及词汇的纸牌屋、核心范式应用、控制随机性等方面。 SD WebUi 体系课程包括 SD 基础部署、SD 文生图、图生图、局部重绘等。 ChatGPT 体系课程有 ChatGPT 基础、核心文风、格式、思维模型等内容。 ComfyUI 与 AI 动画课程包含部署和基本概念、基础工作流搭建、动画工作流搭建等。 应对 SORA 的视听语言课程涉及通识欢迎参加电影的葬礼、影像赏析、基础戏剧影视文学等。 如果您想要免费获得这门课程,可以来参与 video battle,这是唯一一个获胜者就可以拥有课程的机会。每期的 video battle 的评委野菩萨老师都非常严格,需要寓意深度审美并存。 冠军奖励:4980 课程一份 亚军奖励:3980 课程一份 季军奖励:1980 课程一份 入围奖励:598 野神殿门票一张 您可以扫码添加菩萨老师助理,了解更多课程信息。希望这门课程能满足您的学习需求,助您在 AI 学习的道路上不断提升自己。
2024-11-15