Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

COZE 和智谱AI的优缺点对比

Answer

COZE 的优点:

  1. 逼真且有沉浸感:通过图片和文字描述模拟急诊室的真实场景,用户可体验到紧张真实的医疗环境。可进一步增加场景细节,如急诊室的声音效果,增强沉浸感。
  2. 互动性强:设置多个决策点,用户需做出选择,提高用户参与感和学习效果。可引入更多分支场景,根据用户不同选择生成不同结局,提高互动的深度和多样性。
  3. 情感共鸣:通过详细的病人背景故事,用户能更好理解患者处境,增强同理心。可增加更多病人案例,覆盖不同病情和背景,使情感共鸣更丰富多样。
  4. 延续字节风格,能自己做闭环,可在工作流基础上用用户界面包装成产品发布。

COZE 的缺点:商业化探索尚未铺开,用户来源不明确。目前没有明确信息表明其是否开源,社区参与和开源协作程度可能不如 Dify。

智谱 AI 的优点: 目前信息中未明确提及智谱 AI 的具体优点。

智谱 AI 的缺点: 目前信息中未明确提及智谱 AI 的具体缺点。

两者的对比:

  1. 开源性:Dify 是开源的,允许开发者自由访问和修改代码;Coze 目前没有明确信息表明其是否开源。
  2. 功能和定制能力:Dify 提供直观界面,结合多种功能,支持通过可视化编排基于任何 LLM 部署 API 和服务;Coze 提供丰富插件能力和高效搭建效率,支持发布到多个平台作为 Bot 能力使用。
  3. 社区和支持:Dify 作为开源项目有活跃社区,开发者可参与共创共建;Coze 可能更多依赖官方更新和支持,社区参与和开源协作程度可能不如 Dify。
Content generated by AI large model, please carefully verify (powered by aily)

References

大雨: 以模拟的方式带你揭秘coze系列第一名xxx

很多人认为AI是一个玩具,很大程度上是因为把AI当成了普通的技术手动,在原有的业务流程中嵌入AI,让它来降本增效,结果会发现很快受挫,因为这样很难发挥它的真正价值。本次获奖的作品,在创意上十足下了功夫,让我们了解到,AI使用的无限可能,也让我们发现了如何和AI结合的无限可能。它选择的创意是医学领域的一个分支,急诊室,类似模拟教学的场景,通过这样的一个交互式案例,完全可以把教学内容展示给学生。传统上,我们会通过非常复杂的教学系统来完成这样的工作,需要准备大量的内容,并分析上下文匹配知识库的内容。中间的工作量非常巨大。生成式AI很大的价值就在于语义理解,动态生成。从这个案例上,我们可以看出来[heading3]优点[content]1.逼真且有沉浸感:理由:通过图片和文字描述,模拟了急诊室的真实场景,用户可以体验到紧张而真实的医疗环境。改善措施:可以进一步增加场景细节,如急诊室的声音效果(如心电图仪器声音、急救车警笛声等),增强沉浸感。2.互动性强:理由:通过设置多个决策点,用户需要做出选择,这种互动性可以提高用户参与感和学习效果。改善措施:引入更多分支场景,根据用户不同的选择生成不同的结局,提高互动的深度和多样性。3.情感共鸣:理由:通过详细的病人背景故事,用户可以更好地理解患者的处境,增强同理心。改善措施:增加更多病人案例,覆盖不同的病情和背景,使情感共鸣更加丰富多样。

《雪梅May的AI学习日记》挑战100天和AI做朋友

May:用AGI共学[「Agent共学」之"踩在大神肩膀上捏coze"](https://waytoagi.feishu.cn/wiki/ZEAJwJu9diFCAUkKJhKcWL3QnHe)[Stuart:0基础教学系列之Coze“用户界面”创建初体验](https://waytoagi.feishu.cn/wiki/FKM6wwhLsiJZkPkFr8dcrONunJb)感受:coze也增加了前端用户界面的功能。这和我上面提到的comfyUI+cursor做应用很像。coze延续了字节一段的风格,自己做闭环。很快,coze里做工作流,然后用用户界面包装成一个产品,就可以发布了。只是用户从哪里来,这个商业化的探索还没有铺开。[heading2]DAY81 2024.12.22智谱BigModel共学营1[content]May:用AGI共学[智谱BigModel共学营第二期:把你的微信变成超级AI助理](https://waytoagi.feishu.cn/wiki/Vkx3wcpuXic739kCl99cDOq5nvM)[知识助手示例](https://qgcxagum9h.feishu.cn/docx/SILQd6P79oJML3xfDXJcJ4nonwb)感受:质谱bigmodel的产品,特别是体验了质谱的AI agent后,感觉和coze的设计思路完全不一样。我还没有来得及深入体验。可以继续看看

问:Dify 和 Coze 有什么异同

Dify和Coze都是大模型中间层产品,它们提供了将大型语言模型(LLM)集成到各种应用中的能力。以下是Dify和Coze的一些主要异同点:[heading2]开源性[content]Dify是开源的,允许开发者自由访问和修改代码,以便进行定制。Dify由专业团队和社区共同打造,促进了产品的灵活性和安全性。Coze由字节跳动推出,目前没有明确信息表明它是否开源。Coze可能更侧重于提供商业化服务和产品。[heading2]功能和定制能力[content]Dify提供直观界面,结合AI工作流、RAG管道、代理能力和模型管理等功能。它支持通过可视化编排,基于任何LLM部署API和服务。Coze提供丰富的插件能力和高效的搭建效率。Coze还支持发布到多个平台作为Bot能力使用。[heading2]社区和支持[content]Dify作为一个开源项目,拥有活跃的社区,开发者可以参与到产品的共创和共建中。Coze可能更多地依赖于官方的更新和支持,社区参与和开源协作的程度可能不如Dify。选择使用Dify或Coze时,开发者和企业需要根据自己的需求和目标来做出决策。该回答由AI大模型生成,请仔细甄别。

Others are asking
Coze 智能体 教程 初学者
以下是为初学者提供的 Coze 智能体相关教程: 1. 可能是全网最好的 Coze 教程之一,能一次性带您入门 Coze 工作流。即使是非技术出身的爱好者也能上手跟学,一站式学会 AI Agent 从设计到落地的全流程方法论。 阅读指南:长文预警,请视情况收藏保存。 核心看点:通过实际案例逐步演示,用 Coze 工作流构建一个能够稳定按照模板要求,生成结构化内容的 AI Agent;开源 AI Agent 的设计到落地的全过程思路;10+项常用的 Coze 工作流的配置细节、常见问题与解决方法。 适合人群:任何玩过 AI 对话产品的一般用户(如果没用过,可以先找个国内大模型耍耍);希望深入学习 AI 应用开发平台(如 Coze、Dify),对 AI Agent 工作流配置感兴趣的爱好者。 注:本文不单独讲解案例所涉及 Prompt 的撰写方法。文末「拓展阅读」中,附有相关 Prompt 通用入门教程、Coze 其他使用技巧等内容,以供前置或拓展学习。 2. 90 分钟从 0 开始打造您的第一个 Coze 应用: 智能纪要: 智能章节: 页面布局的常见方式与实际操作讲解:本章节主要介绍页面布局。先讲解常见的左右、上下布局及嵌套方法,演示如何设置容器实现左右布局、调整大小分割等,强调外层高度设置的重要性。接着说明溢出处理方式及内边距影响,建议初学者用固定宽高布局。最后介绍换行布局及元素分布设置,用于图片排版。 讲解证件照应用搭建过程及布局设置:本章节介绍证件照应用搭建。会魔法的大人让大家创建应用、清理页面,先设置第一个 div 容器方便后续操作。提到要 1:1 复刻其应用,讲解证件照基础界面为上下布局,分标题、示例、操作展示三块,需拖三个容器,因排列方向问题可能只看到两个,还提到顶部高度大概 100。 证件照应用的用户界面搭建与业务逻辑构建讲解:本章节主要讲解证件照应用的搭建。先介绍用户界面搭建,包括各部分尺寸、布局、组件设置,如文本、图片、表单等;后阐述业务逻辑搭建,创建工作流,添加图片理解、图像生成、智能换脸等插件,设置参数、提示词,并进行测试,还告知文档地址在社区智能体 1.3 共学里。
2025-03-09
Coze 使用循环体节点,如何将中间current值,在循环体内的加一,然后赋值给中间变量curent
在 Coze 工作流中,使用循环体节点将中间 current 值在循环体内加一并赋值给中间变量 curent 的方法如下: 1. 循环节点支持设置中间变量,此变量可作用于每一次循环。中间变量通常和循环体中的设置变量节点搭配使用,在每次循环结束后为中间变量设置一个新的值,并在下次循环中使用新值。 2. 各个节点配置如下: 循环节点:将中间变量设置为指定值(如 last_paragraph ),参数值设置为一个空格。首次循环中生成第一个段落时,不需要参考大纲以外的任何内容,所以将循环变量的值指定为一个空格,您也可以按需设置为其他内容。 循环体中的设置变量节点:中间变量选择循环节点中设置的中间变量(如 last_paragraph );设置值选择大模型的输出参数 output ,表示开始下次循环前,将本次循环中大模型生成的段落赋值给循环变量。 循环体中的大模型节点节点:添加 2 个输入参数,分别引用循环节点的内置变量 item 和循环变量,并在提示词中指定生成文章段落时参考上个段落的内容。 3. 中间变量的设置方法: 初始化变量:在循环开始前,设置中间变量的初始值(如空值、0 或默认文本)。 动态更新:每轮循环结束时,将当前任务的输出赋值给中间变量。 数据类型一致性:确保中间变量的类型(如字符串、数组)与任务输出类型一致。 4. 注意事项: 中间变量的更新逻辑需符合业务流程的需求。 变量过多可能增加复杂度,建议尽量简化。 此外,循环体画布是循环节点的内部运行机制,用于编排循环的主逻辑,每个循环迭代中,工作流会依次执行画布内的各个节点。选中循环体时,才能向循环体中添加新节点,或拖入新节点至循环体画布。循环体中无需设置开始节点或结束节点,默认按照连接线的箭头方向依次执行各个节点。设置变量节点、继续循环节点和停止循环节点只能在循环体中使用。不支持将循环体外部的节点拖动至循环体内,循环体中的节点也不可移动到循环体之外。循环节点的输出参数可设置为循环体的执行结果集合,表示当数组中所有元素运行完毕之后,将所有循环的运行结果打包输出给下游。也支持设置为循环变量的取值。配置循环节点之后,还需要试运行这个节点,查看其输入输出是否符合预期。调试结束后,循环节点的运行结果中会显示循环节点在多轮循环之后汇总的输入输出内容。循环体中的每个节点也会展示每次循环中的输入输出、变量赋值内容。
2025-03-09
coze
以下是关于 Coze 的相关信息: 重磅更新:Coze 可接入抖音评论区,帮您自动回复用户评论。若想快速上手,可参考视频。若不了解 Coze 是什么,可参考文章 。 安装 Coze Scraper: 通过应用商店安装: 1. 打开 Chrome 浏览器。 2. 点击在 Chrome 应用商店中打开 Coze Scrapper 扩展程序。 3. 单击添加至 Chrome。 4. 在弹出的页面,单击添加扩展程序。 本地安装: 1. 单击下载安装包,然后解压下载的文件。 2. 打开 Chrome 浏览器。 3. 在浏览器中输入 chrome://extensions 打开扩展程序页面,确认开发者模式处于打开状态。点击加载已解压的扩展程序,选择已解压的文件夹。 Coze 记账管家——数据库使用教程: COZE 是字节跳动旗下子公司推出的 AI Agent 构建工具,允许用户在无编程知识的基础上,使用自然语言和拖拽等方式构建 Agent,可白嫖海量大模型免费使用,有丰富的插件生态。 记账管家是基于 COZE 平台能力搭建的记账应用,您可以直接和 coze 说您的收入或支出情况,coze 会自动记账并计算账户余额,每一笔记账记录都不会丢失。点击以下卡片可体验记账管家。
2025-03-09
COZE创建智能体
以下是在 COZE 创建智能体的步骤: 1. 基础智能体创建: 进入 coze 官网(www.coze.cn),注册并登录。 点击页面左上角的⊕。 通过【标准创建】填入 bot 的基本信息。 2. Bot 开发调试界面: 人设与回复逻辑(左侧区域):设定 Bot 的对话风格、专业领域定位,配置回复的逻辑规则和限制条件,调整回复的语气和专业程度。 功能模块(中间区域): 技能配置:插件可扩展 Bot 的专业能力,如计算器、日历等工具;工作流可设置固定的处理流程和业务逻辑;图像流用于处理和生成图像的相关功能;触发器可设置自动化响应条件。 知识库管理:文本可存储文字类知识材料;表格用于结构化数据的存储和调用;照片作为图像素材库。 记忆系统:变量存储对话过程中的临时信息;数据库管理持久化的结构化数据;长期记忆保存重要的历史对话信息;文件盒子管理各类文档资料。 交互优化(底部区域):设置开场白、用户问题建议、快捷指令、背景图片。 预览与调试(右侧区域):实时测试 Bot 的各项功能,调试响应效果,优化交互体验。 3. 具体创建示例: 打开扣子官网(https://www.coze.cn/)。 “画小二智能小助手”Coze 商店体验地址:https://www.coze.cn/store/bot/7371793524687241256?panel=1&bid=6cqnnu5qo7g00 。 点击创建 Bot,在对话框中工作空间选择“个人空间”,命名为画小二智能小助手。 设置画小二助手的提示词。 动手实践: 第一步,创建一个智能体,使用单 Agent 对话流模式。 编排对话流:点击创建一个新的对话流(记得要和智能体关联)。 测试:找到一篇小红书笔记,试运行对话流,直接在对话窗口输入地址,当看到数据即为成功。回到智能体的编排页面,同样方式测试,确保对话流执行成功。 发布:点发布后,只选择多维表格,然后点配置。输出类型选文本,输入类型选字段选择器。完善上架信息,填个表格,选发布范围时,可选仅自己可用以加快审核。提交上架信息后,返回配置界面显示已完成,即可完成最终提交。
2025-03-08
教我使用coze
Coze 是新一代一站式 AI Bot 开发平台,无论您是否有编程基础,都可以在该平台上快速搭建基于 AI 模型的各类问答 Bot。以下是关于 Coze 的一些重要信息和使用教程: Coze 概述: 字节的官方解释:Coze 是新一代一站式 AI Bot 开发平台,能让您快速搭建从解决简单问答到处理复杂逻辑对话的 Bot,并可将其发布到各类社交平台和通讯软件上与用户互动。 个人观点:Coze 是字节针对 AI Agent 领域的初代产品,在 Coze 中称 AI Agent 为 Bot。 部署站点: 国内版: 网址:https://www.coze.cn 官方文档教程:https://www.coze.cn/docs/guides/welcome 大模型:使用字节自研的云雀大模型,国内网络可正常访问。 海外版: 网址:https://www.coze.com 官方文档教程:https://www.coze.com/docs/guides/welcome 大模型:GPT4、GPT3.5 等大模型(访问需突破网络限制的工具,参考文档:https://www.coze.com/docs/zh_cn/welcome.html ) AI Agent 的开发流程: Bot 的开发和调试页面布局主要分为以下几个区块: 提示词和人设的区块 Bot 的技能组件 插件 工作流 Bot 的记忆组件 知识库 变量 数据库 长记忆 文件盒子 一些先进的配置 触发器:例如定时发送早报 开场白:用户和 Bot 初次对话时,Bot 的招呼话语 自动建议:每当和 Bot 一轮对话完成后,Bot 给出的问题建议 声音:和 Bot 对话时,Bot 读对话内容的音色 使用 Coze 的步骤: 1. 先跑起来,创建第一个 bot: 目标:创建一个能帮您查阅 Hacker News 并中文返回的 Coze Bot。 操作:打开 coze.cn/home,点击创建 Bot,信息随便输。尝试联网,询问“今天的 hacker news 上有什么新闻?”,若答不出,引入联网插件 WebPilot(插件>+>选择 WebPilot),重新尝试联网,再次询问上述问题,即可成功。 2. Step1:用上「回复逻辑」,让它能将链接转换成回答。 3. Step2:发布到飞书,基本成型。 4. Step3:【进阶】使用工作流/workflow&代码/code,更灵活自定。
2025-03-08
coze有什么用,对于短视频公司
Coze 对于短视频公司具有以下重要作用: 1. 舆情监控: 填补短视频领域舆情监控空白,满足汽车行业特定需求。 实现舆情监控全流程自动化,大幅提升信息流转与办公效率。 针对抖音生态实现定制化监控,提升汽车行业舆情管理效能。 能够进行全场景任何关键词搜索,最快速度定位舆情。 定制关键词批量采集,采集数据自动入表、实时更新,AI 预处理效率提升。 生成多维度直观可视的报告,提升决策速度。 进行舆情贴记录跟进和舆情分析汇报。 2. 创新应用: 利用大模型与 coze 平台,创新解决短视频舆情监控难题。 有众多成功案例,如打造私人播客助手、开发 AI chatbot(短视频爆款案例)、制作 MidJourney 提示词专家、创建 AI 绘画助手、搓一个乞丐版的秘塔搜索、搞一个简单的安全 AI 助手、手搓一个 24 小时陪练教师、帮开源 AI 社区搞一个社群运营机器人等。 Coze 是由字节跳动推出的 AI 聊天机器人和应用程序编辑开发平台,专为开发下一代 AI 聊天机器人而设计。其主要特点包括: 1. 多语言模型支持,使用了大型语言模型,如 GPT48K 和 GPT4128K,并提供云雀语言模型等,支持不同场景下的对话和交互。 2. 插件系统,集成了超过 60 款插件,涵盖资讯阅读、旅游出行、效率办公、图片理解等功能,同时支持用户创建自定义插件,以扩展 Bot 的能力。 3. 知识库功能,允许用户上传和管理数据,支持 Bot 与用户数据交互,可以上传多种格式的文档,或基于 URL 获取在线内容和 API JSON 数据。 4. 数据库和记忆能力,提供数据库功能,允许 Bot 访问会话内存和上下文,持久记住用户对话中的重要参数或内容。 5. 工作流设计,用户可以通过拖拉拽的方式快速搭建工作流,处理逻辑复杂的任务流,提供大量灵活可组合的节点。 6. 多代理模式,在一个机器人中可以运行多个任务,允许添加多个代理,每个代理都是一个能够独立执行特定任务的智能实体。 7. 免费使用,用户无需支付费用即可利用其强大的功能。 8. 易于发布和分享,用户可以将搭建的 Bot 发布到各类社交平台和通讯软件上,让更多的用户与之互动。 总之,Coze 平台的设计降低了大模型使用的门槛,提供了丰富的工具和资源,以支持快速开发和部署 AI 聊天机器人,满足短视频公司的不同需求。
2025-03-07
智谱
智谱 AI 相关信息如下: 2024 年 10 月 AI 行业大事记中,智谱开源了文生图模型 CogView3Plus3B。 智谱 AI 开源的语言模型列表(Chat 模型): ChatGLM26B32k:第二代 ChatGLM 长上下文对话模型,在 ChatGLM26B 的基础上进一步强化了对长文本的理解能力,能处理最多 32K 长度的上下文。 ChatGLM26B32kint4:ChatGLM26B32K 的 int4 版本。 ChatGLM6B:第一代 ChatGLM 对话模型,支持中英双语,基于 General Language Model架构,具有 62 亿参数。 ChatGLM26B:第二代 ChatGLM 对话模型,相比一代模型性能更强,基座模型的上下文长度从 2k 扩展到 32k,在对话阶段使用 8K 的上下文长度训练,推理速度相比初代提升 42%。 ChatGLM26Bint4:ChatGLM26B 的 int4 量化版本,具备最小 5.1GB 显存即可运行,INT4 量化下,6G 显存支持的对话长度由 1K 提升到了 8K。
2025-02-17
智谱清言
智谱清言是智谱 AI 和清华大学推出的大模型产品,其基础模型为 ChatGLM 大模型。2023 年 10 月 27 日,智谱 AI 于 2023 中国计算机大会(CNCC)上推出了全自研的第三代基座大模型 ChatGLM3 及相关系列产品。 模型特点: 工具使用排名国内第一。 在计算、逻辑推理、传统安全能力上排名国内前三。 更擅长专业能力,但代码能力有优化空间,知识百科与其他第一梯队模型相比稍显不足。综合来看,是很有竞争力的大模型。 适合应用: 场景广泛,可优先推进在 AI 智能体方面相关的应用,包括任务规划、工具使用及一些长文本记忆相关的场景。 在较复杂推理应用上效果不错。 广告文案、文学写作方面也是很好的选择。 在对结构化 prompt 的测试和反馈中,输入智谱清言后,问题和文心一言一样,需先改写再看输出效果。改写后效果不错,能理解 prompt,输出内容感觉良好。这里最大的体会是结构化 prompt 非常重要,要从结构化开始,且要不断迭代,根据输出结果不断优化。
2025-01-20
智谱AI插件在哪儿调用
智谱 AI 插件的调用方式如下: 针对智谱,重复类似操作,调用的是 https://chatglm.cn/chatglm/backendapi/v1/conversation/recommendation/list 接口。这里只用到了 conversation_id 一个字段,用的是 GET 请求。通过此接口返回问题,参数用的是整轮对话窗口的唯一 Id:66c01d81667a2ddb444ff878 。 打开飞书多维表格,新增列时,您可以选择字段捷径,在字段捷径的 AI 中心,找到智谱 AI 的字段插件。智谱 AI 近期发布了 3 个飞书多维表格的字段插件:AI 内容生成、AI 视频生成和 AI 数据分析。 在微信超级 AI 知识助手教学(上)—智谱共学营智能纪要中,有智谱大语言模型的使用与功能介绍,包括角色扮演模型设置、变量插入方法、插件调用情况等。还提到了智浦轻颜的功能与应用,如文章总结功能、视频生成功能、画图功能等,以及多维表格相关内容。
2025-01-02
智谱AI插件在哪儿
智谱 AI 插件可在飞书多维表格中找到。具体操作如下: 1. 打开飞书多维表格,新增列时,选择字段捷径。 2. 在字段捷径的 AI 中心,就能找到智谱 AI 的字段插件,包括 AI 内容生成、AI 视频生成和 AI 数据分析插件。 智谱 AI 的 3 个字段插件均免费,您可以尝试将其运用在工作中。同时,若想基于 GLM4Flash 开发更多免费插件,可参考。
2025-01-02
帮我查一下这四家主流大模型的应用能力评测报告吧,通用能力和单项能力都可,数据需要权威一些文心一言 文心一格 通义千问 通义万相 讯飞星火 ai小科 智谱
以下是为您找到的关于主流大模型应用能力评测的相关报告: 小七姐的测评: 测评机制:以同组提示词下 ChatGPT 4.0 生成的内容做对标参照,对智谱清言、文心一言 4.0、Kimi Chat 进行测评。 能力考量:包括复杂提示词理解和执行(结构化提示词)、推理能力(CoT 表现)、文本生成能力(写作要求执行)、提示词设计能力(让模型设计提示词)、长文本归纳总结能力(论文阅读)。 测评轮次:共分为五轮,分别针对不同的任务和模型进行多次测试。 中文大模型基准测评 2023 年度报告: 优秀模型:文心一言 4.0 API(百度)。 模型特点:在计算、逻辑推理、生成与创作、传统安全这 4 大基础能力上排名国内第一,在代码、知识与百科、语言理解与抽取、工具使用能力上排名国内前三,各项能力表现均衡且水平较高。 适合应用:能力栈广泛,可应用于查询搜索知识应用、任务拆解规划 Agent、文案写作、代码编写及纠错等方面,在逻辑推理方面表现不俗,可关注在科学研究、教育、工业方面的落地能力。 观点文章中的测评: 目前体验效果比较好的有科大星火模型、清华 ChatGLM、百度文心一言。 星火目前感觉最接近 GPT3.5(0301 版本)的 80%90%,但 GPT3.5 进化到 6 月版本效果更强。 对大模型的评估可从基础能力、职场能力、探索对话三个方面判断,基础能力包括语言(文本)生成和语言理解,如常识类问题和分词类问题。
2024-12-27
智谱 注册送2000万 tokens
智谱 BigModel 共学营第二期相关信息如下: 本期共学应用为人人可打造的微信助手。 注册智谱 Tokens:智谱 AI 开放平台的网址为 https://bigmodel.cn/ 。参与课程至少需要有 token 体验资源包,获取资源包有三种方式: 新注册用户,注册即送 2000 万 Tokens。 充值/购买多种模型的低价福利资源包,直接充值现金,所有模型可适用的网址为 https://open.bigmodel.cn/finance/pay 。 共学营报名赠送资源包。 语言资源包:免费 GLM4Flash 语言模型/ 。 多模态资源包: 。 多模态资源包: 。所有资源包购买地址:https://bigmodel.cn/finance/resourcepack 。 先去【财务台】左侧的【资源包管理】看看自己的资源包,本次项目会使用到的有 GLM4、GLM4VPlus、CogVideoX、CogView3Plus 模型。 进入智能体中心我的智能体,开始创建智能体。 会议 ID:185 655 937 ,会议链接:https://vc.feishu.cn/j/185655937 ,共学营互动群。 BigModel 开放平台是智谱一站式的大模型开发及应用构建平台。基于智谱自研的全模型矩阵,面向企业客户及合作伙伴,支持多样化模型和自定义编排。平台提供即插即用的智能工具箱,包括 API 接口、模型微调及部署功能,同时具备流程编排以适应复杂业务场景。还提供免费、好用、高并发的 GLM4Flash 模型,0 元上手大模型,新用户注册登录即送 2000 万 Tokens,调用智谱全家桶模型。更多应用场景包括: 。
2024-12-05
AI高效沟通的黄金法则
以下是关于 AI 高效沟通的一些黄金法则: 1. 像教实习生:别指望它读心术,要给明确“操作手册”。 2. 像拼乐高:复杂任务拆成小模块,逐个击破。 3. 像打乒乓球:有来有往多回合,好答案都是改出来的。 在与 AI 对话前,先花 30 秒填写以下 checklist: 我说清自己身份了吗? 任务目标够具体吗? 特殊要求列全了吗? 要什么格式交代了吗? 留好修改的余地了吗? 此外,还有以下策略有助于实现高效沟通: 将复杂任务分解为更简单的子任务,复杂任务通常比简单任务更容易出错,可将其重新定义为一系列简单任务的工作流程,每个任务的输出作为下一个任务的输入。 使用意图分类识别用户查询中最相关的指令,根据用户意图选择最相关的指令集。 对于需要很长对话的应用,总结或过滤之前的对话内容,避免超出模型的上下文窗口大小限制。 将长文档分段总结,并递归构建完整摘要,逐步总结长文档的内容。 给予模型“思考”时间,指导模型在得出结论之前先尝试给出自己的解决方案,避免受到用户提供的错误解决方案的干扰。使用“内心独白”或一系列查询来隐藏模型的推理过程,避免在某些应用场景中泄露答案。询问模型是否在之前的回答中遗漏了什么,确保信息的完整性。 以中考英语辅导为例,在与 AI 沟通时,遵循上述原则和方法,比如明确给出题目、指令,解答问题并给出依据,有助于提高辅导效果。
2025-03-09
AI学习路径
以下是为新手提供的 AI 学习路径: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛(比如图像、音乐、视频等),根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,通过实践巩固知识,尝试使用各种产品做出作品。 在知识库分享实践后的作品和文章。 5. 体验 AI 产品: 与现有的 AI 产品(如 ChatGPT、Kimi Chat、智谱、文心一言等)进行互动,了解其工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 另外,如果您偏向技术研究方向,学习路径包括: 1. 数学基础:线性代数、概率论、优化理论等。 2. 机器学习基础:监督学习、无监督学习、强化学习等。 3. 深度学习:神经网络、卷积网络、递归网络、注意力机制等。 4. 自然语言处理:语言模型、文本分类、机器翻译等。 5. 计算机视觉:图像分类、目标检测、语义分割等。 6. 前沿领域:大模型、多模态 AI、自监督学习、小样本学习等。 7. 科研实践:论文阅读、模型实现、实验设计等。 如果您偏向应用方向,学习路径包括: 1. 编程基础:Python、C++等。 2. 机器学习基础:监督学习、无监督学习等。 3. 深度学习框架:TensorFlow、PyTorch 等。 4. 应用领域:自然语言处理、计算机视觉、推荐系统等。 5. 数据处理:数据采集、清洗、特征工程等。 6. 模型部署:模型优化、模型服务等。 7. 行业实践:项目实战、案例分析等。 无论是技术研究还是应用实践,数学和编程基础都是必不可少的。同时需要紧跟前沿技术发展动态,并结合实际问题进行实践锻炼。 记住,学习 AI 是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,您将逐渐建立起自己的 AI 知识体系,并能够在这一领域取得成就。完整的学习路径建议参考「通往 AGI 之路」的布鲁姆分类法,设计自己的学习路径。
2025-03-09
如何让ai帮我完成一篇论文
在论文写作方面,AI 技术的应用发展迅速,能在多个环节提供辅助。以下是一些常用的 AI 工具和平台: 1. 文献管理和搜索: Zotero:结合 AI 技术,可自动提取文献信息,便于管理和整理参考文献。 Semantic Scholar:由 AI 驱动的学术搜索引擎,能提供相关文献推荐和引用分析。 2. 内容生成和辅助写作: Grammarly:通过 AI 技术进行文本校对、语法修正和写作风格建议,提升语言质量。 Quillbot:基于 AI 的重写和摘要工具,可精简和优化论文内容。 3. 研究和数据分析: Google Colab:提供基于云的 Jupyter 笔记本环境,支持 AI 和机器学习研究,利于数据分析和可视化。 Knitro:用于数学建模和优化的软件,可进行复杂的数据分析和模型构建。 4. 论文结构和格式: LaTeX:虽非纯粹的 AI 工具,但结合自动化和模板,能高效处理论文格式和数学公式。 Overleaf:在线 LaTeX 编辑器,有丰富模板库和协作功能,简化论文编写。 5. 研究伦理和抄袭检测: Turnitin:广泛使用的抄袭检测工具,确保论文原创性。 Crossref Similarity Check:通过与已发表作品比较,检测潜在抄袭问题。 使用这些工具时,要结合自身写作风格和需求,选择最合适的辅助工具。同时需注意,内容由 AI 大模型生成,请仔细甄别。 另外,有人借助 AI 写小说获奖的经验可供参考。比如先让 AI 写故事概要和角色背景介绍并做修改,以表格形式输出细节描述,这样能打破 AI 叙事习惯,便于局部调整和确保细节具体。之后将生成的表格串联成文,偶尔给予建议。但在修改时可能会遇到问题,如某些模型记性不好或改丢关键情节。
2025-03-09
我想用AI辅助做科研选题,写学术课题申报书,我需要学习哪些内容,按步骤进行规划
利用 AI 辅助做科研选题并写学术课题申报书,您需要按以下步骤学习相关内容: 1. 确定课题主题:明确您的研究兴趣和目标,选择具有研究价值和创新性的主题。 2. 收集背景资料:使用学术搜索引擎和文献管理软件等 AI 工具,搜集相关研究文献和资料。 3. 分析和总结信息:借助 AI 文本分析工具,对收集到的资料进行分析,提取关键信息和主要观点。 4. 生成大纲:利用 AI 写作助手生成课题大纲,涵盖引言、文献综述、方法论、结果和讨论等部分。 5. 撰写文献综述:使用 AI 工具辅助撰写文献综述部分,保证内容准确完整。 6. 构建方法论:依据研究需求,采用 AI 建议的方法和技术设计研究方法。 7. 数据分析:若课题涉及数据收集和分析,运用 AI 数据分析工具处理和解释数据。 8. 撰写和编辑:借助 AI 写作工具撰写课题各部分,并进行语法和风格检查。 9. 生成参考文献:使用 AI 文献管理工具生成正确的参考文献格式。 10. 审阅和修改:利用 AI 审阅工具检查课题的逻辑性和一致性,并根据反馈修改。 11. 提交前的检查:最后,使用 AI 抄袭检测工具确保课题的原创性,并做最后的格式调整。 请记住,AI 工具只是辅助,不能完全替代研究者的专业判断和创造性思维。在使用 AI 进行课题写作时,要保持批判性思维,确保研究质量和学术诚信。
2025-03-09
手游开发的AI软件有哪些?
以下是一些手游开发中常用的 AI 软件: 语音生成: Coqui Studio:https://coqui.ai Bark:https://github.com/sunoai/bark Replica Studios:https://replicastudios.com 语音识别: OpenAI Whisper:https://huggingface.co/openai/whisperbase Facebook Wav2Vec2:https://huggingface.co/facebook/wav2vec2largexlsr53 对话模型: ChatGPT:https://chat.openai.com HuggingChat:https://huggingface.co/chat 故事讲述模型: MPT7BStoryWriter65k+:https://huggingface.co/mosaicml/mpt7bstorywriter Claude 100k:https://www.anthropic.com/index/100kcontextwindows GTP4 32k:https://platform.openai.com/docs/models/overview 游戏设计: Ludo.ai:https://ludo.ai 搜索引擎: Haddock:https://www.haddock.ai AI NPC: Inworld:https://inworld.ai Python 库 此外,网易推出的首款 AI 手游《逆水寒》在美术开发、NPC 与玩家的交互等方面应用了 AI 技术,如内嵌的全自动“AI 作词机”。还有一些 AI 应用如 AI 游戏道具推荐系统、AI 天气预报分时服务、AI 医疗病历分析平台、AI 会议发言总结工具、AI 书法作品临摹辅助工具等,也在不同方面为手游开发或相关领域提供了支持和帮助。
2025-03-09
最近的论文AI模型
以下是关于 AI 模型的相关知识: 1. 概念:生成式 AI 生成的内容称为 AIGC。 2. 概念与关系: AI 即人工智能。 机器学习是电脑找规律学习,包括监督学习、无监督学习、强化学习。 监督学习使用有标签的训练数据,目标是学习输入和输出之间的映射关系,包括分类和回归。 无监督学习的数据没有标签,算法自主发现规律,经典任务如聚类,例如让模型将一堆新闻文章根据主题或内容特征分成相似组。 强化学习从反馈中学习,以最大化奖励或最小化损失,类似训小狗。 深度学习是一种参照人脑有神经网络和神经元(因层数多而称深度)的方法,神经网络可用于监督学习、无监督学习、强化学习。 生成式 AI 可以生成文本、图片、音频、视频等内容形式。 LLM 是大语言模型,对于生成式 AI,生成图像的扩散模型不是大语言模型;对于大语言模型,生成只是其中一个处理任务,如谷歌的 BERT 模型,可用于语义理解(不擅长文本生成),像上下文理解、情感分析、文本分类。 3. 技术里程碑:2017 年 6 月,谷歌团队发表论文《Attention is All You Need》,首次提出 Transformer 模型,它完全基于自注意力机制(SelfAttention)处理序列数据,无需依赖循环神经网络(RNN)或卷积神经网络(CNN)。
2025-03-09
LLama特点和优缺点
Llama 的特点包括: 基于大规模神经网络,特别是 Transformer 架构。 Llama 的优点有: 具有强大的语言理解、生成和对话能力。 Llama 的缺点是: 计算资源消耗大。 可能存在偏见和误解。
2025-02-18
大型语言模型(LLM)基于Transformer架构的模型的优缺点是什么,有什么局限性
大型语言模型(LLM)基于 Transformer 架构的模型具有以下优点: 1. 在大量数据集上进行预训练,展现出卓越的语言处理能力,能预测接下来的 Token。 然而,也存在一些缺点和局限性: 1. 瞬态状态:天生缺乏持久的记忆或状态,需要额外的软件或系统来保留和管理上下文。 2. 概率性质:随机性导致响应的不确定性,对相同提示词可能产生不同回答。 3. 过时信息:依赖预训练数据,只能访问历史知识,无法获取实时更新。 4. 内容制造:可能生成看似合理但不准确的信息,即“幻觉”。 5. 资源密集:巨大规模意味着显著的计算和财务成本,影响可扩展性和可访问性。 6. 领域特定性:本质上通用,但通常需要特定领域数据才能在专业任务中表现出色。 7. 缺乏创造性:像一个高性能的知识检索工具,超出检索范围时表现差,甚至出现“幻觉”。面对复杂逻辑推导和新的知识推演能力不足,无法基于新的语料推演出新知识。 8. 对于特定领域或高度专业化的查询,容易产生错误信息或“幻觉”,特别是当查询超出训练数据或需要最新信息时。
2025-02-13
trea和cursor对比,优缺点是什么
Trea 与 Cursor 对比的优缺点如下: 优点: 1. 专为中文开发者量身定制,充分考虑了中文开发者的实际需求,如界面语言全面中文化、对代码注释的友好支持等,让开发者感受到“母语级”的顺畅体验。 2. 集成了国外主流的大模型 Claude 3.5 和 GPT4o,为开发者提供智能代码生成和逻辑优化功能。 3. 在 AI Chat 功能中,使用快捷键 Cmd+u 时的 Context 引用功能比 Cursor 方便好用,可引用 Code(当前选中文件的某个代码块)、File(指定文件的文件名)、Folder(指定文件夹的文件名)、Workspace(当前项目的所有文件)进行对话。 缺点: 1. 在使用快捷键 Cmd+i 进行代码更新时,不像 Cursor 一样可以追问问题以获得想要的代码,而是每次基于摘取的上下文重新回答,且回滚后不能撤销回滚。 2. 目前和 Cursor 一样,不能撤回基于 AI 回答修改过的代码内容,只能人工逐个校验撤回。
2025-01-25
国内主流AI辅助编程工具,比较优缺点
以下是国内主流的 AI 辅助编程工具及其优缺点: GitHub Copilot: 优点:由全球最大的程序员社区和代码托管平台 GitHub 联合 OpenAI 和微软 Azure 团队推出,支持多种语言和 IDE,能为程序员快速提供代码建议,帮助开发者更快、更少地编写代码。 缺点:暂未明确。 通义灵码: 优点:阿里巴巴团队推出,基于通义大模型,提供行级/函数级实时续写、自然语言生成代码、单元测试生成、代码注释生成、代码解释、研发智能问答、异常报错排查等能力。 缺点:暂未明确。 CodeWhisperer: 优点:亚马逊 AWS 团队推出,由机器学习技术驱动,可为开发人员实时提供代码建议。 缺点:暂未明确。 CodeGeeX: 优点:智谱 AI 推出的开源免费 AI 编程助手,基于 130 亿参数的预训练大模型,可快速生成代码,提升开发效率。 缺点:暂未明确。 Cody: 优点:代码搜索平台 Sourcegraph 推出,借助 Sourcegraph 强大的代码语义索引和分析能力,了解开发者的整个代码库,不止是代码片段。 缺点:暂未明确。 CodeFuse: 优点:蚂蚁集团支付宝团队为国内开发者提供智能研发服务的免费 AI 代码助手,基于蚂蚁集团自研的基础大模型进行微调的代码大模型。 缺点:暂未明确。 Codeium: 优点:由 AI 驱动的编程助手工具,通过提供代码建议、重构提示和代码解释来帮助软件开发人员,提高编程效率和准确性。 缺点:暂未明确。 需要注意的是,每个工具的功能和适用场景可能会有所不同,您可以根据自己的需求来选择最适合您的工具。更多辅助编程 AI 产品,还可以查看这里:https://www.waytoagi.com/category/65 。 此外,Cursor 作为一款 AI 编程助手,具有以下核心功能和优势: 核心功能: 全语言支持,包括但不限于 Python、JavaScript、Java、C++、Go 和 Rust 等。 能够快速构建完整的项目框架。 在 IDE 环境中实时提供代码建议、自动补全和错误修正等功能。 支持多项目管理。 能够理解和分析技术文档,并基于文档内容生成相应的代码实现。 优势: 开发效率显著提升,能在短时间内完成功能性演示项目。 降低入门门槛,加速初学者学习过程。 跨语言开发支持,方便开发者切换语言。 减少重复性工作,让开发者集中精力于创造性任务。 实时学习新技术,更新知识库。
2024-12-30
ChatGPT除了优缺点,还有哪些特点
ChatGPT 具有以下特点: 普通版: 基于 GPT3.5 架构,能生成自然语言文本,包括对话、文章、翻译等。 有数亿参数和广泛语言知识,能提供高质量自然语言处理服务。 支持多种语言,可对输入文本进行翻译。 能处理问答、自动文本摘要、对话生成等各类任务。 可通过 API 接口调用,方便集成。 Plus 版: 是普通版的升级版,增加新功能和特性,提升自然语言处理质量和效率。 拥有更多参数,能更好理解输入文本上下文和语境。 采用更先进模型架构和算法,提高生成文本准确性和连贯性。 支持更多语言,翻译效果更好。 能处理更复杂任务,如自动文本摘要、情感分析、语义理解等。 支持更丰富 API 接口,方便集成到各种应用中。 其他方面: 会存在一本正经胡说八道、高度依赖数据且不受约束的情况,但可通过提示词技巧减少发生概率。 对数据依赖程度高,其参数和学习材料规模不断增大。 没有人类的法律和道德观念。 能够生成各种流程图、时序图等,可采用语法渲染成图形的方式,优点是只用关注逻辑、文本即图形且方便嵌入 markdown 文件、具有多样性,缺点是有点抽象。
2024-12-03
prompt有什么优缺点
以下是关于 prompt 的优缺点: 优点: 能够提升模型对通用任务的解题表现,充分发挥其潜力。 结构化的 prompt 可以降低沟通难度,提高结果的准确度。 缺点: 效果因任务而异,部分情况下可能存在“表演思考”的现象。 结构化的 prompt 会限制更多可能性。 大部分框架不太适合解决过于主观、个人情绪的问题,也没必要解决过于简单的问题。想要完全符合需求,往往不是一个框架能完全搞定的。 相关参考链接: Prompt 项目链接: 网友点评: 详细分析来源: 原推文:
2024-11-23