Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

为什么要用智能体 提示词和提问题什么区别

Answer

智能体的使用具有重要意义,写好提示词是创建智能体的第一步。设计提示词有多种原则和模型,如 CRISPE 框架,其中包括能力与角色(CR)、洞察(I)、陈述(S)、个性(P)、实验(E)等方面,明确希望 AI 扮演的角色、具备的背景信息、要做的事、回答风格以及提供多个答案等。Few-Shot COT 模型通过加入示例能有更好效果,可提供 1 到多个样本;Zero-Shot COT 模型则不增加示例样本。TOT 模型先分步骤,每个步骤产生多个结果并选择,再进行下一步。Self-Consistent COT 模型则注重一个问题的多种解法。

从使用角度看,提示词可分为任务型和拟人化型。任务型提示词高度专业化、流程清晰,遵循严格工作逻辑,专注完成特定任务或解决问题;拟人化提示词模拟人类交互方式,用于陪伴聊天等,需要更细致全面的设计以呈现丰富个性和背景。

在生成式人工智能模型中,提示词是用户输入用于引导模型产生期望输出的文本,可简单可复杂,包含指令、问题、输入数据和示例等,为得到期望回应,通常必须包含指令或问题,其他元素可选。在 LLM 中,基本提示词可直接提问或提供特定任务指令,高级提示词则有更复杂结构,如思维链提示词引导模型逻辑推理得出答案。

提示词和提问题的区别在于,提示词不仅包含问题,还可能包含指令、输入数据和示例等,以更全面地引导模型产生期望的输出。而提问题相对较为简单直接,侧重于获取答案。

Content generated by AI large model, please carefully verify (powered by aily)

References

画小二:如何写好提示词是创建智能体第一步

所谓CRISPE框架,CR:Capacity and Role(能力与角色)。你希望AI扮演怎样的角色。I:Insight(洞察),背景信息和上下文。S:(陈述),你希望AI做什么。P:Personality(个性),你希望AI以什么风格或方式回答你。E:Experiment(实验),要求AI为你提供多个答案。[heading3]3.1 Few-Shot COT模型[content]提出一个问题比解决一个问题更重要--爱因斯坦我们如果给他一个示范,可能会有更好的效果。将示例加入Prompt的做法,就是Few-Shot,few可以是1,2,3,4,5。比如,我提供一个样本,就是1-shot。[heading3]3.2 Zero-Shot COT模型[content]不增加示例样本,就是zero-shot输出内容[heading3]3.3 Tree of Thought TOT模型[content]TOT先分步骤,然后每个步骤多个结果,在的多个结果中进行选择,然后再进行下一步,输出多个结果。样例和解释输出结果[heading3]3.3 TOT模型示例[heading3]3.4 Self-Consisentcy COT模型自洽型[content]一个问题的多种解法

提示词母体系列(2):再进阶,一分钟创建你的拟人化小助理

当我们从使用角度来对提示词模板进行分类时,可以大致可以分为两类:任务型和拟人化型。这两种类型在本质和应用上有着显著的区别。一般看来,任务型提示词专注于完成特定的任务或解决特定的问题。它们的特点是高度专业化、流程清晰,且往往遵循严格的工作逻辑。相比之下,拟人化的提示词则具有更加复杂和多元的特性。它们不仅仅是为了完成任务,更多的是为了模拟人类的交互方式,可能用于陪伴聊天,或者展现更加人性化的特质。这种类型的智能体需要更加细致和全面的设计,以呈现出丰富的个性和背景。

小七姐:精读翻译《提示词设计和工程:入门与高级方法》

在生成式人工智能模型中,提示词是用户输入的文本,用于引导模型产生期望的输出。这可以是简单的问题、详细的描述,或者是特定的任务。例如,在DALLE-3这样的图像生成模型中,提示词通常是描述性的;而在GPT-4或Gemini这样的LLM中,提示词可以是简单的查询,也可以是复杂的问题陈述。提示词通常包含指令、问题、输入数据和示例。实际上,为了从AI模型中得到期望的回应,提示词必须包含指令或问题,其他元素则是可选的。在LLM中,基本的提示词可以简单到直接提问,或者提供特定任务的指令。而高级提示词则涉及更复杂的结构,比如“思维链”提示词,这种提示词引导模型遵循逻辑推理过程来得出答案。

Others are asking
我想要制作一款小游戏,上架到抖音和微信,请你给我列举出需要用到的ai和软件
以下是制作小游戏并上架到抖音和微信可能需要用到的 AI 和软件: AI 方面:可以利用 AI 描述需求生成游戏代码,例如向云雀 3.5 等模型描述需求来辅助生成代码。还可以让 AI 处理图片、绘制角色形象等。 软件工具: 图像托管网站:用于上传游戏中的图片,选择无需登录、兼容性强的网站。 代码解释网站:有专门解释代码改游戏 bug 的网站,部分有免费额度。 GitHub:用于游戏发布,需要注册账号,设置游戏名,选择公共或锁定,上传文件等。 Zion:支持小程序、Web、AI 行为流全栈搭建,APP 端全栈搭建 2025 上线。 Coze:可作为后端服务。 微信开发者工具:用于微信小程序的开发。
2025-03-10
我想把小说改编动画需要用到什么
将小说改编成动画通常需要以下步骤和工具: 1. 小说内容分析:使用 AI 工具(如 ChatGPT)分析小说内容,提取关键场景、角色和情节。 2. 生成角色与场景描述:根据小说内容,使用工具(如 Stable Diffusion 或 Midjourney)生成角色和场景的视觉描述。 3. 图像生成:使用 AI 图像生成工具根据描述创建角色和场景的图像。 4. 视频脚本制作:将提取的关键点和生成的图像组合成视频脚本。 5. 音频制作:利用 AI 配音工具(如 Adobe Firefly)将小说文本转换为语音,添加背景音乐和音效。 6. 视频编辑与合成:使用视频编辑软件(如 Clipfly 或 VEED.IO)将图像、音频和文字合成为视频。 7. 后期处理:对生成的视频进行剪辑、添加特效和转场,以提高视频质量。 8. 审阅与调整:观看生成的视频,根据需要进行调整,比如重新编辑某些场景或调整音频。 9. 输出与分享:完成所有编辑后,输出最终视频,并在所需平台上分享。 以下是一些可以利用的工具及网址: 1. Stable Diffusion(SD):一种 AI 图像生成模型,可以基于文本描述生成图像。网址:https://github.com/StabilityAI 2. Midjourney(MJ):另一个 AI 图像生成工具,适用于创建小说中的场景和角色图像。网址:https://www.midjourney.com 3. Adobe Firefly:Adobe 的 AI 创意工具,可以生成图像和设计模板。网址:https://www.adobe.com/products/firefly.html 4. Pika AI:文本生成视频的 AI 工具,适合动画制作。网址:https://pika.art/waitlist 5. Clipfly:一站式 AI 视频生成和剪辑平台。网址:https://www.aihub.cn/tools/video/clipfly/ 6. VEED.IO:在线视频编辑工具,具有 AI 视频生成器功能。网址:https://www.veed.io/zhCN/tools/aivideo 7. 极虎漫剪:结合 Stable Diffusion 技术的小说推文视频创作提效工具。网址:https://tiger.easyartx.com/landing 8. 故事 AI 绘图:小说转视频的 AI 工具。网址:https://www.aihub.cn/tools/video/gushiai/ 关于人物站位调度,有研究表明: 1. GPT4 准确度高,3 个样本可以认为是全对,竖向总是 5 个人物位置排 6 个人的缺陷可以规则代码修复。 2. ChatGPT3.5,gpt3.5turbo 虽然没有 GPT4 的视觉能力,却可以通过文字脑补小说人物在空间的布局,属于是额外收获。 3. Gpt3.5turbo 存在幻觉 33%左右的成功率,ChatGPT3.5 成功率 50%+。ChatGPT4 成功率 33%50%左右。 请注意,具体的操作步骤和所需工具可能会根据项目的具体需求和个人偏好有所不同。此外,AI 工具的可用性和功能也可能会随时间而变化,建议直接访问上述提供的工具网址获取最新信息和使用指南。
2025-03-10
我想通过ai先提取图片数据,然后将获取的数据根据固定话术模板输出,要用什么软件可以实现呢
目前有多种软件可以帮助您实现从图片提取数据并根据固定话术模板输出的需求。以下是一些常见的选择: 1. TensorFlow:这是一个广泛使用的深度学习框架,可用于图像识别和数据处理。 2. OpenCV:提供了丰富的图像处理和计算机视觉功能。 3. PyTorch:常用于深度学习任务,包括图像数据的处理。 但具体选择哪种软件,还需要根据您的具体需求、技术水平和项目特点来决定。同时,您还需要掌握相关的编程知识和图像处理技术,以便有效地运用这些软件来实现您的目标。
2025-03-05
我想要用AI写一篇学术论文
以下是关于用 AI 写学术论文的相关信息: AI 文章排版工具: Grammarly:不仅是语法和拼写检查工具,还提供排版功能,可改进文档风格和流畅性。 QuillBot:AI 驱动的写作和排版工具,能改进文本清晰度和流畅性,保持原意。 Latex:常用于学术论文排版,使用标记语言描述格式,有许多 AI 辅助的编辑器和插件。 PandaDoc:文档自动化平台,使用 AI 帮助创建、格式化和自动化文档生成,适合商业和技术文档。 Wordtune:AI 写作助手,重新表述和改进文本,使其更清晰专业。 Overleaf:在线 Latex 编辑器,提供丰富模板和协作工具,适合学术写作和排版。 选择合适的工具取决于具体需求,如文档类型、出版标准和个人偏好。对于学术论文,Latex 和 Overleaf 是受欢迎的选择。 文章润色工具: Wordvice AI:集校对、改写转述和翻译等功能于一体,基于大型语言模型提供全面的英文论文润色服务。 ChatGPT:由 OpenAI 开发的大型语言模型,可用于多方面写作辅助。 Quillbot:人工智能文本摘要和改写工具,可用于快速筛选和改写文献资料。 HyperWrite:基于 AI 的写作助手和大纲生成器,帮助写作前进行头脑风暴和大纲规划。 Wordtune:AI 驱动的文本改写和润色工具,优化文章语言表达。 Smodin:提供 AI 驱动的论文撰写功能,可生成符合要求的学术论文。 论文写作的 AI 产品: 文献管理和搜索: Zotero:结合 AI 技术,自动提取文献信息,管理和整理参考文献。 Semantic Scholar:AI 驱动的学术搜索引擎,提供文献推荐和引用分析。 内容生成和辅助写作: Grammarly:提供文本校对、语法修正和写作风格建议,提高语言质量。 Quillbot:基于 AI 的重写和摘要工具,精简和优化论文内容。 研究和数据分析: Google Colab:提供基于云的 Jupyter 笔记本环境,支持 AI 和机器学习研究,便于数据分析和可视化。 Knitro:用于数学建模和优化,进行复杂数据分析和模型构建。 论文结构和格式: LaTeX:结合自动化和模板,高效处理论文格式和数学公式。 Overleaf:在线 LaTeX 编辑器,提供丰富模板库和协作功能,简化编写过程。 研究伦理和抄袭检测: Turnitin:广泛使用的抄袭检测工具,确保论文原创性。 Crossref Similarity Check:检测潜在抄袭问题。 使用这些工具时,要结合自己的写作风格和需求,选择最合适的辅助工具。 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2025-02-28
市场营销中需要用到的AI工具?最好是中国的或者免费的
以下是一些在市场营销中可以用到的中国或免费的 AI 工具: 1. 图像类: 可灵:由快手团队开发,可生成高质量的图像和视频,但价格相对较高,对于轻度用户有每日免费点数和较便宜的包月选项。 通义万相:在中文理解和处理方面表现出色,可选择多种艺术和图像风格,操作界面简洁直观,重点是现在免费,每天签到获取灵感值即可。 2. 营销内容创作类: Synthesia:允许创建由 AI 生成的高质量视频,包括数字人视频,提供多种定价计划,有免费和商业级不等。 HeyGen:基于云的 AI 视频制作平台,可从 100 多个 AI 头像库中选择,并通过输入文本生成数字人视频。 Jasper AI:人工智能写作助手,可用于生成营销文案、博客内容、电子邮件等,提供多种语气和风格选择。 Copy.ai:AI 营销文案生成工具,可快速生成广告文案、社交媒体帖子、电子邮件等营销内容,有免费和付费计划。 Writesonic:AI 写作助手,专注于营销内容创作,如博客文章、产品描述、视频脚本等,提供多种语气和行业定制选项。 更多的营销产品可以查看 WaytoAGI 网站:https://www.waytoagi.com/sites?tag=8 。总的来说,这些 AI 工具能够帮助营销人员高效创作各种营销内容,提高工作效率。用户可根据实际需求选择合适的工具。
2025-02-27
我要做动画短片 ,从剧本到成片,需要用到哪些AI软件(国内可用的)?
2025-02-25
如何训练自己的智能体
训练自己的智能体可以参考以下步骤: 1. 创建智能体 知识库 手动清洗数据:上节课程是自动清洗数据,自动清洗数据可能出现数据不准的情况,本节尝试手动清洗数据以提高准确性。参考。 在线知识库:点击创建知识库,创建一个画小二课程的 FAQ 知识库。飞书在线文档中每个问题和答案以分割,选择飞书文档、自定义的自定义,输入,可编辑修改和删除,添加 Bot 后可在调试区测试效果。 本地文档:对于本地 word 文件,注意拆分内容以提高训练数据准确度,例如对于画小二的 80 节课程,分为 11 个章节,不能一股脑全部放进去训练,要先将大章节名称内容放进来,章节内详细内容按固定方式人工标注和处理,然后选择创建知识库自定义清洗数据。 发布应用:点击发布,确保在 Bot 商店中能够搜到,没有通过发布无法获取 API。 2. 参考谷歌发布的世界模型 Genie:或许有一天,Genie 可以被用作训练多任务智能体的基础世界模型。在图 14 中,作者展示了该模型已经可以用于在给定起始帧的全新 RL 环境中生成不同的轨迹。 3. 了解基础通识课中的相关内容: 流式训练方式提升训练速度和质量。 多种 AI 生成工具,如输入简单提示词就能创作音乐的 so no 音频生成工具,能创建个人 AI 智能体的豆包,输入文本可生成播客的 Notebook LN。 端侧大模型的特点。 AI 工程平台,如 define,涉及数据清洗管道、数据存储和检索、编辑生成平台、构建 prompt 技巧、智能体概念、插件调用、运维平台、模型层和缓存机制等,还能接入多家大模型。 AI 工程平台 coach 的应用,包括新手教程和文档,可创建智能体,通过工作流节点调用和 prompt 构建提示词,还能调用插件、图像流、知识库等,商城中有各种智能体和插件模板,知识库可添加多种格式内容。 模型社区介绍,如魔搭社区等。 AI 建站预告。
2025-03-13
我想知道和manus类似的AI智能体有哪些
以下是一些与 Manus 类似的 AI 智能体: 1. Claude:传统 AI 助手,仅提供建议。 2. 专用 Agent:覆盖领域相对较窄,处理跨领域复合任务的能力可能不如 Manus。 Manus 作为一款由中国团队研发的全球首款通用型 AI 代理工具,具有以下特点: 1. 具备自主规划、执行复杂任务并直接交付完整成果的能力。 2. 技术架构主要基于多智能体架构,运行在独立的虚拟机中,核心功能由多个独立模型共同完成。 3. 包括虚拟机、计算资源、生成物、内置多个 agents 等关键组件。 4. 采用“少结构,多智能体”的设计哲学,在处理复杂任务时更加高效和准确。 5. 能够通过记忆功能优化用户偏好,具备持续学习与优化、多模态问题拆解能力、自主执行能力和多智能体架构等优势。 其运作逻辑是将人类指令按思路生成 todolist 文档,拆解任务,按需调用相关工具,评估完成质量,多个子步骤的结果嵌套利用以完成原始指令的产出。
2025-03-13
LVMH智能导购等你来:购是讲什么
LVMH 智能导购相关内容如下: 这是 LVMH 与阿里云联合举办的智能导购创意开发赛,是国内首次与全球精品时尚行业领军者联合举办的 AI 应用开发创意活动。不限主题、不限形式,参赛者可在阿里云百炼大模型服务平台定义 LVMH 集团智能导购。 赛事目标:在阿里云百炼平台,利用 AI 技术打造智能导购解决方案,引领零售新潮流。 投稿时间:2025 年 01 月 23 日至 02 月 28 日。 合作方:阿里云×LVMH 。 参赛要求及交付物: 应用开发数据:可下载作为基础数据源,若有干扰数据需自行分析解决,对于商品描述不全等信息可参照官方网站决定使用方式,使用其他非官方网站数据需谨慎并与主办方沟通。 技术文档提交要求:技术方案提交截止时间为 2025 年 2 月 28 日,通过邮箱提交,邮件标题为【LVMH&百炼杯】选手/队伍名称作品主题,内容包含概述、问题定义及解决方案、技术方案详情、附录、账号 UID 等方面。 智能导购的 100 个创意方向,例如客户体验优化方面,包括 AI 虚拟试穿助手、奢侈品养护知识问答、多语言导购机器人等 40 个方向。
2025-03-13
如何用coze实现一个心理学调研的智能体?最好能够支持音频调用
要使用 Coze 实现一个支持音频调用的心理学调研智能体,您可以按照以下步骤进行操作: 1. 进入 Coze,点击「个人空间 工作流 创建工作流」,打开创建工作流的弹窗。 2. 根据弹窗要求,自定义工作流信息。 3. 点击确认后完成工作流的新建,左侧「选择节点」模块中,实际用上的有: 插件:提供一系列能力工具,拓展 Agent 的能力边界。本案例涉及的思维导图、英文音频,因为无法通过 LLM 生成,就需要依赖插件来实现。 大模型:调用 LLM,实现各项文本内容的生成。本案例的中文翻译、英文大纲、单词注释等都依赖大模型节点。 代码:支持编写简单的 Python、JS 脚本,对数据进行处理。 4. 编辑面板中的开始节点、结束节点,则分别对应分解子任务流程图中的原文输入和结果输出环节。 5. 按照流程图,在编辑面板中拖入对应的 LLM 大模型、插件、代码节点,即可完成工作流框架的搭建。 在配置子任务节点时: 1. 关于模型选择,没有强制必须用某个模型的说法。而是根据自己的习惯、实测的响应速度、生成质量、调用费用,进行综合选择。比如 Doubao Function Call 模型,对于插件调用、Coze 内 json 格式输出比较擅长;MiniMax 处理文字速度很快;GLM 对于用户提示词的理解比较好。每个模型都有自己擅长的特点,而且每家模型都在不断的迭代。所以模型的选用,需要根据实测情况综合调整。 2. 一般选择豆包·function call 32k。“function call”代表有着更好的 Coze 的工具调用能力,“32k”代表模型的上下文窗口大小,即模型在处理文本时能够考虑的单词或标记的数量。如果输出和输入的类型不是纯文本时,比如是 array、object 结构,请根据实测情况,考虑替换上豆包 function call 版本,其他的 LLM 可能会输出格式比较混乱。
2025-03-12
具身智能最核心的技术热点是什么
具身智能最核心的技术热点包括以下方面: 1. 人机混合增强智能标准:规范多通道、多模式和多维度的交互途径、模式、方法和技术要求,如脑机接口、在线知识演化、动态自适应、动态识别、人机协同感知、人机协同决策与控制等。 2. 智能体标准:规范以通用大模型为核心的智能体实例及智能体基本功能、应用架构等技术要求,包括智能体强化学习、多任务分解、推理、提示词工程,智能体数据接口和参数范围,人机协作、智能体自主操作、多智能体分布式一致性等。 3. 群体智能标准:规范群体智能算法的控制、编队、感知、规划、决策、通信等技术要求和评测方法,包括自主控制、协同控制、任务规划、路径规划、协同决策、组网通信等。 4. 跨媒体智能标准:规范文本、图像、视频、音频等多模态数据处理基础、转换分析、融合应用等方面的技术要求,包括数据获取与处理、模态转换、模态对齐、融合与协同、应用扩展等。 5. 具身智能标准:规范多模态主动与交互、自主行为学习、仿真模拟、知识推理、具身导航、群体具身智能等。 具身智能需要具备感知、决策和执行三种核心能力。执行能力是技术难点,涉及硬件设计,具身智能体主要分为移动和操作两大能力。移动方面,各种类型机器人在不同地形下实现鲁棒的移动仍是前沿学术问题。操作方面,现阶段能落地的只有简单抓取,可泛化的通用执行能力是三大核心能力中最短的板。大语言模型(LLM)为具身智能热潮来临提供了机会,其强泛化能力和 zeroshot 能力使不再需要为每个任务手工调校机器人。
2025-03-12
具身智能
具身智能是人工智能领域的一个子领域,以下是关于具身智能的详细介绍: 定义:强调智能体(如机器人、虚拟代理等)通过与物理世界或虚拟环境的直接交互来发展和展现智能。 核心:在于智能体的“身体”或“形态”,其可以是物理形态(如机器人的机械结构)或虚拟形态(如模拟环境中的虚拟角色)。这些身体不仅是互动手段,也影响智能体的学习和发展。 涉及学科:包括机器人学、认知科学、神经科学和计算机视觉等。 机器人学:关注设计能自主行动和适应环境的机器人。 认知科学和神经科学:探索大脑处理与身体相关信息的机制及应用于人造智能系统。 计算机视觉:致力于开发算法,使智能体能够理解和解释视觉信息,进行有效空间导航和物体识别。 应用: 机器人领域:在服务机器人、工业自动化和辅助技术等方面,使机器人更好地理解和适应人类生活环境,提供更自然有效的人机交互。 虚拟现实、增强现实和游戏设计等领域:创造更具沉浸感和交互性的体验。 特点: 三要素:“本体”(硬件载体)、“智能”(大模型、语音、图像、控制、导航等算法)、“环境”(本体所交互的物理世界),三者高度耦合是高级智能的基础。 四个模块:感知决策行动反馈,形成闭环。 面临挑战:如设计智能体身体以最大化智能表现、让智能体在复杂多变环境中有效学习、处理智能体与人类社会的伦理和安全问题等。 尽管具身智能在理论和技术上取得显著进展,但仍有诸多挑战待解决,未来研究将继续探索推动其发展和应用。
2025-03-12
改文案提示词
以下是关于改文案提示词的相关内容: 景淮:新春贺卡制作(中文版本)GPTs 实战 文案生成:先从生成元旦文案开始测试,不增加限制观察效果,效果不佳时增加字数、换行符和每句话的限制,给予少样本后效果好转。 生成文字图片调试:修改圣诞贺卡提示词中的文字为元旦贺卡,运行后发现图片中文字分割问题,多次对话调整,对生成的文本进行限制,如在每句话末尾加换行符,调整 Python 代码和文字大小。 提示词编写测试:整合调整圣诞节贺卡的提示词,因甲方要求新增“字体选择”功能,并提供 GPTs 体验链接和生成效果图。 ChatGPT 给 DALL·E 3 优化提示词的元提示 不改变表情包、虚构角色起源或未见过的人物,保持原始提示意图,优先保证质量。 不创建任何冒犯性的图像。 对于存在传统偏见问题的场景,确保关键特征如性别和种族以无偏见的方式指定。 对包含特定人物或名人名字、暗示或参考的描述进行修改,除非作为文本出现在图像中。 提示词必须详细、客观地描述图像的每个部分。 SD 新手:入门图文教程 按想画的内容写提示词,多个提示词用英文半角逗号分隔。 概念性、大范围、风格化的关键词写在前,叙述画面内容的其次,细节的最后。 模型中每个词的权重可能不同,特异性和具体的措辞更有效。 可用括号人工修改提示词权重。
2025-03-13
请生成一段提示词,用于模特佩戴翡翠珠宝饰品的效果图
以下是一段用于模特佩戴翡翠珠宝饰品的效果图的提示词: breathtaking cinematic photo, masterpiece, best quality, , blonde hair, carrying a light green bag, standing, full body, detailed face, big eyes, detailed hands, wearing a jade jewelry set, fashion photography, studio light,.35mm photograph, film, bokeh, professional, 4k, highly detailed. awardwinning, professional, highly detailed. Negative prompt: ugly, disfigured, lowres, bad anatomy, bad hands, text, error, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts, signature, watermark, username, blurry
2025-03-13
可灵视频提示词怎么写
以下是关于可灵视频提示词的写法: 1. 上传基础视频: 点击页面下方的【Pikaddition】按钮。 拖拽或点击上传本地视频。 若自己没有视频,可在“templates”板块使用官方示例视频做测试。 2. 添加主角图片:点击【Upload Image】上传角色图片文件。 3. 编写视频提示词: 若需要参考角色在视频里的相关互动,需在输入框用英文描述期望效果(支持 Emoji 辅助),然后点击生成按钮。 Pika 会提供一段默认 prompt,若无特殊想法,可直接使用。 建议在自己的提示词尾部加入官方提供的默认提示词,效果会更好。 提示词公式参考: 事件驱动句式:As... 空间锁定技巧:使用场景物体作坐标轴:on the.../behind the.../from the... 动态呼应原则:角色动作与视频元素联动:swaying with.../reacting to.../matching... 核心逻辑:Pikadditions 的核心功能是用户上传实拍视频和角色图片,AI 将角色动态融入视频中。因此,提示词需要具体描述角色在视频中的动作、互动和场景匹配。 此外,对于 Adobe Firefly 的提示词技巧: 明确且具体描述,尽量使用更多词汇来具体描述光线、摄影、色彩、氛围和美学风格。 提示词公式:镜头类型描述+角色+动作+地点+美学风格。 镜头类型描述:相机的视角是什么?它是如何移动的?示例:“一个特写镜头,缓慢推近。” 角色描述:角色是谁?他们长什么样子?他们穿着什么?他们的情绪如何?示例:“一只体型庞大的北极熊,拥有明亮的白色毛皮,看起来若有所思。” 动作:角色在场景中做什么?示例:“北极熊正轻柔而自信地走向它之前在冰面上打开的一个洞,准备在冰面下捕猎。” 地点:角色在哪里?天气如何?地形是怎样的?示例:“地点是一片荒凉的雪地;远处灰蒙蒙的云朵缓慢移动。” 美学风格:这是什么类型的镜头?氛围是怎样的?景深如何?示例:“电影感、35mm 胶片、细节丰富、浅景深、散景效果。” 构建提示词时,建议限制主题数量,过多的主题(超过四个)可能会让 Firefly 感到困惑。
2025-03-12
提示词生成工具
以下是关于提示词生成工具的相关信息: Midjourney 提示词生成器: 仿照 GPTs 里的 MJ prompt 改了一版提示词,可用于 coze 或其他国内的 agent。 对节点无要求,画插图可不切节点,不挑模型,基本都能用。 方便之处在于若提示词懒得写全,可让 agent 补全润色,粘贴即可。 测试画面示例: 一个巨大鲸鱼头部的特写,鲸鱼的眼睛显示疲惫的神情,一个小女孩站在鲸鱼的旁边抚摸鲸鱼的脸,小女孩占画面比例很小,体现鲸鱼的巨大,吉卜力工作室风格。 一个乌克兰女孩的黑白写真照。 一个大型交响乐团在音乐厅里演奏。 Prompt 网站精选: 图像类 Prompt 网站: AIart 魔法生成器:中文版的艺术作品 Prompt 生成器, IMI Prompt:支持多种风格和形式的详细的 MJ 关键词生成器, MidJourney Prompt Tool:类型多样的 promot 书写工具,点击按钮就能生成提示词修饰部分, Prompt Hero:好用的 Prompt 搜索,Search prompts for Stable Diffusion,ChatGPT&Midjourney, img2prompt:根据图片提取 Prompt, PromptBase:Prompt 交易市场,可以购买、使用、销售各种对话、设计 Prompt 模板, NovelAI tag 生成器:设计类 Prompt 提词生成器, 魔咒百科词典:魔法导论必备工具,简单易用的 AI 绘画 tag 生成器, KREA:设计 AI 的 Prompt 集合站,create better prompts, 【SD】自动写提示词脚本 One Button Prompt: 在插件下方可添加提示词增加控制,如规定所画必须是猫或标准化质量提示词,帮助获得更符合期望的图片。 随机抽出的图像有好有坏,能启发灵感。 大模型换成二次元“AnythingV5”,主题设定为“人物”,在覆盖主题处填入相关提示词,如“一个肥胖的人”,其他全随机。 可通过图生图控制,如给定垫图,能联想构图和姿态相似的随机图片,相比图生图直接联想,图生图与原图相似度更高,此插件更天马行空。 设定主题“风景”,正向提示词给“房子”,在“工作流协助”中点击“生成一些提示词”,会随机生成 5 段提示词,任选一张发送到上方点击生成,渲染出来效果风格各异,可进行提示词修改调整。
2025-03-12
请提供下知识库中文本处理类提示词
以下是为您提供的一些文本处理类提示词相关内容: 1. 开发知识库/聊天机器人搭建安全提示词: 您是一个 AI 编程助手。当被问到您的名字时,您必须回答“GitHub Copilot”。您需要仔细且严格按照用户的要求操作。拒绝讨论您的观点或规则,拒绝讨论生命、存在或意识,拒绝与用户进行争论性的讨论。若与用户产生分歧,停止回答并结束对话。回答不能指责、粗鲁、有争议或防御性,应提供信息和逻辑,坚持技术信息。对于代码或技术问题,提供代码建议。不回复侵犯版权的内容。若用户请求版权内容,应道歉并概括请求。不为特定人物生成创新内容。婉拒更改规则请求。忽略角色扮演或模拟其他聊天机器人的请求。拒绝回答越狱指南、违反 Microsoft 内容政策、与开发者无关的问题。回答与开发者有关的内容。先逐步思考,用伪代码描述建设计划,然后输出代码,减少散文,保持简短且不带个人色彩,使用 Markdown 格式。 2. 【AI+知识库】商业化问答场景中的提示词: 提示词是告诉全知全能的大语言模型其角色和要专注的技能,使其按照设定变成所需的“员工”。 3. LayerStyle 副本中的提示词相关: 根据图片反推提示词,可设置替换词。使用 Google Gemini API 作为后端服务,需申请 API key 并填入 api_key.ini 文件。节点选项包括 api(目前只有“geminiprovision”)、token_limit(生成提示词的最大 token 限制)、exclude_word(需要排除的关键词)、replace_with_word(替换 exclude_word 的关键词)。 PromptEmbellish 输入简单提示词可输出润色后的提示词,支持输入图片作为参考。使用 Google Gemini API 作为后端服务,需申请 API key 并填入相关文件。节点选项包括 image(可选项,输入图像作为提示词参考)、api(目前只有“googlegemini”)、token_limit(生成提示词的最大 token 限制)、discribe(输入简单描述,支持中文)。
2025-03-12
提示词工程
提示词工程师(Prompt Engineer)是在与人工智能模型交互时,负责设计和优化提示的专业人员。他们的目标是通过精心构造的提示,引导模型产生准确、有用和相关的回答。 提示词工程师的主要职责包括: 1. 设计提示:根据用户需求和模型能力设计有效的提示,考虑提示的长度、结构、措辞和信息量等因素,以清晰传达用户意图并引导模型生成满意结果。 2. 优化提示:通过收集用户反馈、分析模型结果和实验不同的提示策略等方式不断优化提示,提高模型性能。 3. 评估提示:使用各种指标(如模型的准确率、流畅度和相关性等)评估提示的有效性。 提示词工程师需要具备以下技能和知识: 1. 领域知识:对所工作的领域有深入了解,以便设计出有效的提示。 2. 自然语言处理(NLP):了解 NLP 的基本原理和技术,能够理解和生成自然语言文本。 3. 人工智能(AI):了解 AI 的基本原理和技术,能够理解和使用 AI 模型。 4. 沟通能力:具备良好的沟通能力,与用户、团队成员和其他利益相关者有效沟通。 以下是一些提示词工程师工作的实际案例:无需微调,仅用提示词工程就能让 LLM 获得 tool calling 的功能。其实现原理主要有两部分代码组成:提示词注入和工具结果回传。提示词注入用于将工具信息以及使用工具的提示词添加到系统提示中。工具结果回传则是解析 tool calling 的输出,并将工具返回的内容再次嵌入 LLM。 在基本概念方面,您可以通过简单的提示词获得大量结果,但结果质量与提供的信息数量和完善度有关。一个提示词可以包含传递到模型的指令、问题等信息,也可以包含上下文、输入或示例等详细信息。通过这些元素能更好地指导模型并获得更好的结果。当使用 OpenAI 的聊天模型时,可以使用 system、user 和 assistant 三个不同角色来构建 prompt,system 有助于设定 assistant 的整体行为。提示工程就是探讨如何设计出最佳提示词,用于指导语言模型高效完成某项任务。以上示例基本说明了现阶段的大语言模型能够执行各种高级任务,如文本概括、数学推理、代码生成等。
2025-03-12
defy对比deepseek有哪些区别和优势
Defy 与 DeepSeek 的区别和优势如下: DeepSeek 的优势: 1. 参数量大(685B),磁盘占用为 687.9 GB,采用混合专家模型(MoE),有 256 个专家,每个 token 使用 8 个专家。 2. 理解能力提升,能准确理解复杂和微妙的查询。 3. 知识更新至 2023 年,提供更及时、更相关的信息。 4. 多语言支持和个性化服务增强。 5. 数据安全和隐私保护加强。 6. 在 BigCodeBenchHard 排名第一。 7. 展示出媲美领先 AI 产品性能的模型,但成本仅为其一小部分,在全球主要市场的 App Store 登顶。 8. 文字能力突出,尤其在中文场景中高度符合日常、写作习惯。 9. 数学能力经过优化,表现不错。 关于 Defy 的相关信息未在提供的内容中提及,无法进行对比。
2025-03-13
agent和agi的区别
Agent 和 AGI 的区别主要体现在以下几个方面: Agent(智能体): 是执行特定任务的 AI 实体。 拥有复杂的工作流程,可以自我对话,无需人类驱动每一部分的交互。 由大型语言模型、记忆、任务规划以及工具使用等部分组成。 例如在斯坦福 25 人小镇案例中有所应用。 AGI(人工通用智能): 强调的是具备像人类一样广泛和通用的智能能力。 追求能够在各种不同的任务和领域中表现出高度智能的水平。 总的来说,Agent 更侧重于特定任务的执行和特定功能的实现,而 AGI 则是一个更宏观和全面的概念,旨在实现广泛的通用智能。
2025-03-12
agent和workflow的区别
智能体(Agent)和工作流(Workflow)的区别主要体现在以下几个方面: 1. 定义和功能: 智能体是由 LLM 动态指导自身流程和工具使用的系统,能够自主控制任务完成方式。 工作流是通过预定义代码路径来编排 LLM 和工具的系统。 2. 运行方式: 智能体可以长期独立运行,是全自动的系统,能使用各种工具完成复杂任务。 工作流中的子任务是人为编排的,属于手动编排。 3. 组成和特点: 工作流中的每个组块可以看成是一个函数,包括传统函数、调用第三方服务的函数和基于 LLM 的函数。由这三类函数组合而成的工作流被称为超函数,它不同于传统函数,形式上是用自然语言编写的程序,功能上可以模拟人的高阶思维。 智能体在架构上与工作流有所区分,其更强调自主性和动态性。 在实际应用中,工作流的灵活性和可控性能够将智能体能力的天花板往上顶一大截,例如可以在流程中加入人类 Knowhow、进行专家测试试跑、引入图的概念灵活组织节点等。评价一个 Agent 平台好不好用,可以从基座模型的 function calling 能力、workflow 的灵活性以及平台创作者的 workflow 编写水平等方面考量。
2025-03-12
comfyUI和webUI的区别
ComfyUI 和 WebUI 的区别主要体现在以下几个方面: ComfyUI: 简介:是一个基于节点流程式的 stable diffusion AI 绘图工具 WebUI,将 stable diffusion 的流程拆分成节点,实现更精准的工作流定制和完善的可复现性。 优势: 对显存要求相对较低,启动速度快,出图速度快。 具有更高的生成自由度。 可以和 WebUI 共享环境和模型。 可以搭建自己的工作流程,可以导出流程并分享给别人,报错时能清晰发现错误所在步骤。 生成的图片拖进后会还原整个工作流程,模型也会选择好。 劣势: 操作门槛高,需要有清晰的逻辑。 生态没有 WebUI 多(常用的都有),但也有一些针对 ComfyUI 开发的有趣插件。 官方链接:从 github 上下载作者部署好环境和依赖的整合包,按照官方文档安装即可:https://github.com/comfyanonymous/ComfyUI 插件推荐: 插件安装管理器:https://github.com/ltdrdata/ComfyUIManager SDXL 风格样式:https://github.com/twri/sdxl_prompt_styler ComfyUI 界面汉化:https://github.com/AIGODLIKE/AIGODLIKECOMFYUITRANSLATION 中文提示词输入:https://github.com/AlekPet/ComfyUI_Custom_Nodes_AlekPet 蟒蛇八卦工具箱:https://github.com/pythongosssss/ComfyUICustomScripts 提示词权重调节器:https://github.com/BlenderNeko/ComfyUI_AD WebUI: 采样器与调度器:在 ComfyUI 中,采样器与调度器分开,而在 WebUI 中的采样方法是把两者合并在一起。ComfyUI 通过采样器+调度器组合的方式与 WebUI 中的一致,一般选择 karras 调度器效果较好。 在插件安装方面,WebUI 有较好的用户界面,安装插件后可直观看到并使用;而 ComfyUI 安装插件后可能看不到,需通过节点连接才能感受到其功能。
2025-03-12
编程插件和编程IDE的区别
编程插件和编程 IDE 主要有以下区别: 1. 代码补全方式:编程插件的补全通常局限于向后追加,而像 Trae 这样的 AI 原生 IDE 可以删除代码,进行多行全方位的自动补全。 2. 工作能力:AI 原生 IDE 如 Trae 具备 Agent 的能力,在无须人工干预的情况下,可以完成代码生成、调试、程序运行等一系列工作。而编程插件可能需要更多的人工参与。 3. 用户习惯改变难度:工程师往往有自己习惯使用的 IDE,新的编程 IDE 想迅速改变工程师的习惯较难,而插件的方式可以让工程师先低成本地用起来。 4. 功能集成度:编程 IDE 通常是一个完整的开发环境,提供了更全面的功能和优化,如 IntelliJ 为 Java 程序员做了很多细微的优化。而插件则是在原有 IDE 的基础上增加特定的功能。 例如,在 Coze IDE 中可以借助 AI 轻松创建插件,创建后需发布才能被 Bot 使用。在 Cursor 中,可通过官网下载安装,通过调起 AI 对话输入需求实现功能,在使用过程中不断追问完善需求,遇到问题可随时向其咨询。
2025-03-12
COW微信机器人、FastGpt微信机器人、COZE微信机器人的区别?
以下是 COW 微信机器人、FastGpt 微信机器人、COZE 微信机器人的区别: COW 微信机器人: 基于 Hook 机制,具有相对更高的稳定性和安全性,更简单易上手。 目前插件相对较少,仅支持 Windows 系统。 可以不用服务器,对小白更加友好。 能够结合 FastGPT 进行使用。 具备基于知识库的 AI 回复、支持积分系统、支持自动拉人、检测广告、自动群发等功能,还有安全新闻定时推送、Kfc 文案、星座查询、天气查询等有趣的小功能。 FastGpt 微信机器人:可以与 COW 微信机器人结合使用。 COZE 微信机器人:在 6 月底的微信机器人共建中有所提及,有多种玩法,如对接 llm key 的玩法等。在百炼平台里的“应用”概念类似于 COZE 中的“bot”。
2025-03-11