Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

如何用coze实现一个心理学调研的智能体?最好能够支持音频调用

Answer

要使用 Coze 实现一个支持音频调用的心理学调研智能体,您可以按照以下步骤进行操作:

  1. 进入 Coze,点击「个人空间 - 工作流 - 创建工作流」,打开创建工作流的弹窗。
  2. 根据弹窗要求,自定义工作流信息。
  3. 点击确认后完成工作流的新建,左侧「选择节点」模块中,实际用上的有:
    • 插件:提供一系列能力工具,拓展 Agent 的能力边界。本案例涉及的思维导图、英文音频,因为无法通过 LLM 生成,就需要依赖插件来实现。
    • 大模型:调用 LLM,实现各项文本内容的生成。本案例的中文翻译、英文大纲、单词注释等都依赖大模型节点。
    • 代码:支持编写简单的 Python、JS 脚本,对数据进行处理。
  4. 编辑面板中的开始节点、结束节点,则分别对应分解子任务流程图中的原文输入和结果输出环节。
  5. 按照流程图,在编辑面板中拖入对应的 LLM 大模型、插件、代码节点,即可完成工作流框架的搭建。

在配置子任务节点时:

  1. 关于模型选择,没有强制必须用某个模型的说法。而是根据自己的习惯、实测的响应速度、生成质量、调用费用,进行综合选择。比如 Doubao Function Call 模型,对于插件调用、Coze 内 json 格式输出比较擅长;MiniMax 处理文字速度很快;GLM 对于用户提示词的理解比较好。每个模型都有自己擅长的特点,而且每家模型都在不断的迭代。所以模型的选用,需要根据实测情况综合调整。
  2. 一般选择豆包·function call 32k。“function call”代表有着更好的 Coze 的工具调用能力,“32k”代表模型的上下文窗口大小,即模型在处理文本时能够考虑的单词或标记的数量。如果输出和输入的类型不是纯文本时,比如是 array、object 结构,请根据实测情况,考虑替换上豆包 function call 版本,其他的 LLM 可能会输出格式比较混乱。
Content generated by AI large model, please carefully verify (powered by aily)

References

一泽Eze:万字实践教程,全面入门 Coze 工作流|用 Coze 打造 AI 精读专家智能体,复刻 10 万粉公众号的创作生产力

首先进入Coze,点击「个人空间-工作流-创建工作流」,打开创建工作流的弹窗。根据弹窗要求,自定义工作流信息。点击确认后完成工作流的新建,可以看到整个编辑视图与功能如下:其中,左侧「选择节点」模块中,根据我们的子任务需要,实际用上的有:1.插件:提供一系列能力工具,拓展Agent的能力边界。本案例涉及的思维导图、英文音频,因为无法通过LLM生成,就需要依赖插件来实现。2.大模型:调用LLM,实现各项文本内容的生成。本案例的中文翻译、英文大纲、单词注释等都依赖大模型节点。3.代码:支持编写简单的Python、JS脚本,对数据进行处理。而编辑面板中的开始节点、结束节点,则分别对应1.2分解子任务流程图中的原文输入和结果输出环节。接下来,按照流程图,在编辑面板中拖入对应的LLM大模型、插件、代码节点,即可完成工作流框架的搭建。

2月28日 社区动态速览

[@小互(@imxiaohu)](https://x.com/imxiaohu)日报1⃣️?TheoremExplainAgent:AI生成数学&科学定理动画双智能体架构,结合大模型推理、动画生成、语音合成。自动制作5+分钟视频,适用于数学、物理、计算机科学等STEM领域。?[介绍](https://x.com/imxiaohu/status/1895089392127279517)|[详情](https://www.xiaohu.ai/c/xiaohu-ai/theoremexplainagent)2⃣️?️ElevenLabs发布全球最精准语音转文字模型Scribe支持99语言,准确率超越Gemini 2.0和Whisper v3。可识别32个说话者,标记笑声、鼓掌等非语言元素。单词级时间戳+结构化JSON输出,便于字幕&开发集成。?[介绍](https://x.com/imxiaohu/status/1895037124954747308)|[详情](https://www.xiaohu.ai/c/xiaohu-ai/elevenlabs-scribe-99)3⃣️?5分钟用Coze免费创建AI机器人!DeepSeek R1驱动,支持Function Calling,调用外部工具。完全免费+图文教程,快速搭建你的AI机器人。?体验我的AI:小互教你谈恋爱?[点击体验](https://coze.cn/s/i5Y1wcBx/)?[教程](https://x.com/imxiaohu/status/1894998739091431675)|[完整图文>>更多详细内容查看[XiaoHu.AI日报](https://waytoagi.feishu.cn/wiki/T2fUwmHBSiHU6Ukq9Imcu7n7nMh)

一泽Eze:万字实践教程,全面入门 Coze 工作流|用 Coze 打造 AI 精读专家智能体,复刻 10 万粉公众号的创作生产力

1.关于模型选择:1.1.没有强制必须用某个模型的说法。而是根据自己的习惯、实测的响应速度、生成质量、调用费用,进行综合选择。比如Doubao Function Call模型,对于插件调用、Coze内json格式输出比较擅长;MiniMax处理文字速度很快;GLM对于用户提示词的理解比较好。每个模型都有自己擅长的特点,而且每家模型都在不断的迭代。所以模型的选用,需要根据实测情况综合调整。1.2.我一般选择豆包·function call 32k。“function call”代表有着更好的Coze的工具调用能力,“32k”代表模型的上下文窗口大小,即模型在处理文本时能够考虑的单词或标记的数量。如果输出和输入的类型不是纯文本时,比如是array、object结构,请根据实测情况,考虑替换上豆包function call版本,其他的LLM可能会输出格式比较混乱。

Others are asking
coze搭建智能体,用上传的文件和知识库的文件做对比,分析差异点。
以下是关于在 Coze 中搭建智能体的相关信息: 1. 证件照相关操作: 展示原图上传结果,基本脸型已换,生成效果与上传照片特征有关。 改背景可利用改图功能,一键改图效果更好,输出数据类型为图片。 豆包节点生成的是 URL 地址,与前者不同,在工作流使用有差异,可参考简单提示词。 介绍证件照工作流相关操作,包括通过提示词改背景颜色,设置输出方式为返回变量;讲解消耗 token 及保存结果相关问题;对按钮、表单添加事件并设置参数,限制上传文件数量;还涉及给表单和图片绑定数据,以及每次操作后刷新界面确保设置生效。 围绕操作讲解与优化展开,介绍 for meet 的设置,如表单事件操作、图片上传数量修改等,提及编程基础知识。还讲述成果图连接、绑定数据方法及注意事项。展示基本功能实现情况,分析换性别等问题成因,指出需在工作流优化提示词,也可尝试用视频模型解决,最后进入问答环节。 2. 多维表格的高速数据分析: 创建智能体,使用单 Agent 对话流模式。 编排对话流,创建新的对话流并关联智能体。 使用代码节点对两个插件获取的结果进行数据处理,注意代码节点输出的配置格式。 测试,找到一篇小红书笔记,试运行对话流,在对话窗口输入地址查看数据。 发布,选择多维表格,配置输出类型为文本,输入类型选择字段选择器,完善上架信息,可选择仅自己可用以加快审核。 3. 智能体与微信和微信群的连接: 创建知识库,可选择手动清洗数据提高准确性,包括在线知识库和本地文档。 在线知识库创建时,飞书在线文档中每个问题和答案以分割,可编辑修改和删除。 本地文档中注意拆分内容提高训练数据准确度,如将课程章节按固定方式人工标注和处理。 发布应用,确保在 Bot 商店中能够搜到。
2025-04-18
coze搭建知识库和上传文件做对比分析
以下是关于 Coze 搭建知识库和上传文件的对比分析: 创建文本型知识库: 自动分段与清洗:扣子可对上传的内容进行自动解析,支持复杂布局的文件处理,如识别段落、页眉/页脚/脚注等非重点内容,支持跨页跨栏的段落合并,支持解析表格中的图片和文档中的表格内容(目前仅支持带线框的表格)。操作步骤为在分段设置页面选择自动分段与清洗,然后依次单击下一步、确认,可查看分段效果,不满意可重新分段并使用自定义分段。 自定义:支持自定义分段规则、分段长度及预处理规则。操作时在分段设置页面选择自定义,然后依次设置分段规则和预处理规则,包括选择分段标识符、设置分段最大长度和文本预处理规则,最后单击下一步完成内容分段。 创建表格型知识库: 目前支持 4 种导入类型:本地文档、API、飞书、自定义。 本地文档:选择本地文档从本地文件中导入表格数据,目前支持上传 Excel 和 CSV 格式的文件,文件不得大于 20M,一次最多可上传 10 个文件,且表格内需要有列名和对应的数据。 API:参考特定操作从 API 返回数据中上传表格内容,包括选择 API、单击新增 API、输入 API URL 并选择数据更新频率,然后单击下一步。 飞书:参考特定操作从飞书表格中导入内容,包括选择飞书、在新增知识库页面单击授权并选择要导入数据的飞书账号、单击安装扣子应用(仅首次导入需授权和安装),然后选择要导入的表格并单击下一步。目前仅支持导入“我的空间”下的飞书文档,云文档的创建者必须是自己,暂不支持导入知识库和共享空间下的云文档。 上传文本内容: 在线数据:扣子支持自动抓取指定 URL 的内容,也支持手动采集指定页面上的内容,上传到数据库。 自动采集方式:适用于内容量大、需批量快速导入的场景。操作步骤为在文本格式页签下选择在线数据,然后依次单击下一步、自动采集、新增 URL,输入网站地址、选择是否定期同步及周期,最后单击确认,上传完成后单击下一步,系统会自动分片。 手动采集:适用于精准采集网页指定内容的场景。操作步骤为安装扩展程序,在文本格式页签下选择在线数据,然后依次单击下一步、手动采集、授予权限,输入采集内容的网址,标注提取内容,查看数据确认无误后完成并采集。
2025-04-18
coze搭建工作流调用deepseek如何把模型的输出存入到多维表中
以下是将模型的输出存入到多维表中的步骤: 1. 逐步搭建 AI 智能体: 搭建整理入库工作流。 设置大模型节点提取稍后读元数据,使用 MiniMax 6.5s 245k,设置最大回复长度至 50000,以确保能完整解析长内容网页。 进行日期转时间戳,后续的飞书多维表格插件节点在入库日期字段时只支持 13 位时间戳,需要使用「日期转时间戳time_stamp_13」插件进行格式转化。 把稍后读元数据转换为飞书多维表格插件可用的格式,飞书多维表格插件目前(2024 年 08 月)只支持带有转义符的 string,以 Array<Object>格式输入,所以必须将之前得到的元数据数组进行格式转换。 添加「飞书多维表格add_records」插件,只需要设置{{app_token}}与{{records}}参数,将元数据写入飞书表格。 2. 搭建 Coze 工作流: 打开 Coze 的主页,登录后,在【工作空间】创建一个智能体。 在编排页面,给智能体编辑好人设,可先写一个简单的,然后点右上角自动优化,系统会自动补全更精细的描述。点击工作流的+,创建一个工作流。 大模型节点把 input 给到 DeepSeek,让 DeepSeek 按照提前规定的输出框架生成对应文案。 生图节点将输出给到图像生成组件画图。 结束输出时,两个输出给到最终的 end 作为最终的输出。注意在编写系统提示词时,如果需要 input 可被 DeepSeek 调用,需要用{{input}}作为参数引入,不然大模型不知道自己需要生成和这个 input 相关的结果。编排完,点击【试运行】,调试至满意后点击发布。
2025-04-14
有没有优质的系统的coze入门网课?
以下是一些优质的系统的 Coze 入门网课推荐: 另外,还有“一泽 Eze:万字实践教程,全面入门 Coze 工作流|用 Coze 打造 AI 精读专家智能体,复刻 10 万粉公众号的创作生产力”,这可能是全网最好的 Coze 教程(之一),即使是非技术出身的爱好者也能上手跟学,一站式学会 AI Agent 从设计到落地的全流程方法论。其核心看点包括通过实际案例逐步演示用 Coze 工作流构建能够稳定按照模板要求生成结构化内容的 AI Agent、开源 AI Agent 的设计到落地的全过程思路、10+项常用的 Coze 工作流的配置细节、常见问题与解决方法等。适合任何玩过 AI 对话产品的一般用户,以及希望深入学习 AI 应用开发平台(如 Coze、Dify),对 AI Agent 工作流配置感兴趣的爱好者。但需注意,本文不单独讲解案例所涉及 Prompt 的撰写方法。文末「拓展阅读」中,附有相关 Prompt 通用入门教程、Coze 其他使用技巧等内容,以供前置或拓展学习。
2025-04-14
如果我想要系统学习coze,我应该怎么安排?
如果您想要系统学习 Coze,可以参考以下安排: 第一期共学回放 5 月 7 号() 大聪明分享|主题:Agent 的前世今生 每个分享人分享最初是怎么接触 Coze 的,以及现在用 Coze 做什么 20:00@?AJ 主持开场 20:00 21:00 大聪明分享 21:00 21:30 关于 Coze 随便聊聊 5 月 8 号() 大圣分享|主题:我眼中的 AI Agent 以及通过搭建知识库实例入门 Coze 20:00 21:20 大圣分享 5 月 9 号() 艾木分享|主题:Agent 系统的核心构成:Workflow 和 Multiagent Flow(以“Dr.Know”和“卧底”为例 20:00 21:00 艾木分享 21:00 21:30 线上答疑 5 月 10 号() 罗文分享|主题:一个方法解锁 COEZ 所有插件的用法+如何自动化解锁每天抓取 X 内容+改写+发布到飞书 20:00 21:00 罗文分享 5 月 11 号() Itao 分享|主题:和 AI 成为搭子 20:00 21:00 Itao 分享 21:00 21:30 线上答疑 Agent 搭建共学快闪 0619 日程安排 6 月 19 日 20:00 开始 从零到一,搭建微信机器人 0 基础小白 张梦飞 小元 金永勋、奥伏 6 月 20 日 20:00 开始 Coze 接入、构建你的智能微信助手 完成第一课 张梦飞 吕昭波 安仔、阿飞 6 月 23 日 20:00 开始 微信机器人插件拓展教学 完成第一课 张梦飞 安仔 大雨 空心菜、AYBIAO、阿飞 6 月 24 日 20:00 开始 虚拟女友“李洛云”开发者自述 完成第一课 皮皮 安仔 6 月 25 日 20:00 开始 FastGPT:“本地版 coze"部署教学 完成第一课 张梦飞 银海 金永勋、AYBIAO 6 月 27 日 20:00 开始 Hook 机制的机器人使用和部署教学 0 基础小白,一台 Windows 10 以上系统的电脑 张梦飞 Stuart 阿飞、空心菜
2025-04-14
coze 教程
以下是为您提供的 Coze 教程相关信息: 一泽 Eze 的教程:可能是全网最好的 Coze 教程之一,一次性带您入门 Coze 工作流。即使是非技术出身的爱好者也能上手跟学,一站式学会 AI Agent 从设计到落地的全流程方法论。阅读指南:长文预警,请视情况收藏保存。核心看点包括通过实际案例逐步演示用 Coze 工作流构建能稳定按模板要求生成结构化内容的 AI Agent、开源 AI Agent 的设计到落地的全过程思路、10+项常用的 Coze 工作流的配置细节、常见问题与解决方法。适合人群为玩过 AI 对话产品的一般用户,以及对 AI 应用开发平台(如 Coze、Dify)和 AI Agent 工作流配置感兴趣的爱好者。注:本文不单独讲解案例所涉及 Prompt 的撰写方法。文末「拓展阅读」中,附有相关 Prompt 通用入门教程、Coze 其他使用技巧等内容,以供前置或拓展学习。 其他相关基础教程: 大圣:胎教级教程:万字长文带你使用 Coze 打造企业级知识库 (https://waytoagi.feishu.cn/wiki/CT3UwDM8OiVmOOkohPbcV3JCndb) 大聪明:保姆级教程:Coze 打工你躺平 (https://waytoagi.feishu.cn/wiki/PQoUwXwpvi2ex7kJOrIcnQTCnYb) 安仔:Coze 全方位入门剖析免费打造自己的 AI Agent (https://waytoagi.feishu.cn/wiki/SaCFwcw9xi2qcrkmSxscxTxLnxb) 基础教程:Coze“图像流”抢先体验 (https://waytoagi.feishu.cn/wiki/AHs2whOS2izNJakGA1NcD5BEnuf) YoYo:Coze 图像流小技巧:探索视觉艺术的隐藏宝藏 (https://waytoagi.feishu.cn/wiki/CTajwJnyZizxlJk8a4AcJYywnfe) 【智能体】让 Coze 智能体机器人连上微信和微信群详细配置文档 (https://waytoagi.feishu.cn/wiki/ExHMwCDZ7i6NA7knCWucFvFvnvJ)
2025-04-13
ai音频排名
以下是关于 AI 音频排名的相关信息: 生成式 AI 季度数据报告 2024 年 1 3 月: 音频大类: 2023 年 4 月: 月访问量为 3838.1 万,Eleven Labs 以 814 万的访问量位居第一,占赛道月总访问量的 21.2%。Speechify 和 Murf AI 分别以 681 万和 431 万的访问量位列二、三,分别占赛道月总访问量的 17.7%和 11.2%。 2024 年 3 月: 月访问量增长至 5016.3 万,Eleven Labs 以 1962 万的访问量继续保持第一,占赛道月总访问量的 39.1%。TTSMaker 和 Speechify 分别以 418 万和 706 万的访问量位列二、三,分别占赛道月总访问量的 8.3%和 14.1%。 文字转音频辅助榜单: 2023 年 4 月访问量 Top10 可通过 aiwatch.ai 查看。 2023 年 4 月 2024 年 3 月月访问量增量 Top10 可通过 aiwatch.ai 查看。 音频编辑辅助榜单: 2023 年 4 月:月访问量为 1374 万,Adobe Podcast 以 595 万的访问量位居第一,占赛道月总访问量的 43.3%。Lalal.ai 和 The New Riverside 分别以 204 万和 198 万的访问量位列二、三,分别占赛道月总访问量的 14.8%和 14.4%。 2024 年 3 月:月访问量增长至 2136.8 万,Adobe Podcast 以 467 万的访问量继续保持第一,占赛道月总访问量的 21.9%。The New Riverside 和 Moises 分别以 357 万和 267 万的访问量位列二、三,分别占赛道月总访问量的 16.7%和 12.5%。近一年单月访问量增加了 762.8 万,年增长率为 55.5%。Adobe Podcast 的访问量减少了 128 万,而 The New Riverside 的访问量增长了 159 万。The New Riverside 的增长可能源于其提供的高质量音频编辑功能。 2023 年 4 月 2024 年 3 月月访问量减量 Top5 可通过 aiwatch.ai 查看。 赛道天花板潜力:77 亿$,对标公司:Notion、微软。总体趋势为快速增长,月平均增速 120 万,原生产品占比高。 赛博月刊@25 年 2 月:AI 行业大事记:AI 音频在去年跨越了真假难辨的临界点,成为继图像领域之后,第二条被资本看好的 AI 赛道。
2025-04-14
ai音频
以下是关于 AI 音频的相关信息: MiniMax Audio 发布全新 Speech02 语音模型,提升语音合成质量。 人工智能音频初创公司包括: :为所有人提供开放的语音技术。 :基于 AI 的语音引擎能够模仿人类语音的情感和韵律。 :基于 NLP 的最先进文本和音频编辑平台,内置数百种 AI 声音。 :使用突触技术和脑机接口将想象的声音转化为合成 MIDI 乐器的脑控仪器。 :为出版商和创作者开发最具吸引力的 AI 语音软件。 :Wondercraft 使用户能够使用文本转语音技术生成播客。 :基于生成机器学习模型构建内容创作的未来。 :从网页仪表板或 VST 插件生成录音室质量的 AI 声音并训练 AI 语音模型。 :演员优先、数字双重声音由最新的 AI 技术驱动,确保高效、真实和符合伦理。 在去年,AI 音频跨越了真假难辨的临界点,成为继图像领域之后,被资本看好的第二条 AI 赛道。
2025-04-14
推荐一下从文本生成播客音频的AI 工具
以下是一些可以从文本生成播客音频的 AI 工具: :为所有人提供开放的语音技术。 :基于 AI 的语音引擎能够模仿人类语音的情感和韵律。 :基于 NLP 的最先进文本和音频编辑平台,内置数百种 AI 声音。 :使用突触技术和脑机接口将想象的声音转化为合成 MIDI 乐器的脑控仪器。 :为出版商和创作者开发最具吸引力的 AI 语音软件。 :Wondercraft 使用户能够使用文本转语音技术生成播客。 :基于生成机器学习模型构建内容创作的未来。 :从网页仪表板或 VST 插件生成录音室质量的 AI 声音并训练 AI 语音模型。 此外,还有 NotebookLlama:Meta 的播客生成教程,它使用 Llama 模型从 PDF 中提取文本,生成干净的.txt 文件,转化文本为播客转录,创造富有创意的内容,对转录进行戏剧化处理,提高互动性和吸引力,最终将文本转换为播客音频,支持多种 TTS 模型。详细介绍:
2025-04-12
音频总结的AI有哪些
以下是一些关于音频总结的 AI 相关内容: 在智能纪要方面,AI 音乐创作通过输入更高级词汇与 AI 音乐对话能产生更好效果,有相关版块、挑战、分享会和教程,可加入 AI 音乐社区。数字人语音合成介绍了声音克隆技术,常用的是 JPT service。 总结类 AI 工具方面,如 BibiGPT·AI 音视频内容一键总结(https://b.jimmylv.cn/)、15 个值得一试的 YouTube 视频摘要 AI 工具(https://nealschaffer.com/youtubevideosummarizerai/)、summarize.tech:AIpowered video summaries(https://www.summarize.tech/)。 在生成式 AI 季度数据报告中,会议总结赛道可能因远程工作和在线会议普及而需求增加,Otter AI 作为领先产品保持稳定增长。其中 2023 年 4 月到 2024 年 3 月,赛道月访问总量有变化,如 2023 年 4 月约 1314.6 万,2024 年 3 月增至 2146.3 万。同时还有相关的榜单数据,如 23 年 4 月访问量 Top10 等。
2025-04-11
音频去人声
以下是一些关于音频去人声的相关信息: :可以从歌曲中移除人声并分离鼓点、贝斯和其他乐器。 :使用 AI 工具移除音轨,转换为 MIDI,并创建高质量的混音和混搭。 在游戏 PV《追光者》的制作中,利用了一款分离人声的 AI 软件,能够将人声从背景音乐中分离出来,并对一些游戏宣传的音乐进行了人声去除和剪辑处理。 在基于 Sovits 的声音训练及推理中,去混响可通过增加减少和伪影平滑的数值来调整效果,以耳朵为准,预听感受效果合适后渲染应用到整首歌。去杂音方面,对于非主人公的声音,如一次性出现的掌声、笑声、欢呼声,选中对应音轨右键渲染静音即可;重复出现且有一定相似性的,可选中查找类似后右键静音。若杂音和主音柔和在一起无法智能提取,一种思路是直接去掉这段主音,若精益求精,可使用 ripx 软件精修,该软件交互体验优秀,基本不需要教程,左右键点一点音轨图形就知道怎么做,把杂音的音轨删除,主音的音轨可剪切然后导出,所有声音导出成 wav 格式。
2025-04-11
AI音频使用了哪些技术
以下是一些关于 AI 音频所使用技术的介绍: 声音检测方面: :通过更强的听觉感知创造卓越的人类体验。 :先进的声音识别解决方案,能够分类如尖叫、枪声、咳嗽和哭泣等声音。 :下一代声音 AI 平台,能够像人类一样理解任何声音。 :语音控制的家庭自动化系统。 :世界上首个智能家居听觉系统。 :可用于从音频源中提取隐藏数据的 AI 模型。 :无需键盘、按钮或触摸屏,无缝融合物理世界和数据世界。 :为手机、VR/AR 头戴设备、智能手表、扬声器和笔记本电脑提供上下文感知。 :智能音频穿戴设备。 :将声音转化为信息。 :使用先进的深度学习技术进行声音事件检测和上下文识别,为世界上的每一个声音赋予意义。 音乐方面: :免费的 DAW,提供高质量的人声、鼓点、旋律、贝斯分离、全能音频分离、编辑和人声/乐器转 MIDI 功能。 :AI 音频处理。 :在音乐/视频流媒体和虚拟/增强现实中重新定义音频体验。 :为音乐行业提供按需创建音轨的平台。 :为娱乐行业提供音频分离解决方案,释放经典内容的全部潜力。 :在几秒钟内将任何歌曲的人声和音乐分离。 :基于世界排名第一的 AI 技术的高质量音轨分离。 :使用强大的 AI 算法免费将歌曲中的人声与音乐分离。 :使用 HiFi AI 分离歌曲中的人声、鼓点、贝斯和其他乐器。 :为 DJ 歌手提供的在线 AI 人声移除器。 :人声移除和在线卡拉 OK。 :使用多种不同算法(Demucs、MDX、UVR 等)免费分离歌曲。 语音合成(TTS)方面: :为所有人提供开放的语音技术。 :基于 AI 的语音引擎能够模仿人类语音的情感和韵律。 :基于 NLP 的最先进文本和音频编辑平台,内置数百种 AI 声音。 :使用突触技术和脑机接口将想象的声音转化为合成 MIDI 乐器的脑控仪器。 :为出版商和创作者开发最具吸引力的 AI 语音软件。 :Wondercraft 使用户能够使用文本转语音技术生成播客。 :基于生成机器学习模型构建内容创作的未来。 :从网页仪表板或 VST 插件生成录音室质量的 AI 声音并训练 AI 语音模型。 :演员优先、数字双重声音由最新的 AI 技术驱动,确保高效、真实和符合伦理。
2025-04-08
单独调用知识库
以下是关于知识库的相关内容: 创建并使用知识库: 在 Bot 内使用知识库: 1. 登录。 2. 在左侧导航栏的工作区区域,选择进入指定团队。 3. 在 Bots 页面,选择指定 Bot 并进入 Bot 详情页。 4. 在 Bot 编排页面的知识库区域,单击加号图标,添加指定的知识库。 5. (可选)添加知识库后,可以在自动调用下拉界面内,调整知识库的配置项,包括最大召回数量(Bot 在调用知识库匹配用户输入内容时,返回的数据片段数量,数值越大返回的内容越多)、最小匹配度(Bot 在调用知识库匹配用户输入内容时,会将达到匹配度要求的数据片段进行召回。如果数据片段未达到最小匹配度,则不会被召回)、调用方式(自动调用:每轮对话将自动从所有关联的知识库中匹配数据并召回;按需调用:需要在人设与回复逻辑中提示 Bot 调用 RecallKnowledge 方法,以约束 Bot 在指定时机从知识库内匹配数据)。 6. (可选)在预览与调试区域调试 Bot 能力时,扩展运行完毕的内容可以查看知识库命中并召回的分片内容。 在工作流内使用 Knowledge 节点: 1. 登录。 2. 在左侧导航栏的工作区区域,选择进入指定团队。 3. 在页面顶部进入工作流页面,并打开指定的工作流。 4. 在左侧基础节点列表内,选择添加 Knowledge 节点。 Coze 打造 AI 私人提效助理实战知识库: 在上述步骤中创建好知识库后,就可以在智能体中配置知识库了。在 coze 主页,个人空间 > 项目开发中,打开一个需要添加知识库的智能体,可以选择配置“文本”、“表格”、“照片”三种知识库。下面以配置文本知识库作为例子。点击加号,选择在 1.3 中已经提前创建好的知识库,点击添加。下一步就是配置提示词,让智能体自动使用知识库回答问题。在进行大概地描述以后,点击右上角“优化”,可以自动优化提示词,获得更好的结果。最后,在网页最右方的“预览与调试”中,测试智能体是否正常调用知识库。 集合 Deepseek 提示词方法论: DeepSeek R1 提示词系统完全指南: 三、进阶控制技巧: 1. 思维链引导:分步标记法(请逐步思考:1. 问题分析→2. 方案设计→3. 风险评估)、苏格拉底式追问(在得出最终结论前,请先列举三个可能存在的认知偏差)。 2. 知识库调用:领域限定指令(基于 2023 版中国药典,说明头孢类药物的配伍禁忌)、文献引用模式(以 Nature 2022 年发表的论文为参考,解释 CRISPR Cas9 最新突破)。 3. 多模态输出。 四、高级调试策略: 1. 模糊指令优化: 问题类型:宽泛需求,修正方案:添加维度约束,示例对比:原句:"写小说"→修正:"创作以 AI 觉醒为背景的悬疑短篇,采用多视角叙事结构"。 问题类型:主观表述,修正方案:量化标准,示例对比:原句:"写得专业些"→修正:"符合 IEEE 论文格式,包含 5 项以上行业数据引用"。 2. 迭代优化法: 1. 首轮生成:获取基础内容。 2. 特征强化:请加强第三段的技术细节描述。 3. 风格调整:改用学术会议报告语气,添加结论部分。 4. 最终校验:检查时间逻辑一致性,列出可能的事实性错误。
2025-04-09
知识库的批量创建和调用
以下是关于知识库的批量创建和调用的详细信息: 使用知识库: 在 Bot 内使用: 1. 登录。 2. 在左侧导航栏的工作区区域,选择进入指定团队。 3. 在 Bots 页面,选择指定 Bot 并进入 Bot 详情页。 4. 在 Bot 编排页面的知识库区域,单击加号图标,添加指定的知识库。 5. (可选)添加知识库后,可以在自动调用下拉界面内,调整知识库的配置项,包括最大召回数量、最小匹配度和调用方式(自动调用或按需调用)。 6. (可选)在预览与调试区域调试 Bot 能力时,扩展运行完毕的内容可以查看知识库命中并召回的分片内容。 在工作流内使用: 1. 登录。 2. 在左侧导航栏的工作区区域,选择进入指定团队。 3. 在页面顶部进入工作流页面,并打开指定的工作流。 4. 在左侧基础节点列表内,选择添加 Knowledge 节点。 创建知识库并上传表格数据: API 方式: 1. 在表格格式页签下,选择 API,然后单击下一步。 2. 单击新增 API。 3. 输入网址 URL 并选择数据的更新频率,然后单击下一步。 4. 输入单元名称或使用自动添加的名称,然后单击下一步。 5. 配置数据表信息后,单击下一步。 5.1 确认表结构:系统已默认获取了表头的列名,您可以自定义修改列名,或删除某一列名。 5.2 指定语义匹配字段:选择哪个字段作为搜索匹配的语义字段。在响应用户查询时,会将用户查询内容与该字段内容的内容进行比较,根据相似度进行匹配。 6. 查看表结构和数据,确认无误后单击下一步。 7. 完成上传后,单击确定。 自定义方式: 1. 在表格格式页面下,选择自定义,然后单击下一步。 2. 输入单元名称。 3. 在表结构区域添加字段,单击增加字段添加多个字段。 4. 设置列名,并选择指定列字段作为搜索匹配的语义字段。在响应用户查询时,会将用户查询内容与该字段内容的内容进行比较,根据相似度进行匹配。 5. 单击确定。 6. 单击创建分段,然后在弹出的页面输入字段值,然后单击保存。 创建文本型知识库: 目前支持 5 种导入类型:本地文档、在线数据、notion、飞书、自定义。 在线数据: 自动采集:支持从单个页面或批量从指定网站中导入内容。 添加单个页面的内容: 1. 添加方式:选择添加单个。 2. 更新频率:选择是否自动更新指定页面的内容及自动更新的频率。 3. 网址 URL:输入要采集内容的网址。 批量添加网页内容: 1. 添加方式:选择批量添加。 2. 根地址或网站地图:输入要批量添加的网页内容的根地址或 sitemap 地址,然后单击导入。 3. 导入成功后,单击确认。 手动采集:支持标注要采集的内容,内容上传成功率高。使用手动采集方式,需要先安装浏览器扩展程序。安装步骤,参考。 1. 在新增 URL 页面,选择手动采集。 2. 在弹出的页面输入要采集内容的网址,然后单击确认。 3. 在弹出的页面上,点击页面下方文本标注按钮,开始标注要提取的内容,然后单击文本框上方的文本或链接按钮。 4. 单击查看数据查看已采集的内容,确认无误后再点击完成并采集。
2025-04-09
我们是搜索团队的产品经理,团队定位倾向于“对于插件的建设与调用”定位,现在要做AI相关的产品规划,请以通俗易懂的方式对以下问题做出回答 1、请通过流程图的方式,介绍【插件/工具】能力在大模型生态架构中的环节、定位、实现流程是什么 2、调研下对于我们搜索团队而言,插件应该做什么,可以做什么 3、思考对于大模型来说,有哪些(通用或垂类)的模块/功能/插件是无法绕开的,或高频使用的,作为我们团队后续争取的发力点(如搜索推荐对于传统综合搜索结果页)
以下是为您提供的关于 AI 相关产品规划的回答: 一、插件/工具能力在大模型生态架构中的环节、定位、实现流程 从 2023 年 3 月份 OpenAI 宣布插件计划开始,到 5 月份上线,其中包括联网、代码、画图三个插件。其实现流程大致为: 1. 经过对模型的微调,检测何时需要调用函数(取决于用户的输入)。 2. 使用符合函数签名的 JSON 进行响应。 3. 在接口层面声明可调用的工具。 4. 使用函数和用户输入调用模型。 5. 使用模型响应调用 API。 6. 将响应发送回模型进行汇总。 二、对于搜索团队,插件可以做和应该做的事 目前没有直接针对搜索团队插件具体可做和应做事项的明确内容,但可以参考 OpenAI 的插件计划,例如开发与搜索相关的特定功能插件,或者探索如何将现有的搜索推荐功能与大模型更好地结合。 三、对于大模型无法绕开或高频使用的模块/功能/插件 目前没有直接指出对于大模型无法绕开或高频使用的具体模块、功能或插件。但从相关信息中可以推测,例如与数据获取和处理相关的插件(如联网)、与技术开发相关的插件(如代码)以及与内容生成相关的插件(如画图)可能是较为重要和高频使用的。对于搜索团队来说,可以考虑在这些方向上寻找发力点,结合搜索推荐等传统功能,开发出更具竞争力的插件。
2025-04-08
coze上提取视频文案的插件有哪些?都是怎么调用的
以下是关于在 coze 上提取视频文案的插件及调用方法: 1. 进入 coze 个人空间,选择插件,新建一个插件并命名,如 api_1。 2. 在插件的 URL 部分,填入通过 ngrok 随机生成的 https 的链接地址。 3. 配置输出参数和 message 输出。 4. 测试后发布插件。 需要注意的是: 1. 如果在生产环境中已有准备好的 https 的 api,可直接接入。 2. 本案例中使用的是 coze 国内版,且案例中的 ngrok 仅供娱乐,在生产环境中勿用。
2025-04-01
如何综合运用插件、工作流、知识库,搭建满足各种需求的智能体,尤其是调用多个智能体,组成像Manus这样的工具?
要综合运用插件、工作流、知识库搭建满足各种需求的智能体,尤其是调用多个智能体组成类似 Manus 的工具,需要了解以下内容: 插件:插件如同一个工具箱,里面可放置一个或多个工具,称为 API。扣子平台有多种类型的插件,如看新闻、规划旅行、提高办公效率、理解图片内容的 API 及能处理多种任务的模型。若平台现有插件不符合需求,还可自行制作添加所需 API。 工作流:工作流类似可视化拼图游戏,可将插件、大语言模型、代码块等功能组合,创建复杂稳定的业务流程。工作流由多个节点组成,开始和结束节点有特殊作用,不同节点可能需要不同信息,包括引用前面节点信息或自行设定信息。 知识库:可上传私有文件作为回答参考。 智能体:智能体是对自定义操作的封装,用于解决特定场景问题。以 ChatGPT 的 GPTs 为例,包括描述作用和回复格式的提示词、作为回答参考的知识库、请求第三方 API 获取实时数据的外挂 API 以及个性化配置等。 例如,在“竖起耳朵听”的智能体中添加了插件和工作流的相关设置。创建智能体时,输入人设等信息,并配置工作流。但需注意,如工作流中使用的插件 api_token 为个人 token 时,不能直接发布,可将其作为工作流开始的输入,由用户购买后输入使用再发布。 此外,在 AI 搜索中,可预置 after_answer 钩子,将请求大模型的上下文和回答发给第三方插件整理成文章或思维导图等格式同步到第三方笔记软件。全流程中有很多节点可做 Hook 埋点,多个插件构成可插拔架构,常用功能可抽离成标准插件用于主流程或辅助流程,还可自定义智能体 Agent 等。
2025-03-29
心理学专业能对从事 AI行业提供哪些帮助?
心理学专业对从事 AI 行业有以下几方面的帮助: 1. 跨学科背景优势:多样化的学科背景,如心理学,能使从业者在 AI 与行业应用的结合上更具多样性。 2. 知识调用:在 AI 时代,需要了解各个领域的知识并在恰当的时候调用,心理学知识看似现在用不到,但很可能在未来某个时刻发挥巨大作用。 3. 拓展知识边界:对心理学等人文科学的广泛兴趣,展示出开放与包容的学习态度,有助于从多个角度拓展知识边界。 4. 学习机制研究:鉴于 AI 依赖的神经网络基础,心理学知识有助于研究 AI 的学习机制,如元学习,推动其更快地获得知识并进步。 5. 教育与指导:专家 AI 可能超越领域专家的角色,成为下一代专家(包括人类和 AI)的教师,心理学知识在教育和指导方面能发挥作用。
2024-12-01
心理学的对话ai如何建立
建立心理学的对话 AI 可以从以下几个方面考虑: 1. 预期会有更多针对 AI 聊天机器人的专业甚至临床用例,例如 AI 驱动的心理治疗师、营养师、教练和导师,它们能为全球数百万消费者提供更经济便捷的个人和职业发展支持。用户只需打开应用程序即可提问或开始对话。 2. 法学硕士越来越多地被用作对话式人工智能或聊天机器人的核心。与当前的对话技术相比,它们可能提供更高水平的对话理解和上下文感知。例如,Facebook 的 BlenderBot 专为对话而设计,可以与人类进行长时间对话,同时保持上下文。谷歌的 BERT 用于理解搜索查询,也是该公司 DialogFlow 聊天机器人引擎的组件。谷歌的 LaMBA 也是为对话而设计的。 3. 但需要注意的是,这些法学硕士并不完美。它们接受过有关过去人类内容的训练,并且倾向于复制训练中接触到的任何种族主义、性别歧视或偏见语言。尽管创建这些系统的公司正在努力过滤仇恨言论,但尚未完全成功。 此外,一些最新的相关动态包括:微软和 OpenAI 计划建造“星际之门”AI 超级计算机,预计成本 1000 亿美元,旨在提供强大 AI 计算能力;OpenAI 发布语音生成模型 Voice Engine,可根据文本和 15 秒音频样本生成自然语音,支持情感丰富的声音生成、多语种和保留口音;Hume AI 发布情感感知语音 AI EVI,结合语言模型和表情测量技术,实现情绪感知对话,可感知细微情绪并作出响应,提升对话自然度。
2024-09-29