直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

各个大模型tokens价格

回答

截止 2024 年 5 月,我查询到的大模型Token价格供您参考:

截屏2024-05-11 20.12.40.png

内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

学习笔记:Generative AI for Everyone吴恩达

token,通常指的是:文本中可以被视为一个单独单位的元素,比如单词、数字或符号。如图所示,普通常见单词,使用一个token,但是不常见的单词可能被计算机拆分,于是会消耗更多的token.如果需要使用300个单词,大概会使用400个token.一般token消化会比单词书多出33%左右。价格举例:计算举例:一个人每分钟阅读250个词,一小时可以阅读15000个词;但因为需要输入以后才有输出,所以文本输入假设与文本输出相同,那输入同样需要15000个词;输入与输出一共需要30000个词,按照转化率,约需要40000个token;按每1千个token需要0.002美元来看,GPT3.5供一个成年人阅读使用1小时,消耗0.08美元即8美分;当然如果变成GPT4,费用就变成了2.4美元

XiaoHu.AI日报

🔔Xiaohu.AI日报「3月14日」 ✨✨✨✨✨✨✨✨1⃣️🤖Claude 3 Haiku API发布:最快、性价比最高的型号。每百万输入token 0.25美元,每百万输出token 1.25美元。可以处理和分析400起最高法院案件或2500张图片只需1美元。🔗 https://x.com/imxiaohu/status/1768284259792691366?s=202⃣️🚀Starship第三次飞行测试:SpaceX星际飞船成功发射进入预定轨道。重达5000吨,成为有史以来最大的飞行器。🔗 https://x.com/imxiaohu/status/1768273741262520394?s=203⃣️🚫Midjourney禁止生成拜登和特朗普的图片:以应对美国总统选举,禁止生成拜登和特朗普的虚假图片。测试发现尝试生成特定图片时会收到警告。CEO David Holz强调不想在政治言论上花费太多时间。🔗 https://x.com/imxiaohu/status/1768258401518362625?s=204⃣️💻零一万物大模型开放API接口:1000,000 tokens最低6元。

XiaoHu.AI日报

🔔Xiaohu.AI日报「3月14日」 ✨✨✨✨✨✨✨✨1⃣️🤖Claude 3 Haiku API发布:最快、性价比最高的型号。每百万输入token 0.25美元,每百万输出token 1.25美元。可以处理和分析400起最高法院案件或2500张图片只需1美元。🔗 https://x.com/imxiaohu/status/1768284259792691366?s=202⃣️🚀Starship第三次飞行测试:SpaceX星际飞船成功发射进入预定轨道。重达5000吨,成为有史以来最大的飞行器。🔗 https://x.com/imxiaohu/status/1768273741262520394?s=203⃣️🚫Midjourney禁止生成拜登和特朗普的图片:以应对美国总统选举,禁止生成拜登和特朗普的虚假图片。测试发现尝试生成特定图片时会收到警告。CEO David Holz强调不想在政治言论上花费太多时间。🔗 https://x.com/imxiaohu/status/1768258401518362625?s=204⃣️💻零一万物大模型开放API接口:1000,000 tokens最低6元。

其他人在问
如何用ai模型做训练
以下是关于如何用 AI 模型做训练的相关内容: 要在医疗保健领域让 AI 产生真正的改变,应投资创建像优秀医生和药物开发者那样学习的模型生态系统。成为顶尖人才通常从多年密集信息输入和学徒实践开始,AI 也应如此。当前的学习方式存在问题,应通过堆叠模型训练,如先训练生物学、化学模型,再添加特定数据点。就像预医学生从基础课程学起,设计新疗法的科学家经历多年学习和指导,这种方式能培养处理细微差别决策的直觉。 大模型的构建过程包括: 1. 收集海量数据:如同教孩子博学多才要让其阅读大量资料,对于 AI 模型要收集互联网上的各种文本数据。 2. 预处理数据:像为孩子整理适合的资料,AI 研究人员要清理和组织收集的数据,如删除垃圾信息、纠正拼写错误等。 3. 设计模型架构:为孩子设计学习计划,研究人员要设计 AI 模型的“大脑”结构,通常是复杂的神经网络,如 Transformer 架构。 4. 训练模型:像孩子开始学习,AI 模型开始“阅读”数据,通过反复预测句子中的下一个词等方式逐渐学会理解和生成人类语言。 为提高 AI 模型的鲁棒性,应对可能的“恶意”样本数据导致的幻觉,可使用对抗训练技术,让模型在训练中接触并学会识别和抵抗。
2024-11-13
大模型排名
以下是关于大模型排名的相关信息: 斯坦福发布了大模型排行榜 AlpacaEval,这是一种基于 LLM 的全自动评估基准,更加快速、廉价和可靠。项目链接:https://github.com/tatsulab/alpaca_eval ,排行榜链接:https://tatsulab.github.io/alpaca_eval/ 。 该排行榜分为以 GPT4 和 Claude 为元标注器的两个子榜单。 在 GPT4 评估榜单中,GPT4 稳居第一,胜率超过 95%;Claude 和 ChatGPT 胜率都在 80%以上,分别排名第二和第三,Claude 以不到 3%的优势超越 ChatGPT。 开源模型中,WizardLM 以仅 130 亿的参数版本排名第一,击败了 650 亿参数量的 Guanaco;Vicuna 发挥稳定,胜率超过 70%排在第六,紧追 Guanaco 65B;Falcon Instruct 40B 表现不佳,仅位居 12 名,略高于 Alpaca Farm 7B。 AlpacaEval 团队已开源所有模型评估代码和分析数据,以及支持未来新模型榜单更新的测试工具,但它仍不是一个全面的模型能力评测系统,存在指令比较简单、评分可能更偏向风格而非事实、没有衡量模型可能造成的危害等局限性。 中国国内的大模型排名可能在短时间内会有变化,作为 AI 机器人无法提供最新的信息。要获取最新的中国国内大模型排名,您可以查阅相关的科技新闻网站、学术论坛或关注人工智能领域的社交媒体平台,在会定期更新相关的排名报告,可以供您查阅。但请注意,内容由 AI 大模型生成,请仔细甄别。
2024-11-13
图生文模型
以下是关于图生文模型的相关信息: Kolors 是一款强大的开源文生图模型,具有更强的中文文本编码器、机造的高质量文本描述、人标的高质量图片、强大的中文渲染能力,以及巧妙的 noise schedule 解决高分辨率图加噪不彻底的问题。实测效果很不错,展现了快手的技术实力。 Tripo AI 中,文生 3D 模型是用一段文字生成 3D 模型,在「Create」界面底部输入框输入提示词(不支持中文),不会写提示词可点击输入框左侧的</>按钮随机生成并自动填入。填写好提示词后点击右侧「Create」生成 3D 模型,每次生成 4 个基础模型,不满意可点击「Retry」重新生成。有满意的模型点击单个模型下方黄色的「Refine」精修,精修进度在「My Models」中查看,一般 5 分钟左右完成。图生 3D 模型是用一张图片生成 3D 模型,点击输入框右侧的图标上传图片即可生成,一次生成一个基础模型,同样支持重生成和精修。 Tusiart 文生图操作流程包括:定主题,确定生成图片的主题、风格和信息;选择基础模型 Checkpoint,找内容贴近的模型;选择 lora,寻找内容重叠的 lora 控制图片效果及质量;ControlNet 用于控制图片中特定图像;设置 VAE 无脑选择 840000;Prompt 提示词用英文写需求,单词和短语用英文半角逗号隔开;负向提示词 Negative Prompt 用英文写避免产生的内容,单词和短语组合并用英文半角逗号隔开;采样算法一般选 DPM++ 2M Karras,也可参考模型作者推荐的采样器;采样次数根据采样器特征,选 DPM++ 2M Karras 时一般在 30 40 之间;尺寸根据个人喜好和需求选择。
2024-11-13
大小模型协同有哪些设计,具体应用有哪些呢?
大小模型协同的设计主要包括以下方面: 1. 大型模型方面: 大型语言模型:专注于处理和生成文本信息,通过分析大量的文本数据来理解和生成自然语言。 大型多模态模型:能够处理包括文本、图片、音频等多种类型的信息,在更多样化的任务中应用。 2. 小型模型方面:通常是被设计来完成特定任务的。 其具体应用包括: 1. 人机协同模式: 模式一:以人为主导,大模型提供建议(copilot 阶段),如同副驾驶,开车时提供建议,决定权在人手中。 模式二:人和大模型协同工作,合作完成同一个工作(embedding 阶段),在实际工作场景中,一些小环节由大模型完成,提高效率。 模式三:人指挥大模型工作(数字员工阶段),但此阶段目前少见,大模型还不能完全独立完成具体工作,可能是工程或大模型能力欠缺导致。 当下努力方向应是从简单使用大模型得到建议,转变为让大模型深度融入工作流,形成有高价值的一套 agent。数字员工阶段尚不成熟,可由其他大厂和学界先多尝试。
2024-11-13
大小模型协同有哪些数据
大小模型协同的数据来源广泛且多样,主要包括以下方面: 大模型方面: 预训练数据非常大,往往来自于互联网,涵盖论文、代码以及可爬取的公开网页等,通常采用 TB 级别的数据进行预训练。 像 GPT3 这样的大模型参数众多。 例如 Gemini 模型,其预训练数据集使用来自网络文档、书籍、代码的数据,并包括图像、音频和视频数据。 小模型方面: 针对特定任务进行训练,数据主要由与任务相关的内容组成,如专门识别猫或狗的模型,其训练数据主要是猫猫狗狗的照片。 大模型具有更广泛的应用范围和更多的通识知识,能处理多种不同任务;小模型在特定任务上表现出色。但大模型的知识来源于有限的训练数据,并非无限,且知识库不会自动更新,在某些特定或专业领域的知识可能不够全面。
2024-11-13
大模型排名以及排名的评测标准维度是什么
以下是一些常见的大模型排名及评测标准维度: FlagEval(天秤)大模型评测体系及开放平台: 地址: 简介:旨在建立科学、公正、开放的评测基准、方法、工具集,协助研究人员全方位评估基础模型及训练算法的性能,同时探索利用 AI 方法实现对主观评测的辅助,大幅提升评测的效率和客观性。创新构建了“能力任务指标”三维评测框架,细粒度刻画基础模型的认知能力边界,可视化呈现评测结果。 CEval: 地址: 简介:构造了一个覆盖人文,社科,理工,其他专业四个大方向,52 个学科(微积分,线代…),从中学到大学研究生以及职业考试,一共 13948 道题目的中文知识和推理型测试集。此外还给出了当前主流中文 LLM 的评测结果。 SuperCLUElyb: 地址: 简介:中文通用大模型匿名对战评价基准,这是一个中文通用大模型对战评价基准,它以众包的方式提供匿名、随机的对战。他们发布了初步的结果和基于 Elo 评级系统的排行榜。 斯坦福发布的大模型排行榜 AlpacaEval: 项目链接:https://github.com/tatsulab/alpaca_eval 排行榜链接:https://tatsulab.github.io/alpaca_eval/ 该研究团队选择了目前在开源社区很火的开源模型,还有 GPT4、PaLM 2 等众多「闭源」模型,甚至还开设了一个「准中文」排行榜。 AlpacaEval 分为以 GPT4 和 Claude 为元标注器的两个子榜单。 在斯坦福的这个 GPT4 评估榜单中: GPT4 稳居第一,胜率超过了 95%;胜率都在 80%以上的 Claude 和 ChatGPT 分别排名第二和第三,其中 Claude 以不到 3%的优势超越 ChatGPT。 值得关注的是,获得第四名的是一位排位赛新人——微软华人团队发布的 WizardLM。在所有开源模型中,WizardLM 以仅 130 亿的参数版本排名第一,击败了 650 亿参数量的 Guanaco。 而在开源模型中的佼佼者 Vicuna 发挥依然稳定,凭借着超过 70%的胜率排在第六,胜率紧追 Guanaco 65B。 最近大火的 Falcon Instruct 40B 表现不佳,仅位居 12 名,略高于 Alpaca Farm 7B。 AlpacaEval 的技术细节: 人类一致性:标注者与交叉标注集中人类多数票之间的一致性。 价格:每 1000 个标注的平均价格。 时间:计算 1000 个标注所需的平均时间。相对于人工标注,全自动化的 AlpacaEval 仅需花费约 1/22 的经济成本和 1/25 的时间成本。 AlpacaEval 评估模型的方式: alpaca_eval:直接根据目标模型输出的响应来评估模型。 alpaca_eval evaluate_from_model:根据 HuggingFace 已注册模型或这 API 提供商来端到端评测模型。 评测过程分为以下 3 步: 1. 选择一个评估集,并计算指定为 model_outputs 的输出。默认情况下,使用来自 AlpacaEval 的 805 个示例。 2. 计算 golden 输出 reference_outputs。默认情况下,在 AlpacaEval 上使用 textdavinci003 的输出。 3. 通过 annotators_config 选择指定的自动标注器,它将根据 model_outputs 和 reference_outputs 计算胜率。这里建议使用 alpaca_eval_gpt4 或 claude。根据不同的标注器,使用者还需要在环境配置中设定 API_KEY。
2024-11-12
我现在想让ai给出计算机硬件配置,然后从京东商城上检索,得到价格,然后给出一个配置单。我想问问大家这个怎么解决?
目前要实现您描述的这个需求具有一定的复杂性。首先,让 AI 直接给出准确的计算机硬件配置并从京东商城上检索价格存在一些技术挑战。因为这需要 AI 具备对计算机硬件的深入了解、与京东商城数据接口的对接以及价格实时更新的处理能力。 从技术实现的角度来看,可能需要以下步骤: 1. 训练一个专门针对计算机硬件配置的 AI 模型,使其能够根据用户的需求和预算生成合理的硬件配置清单。 2. 开发与京东商城的接口程序,以获取实时的商品价格信息。 3. 将生成的配置清单与获取的价格信息进行整合,生成最终的配置单。 但需要注意的是,京东商城的数据接口可能不对外开放,获取价格信息可能存在法律和合规方面的限制。同时,这样的系统开发需要较高的技术水平和资源投入。
2024-08-20
有什么AI 分析工具可以用来研究市场趋势、消费者行为和竞争对手情况,快速识别受欢迎的产品、价格区间、销量等关键信息。
以下是一些可用于研究市场趋势、消费者行为和竞争对手情况,快速识别受欢迎的产品、价格区间、销量等关键信息的 AI 分析工具: 1. 市场分析方面:有能够处理大量数据的工具,可帮助您快速了解市场动态,比如识别哪些产品受欢迎、价格区间以及销量等关键信息。 2. 关键词优化:部分 AI 工具可以分析和推荐高流量、高转化的关键词,以优化产品标题和描述,提高搜索排名和可见度。 3. 产品页面设计:一些 AI 设计工具能根据市场趋势和用户偏好自动生成吸引人的产品页面布局。 4. 内容生成:AI 文案工具能够撰写有说服力的产品描述和营销文案,从而提高转化率。 5. 图像识别和优化:借助 AI 图像识别技术可以选择或生成高质量的产品图片,更好地展示产品特点。 6. 价格策略:某些 AI 工具可以分析不同价格点对销量的影响,协助制定有竞争力的价格策略。 7. 客户反馈分析:通过 AI 分析客户评价和反馈,了解客户需求,优化产品和服务。 8. 个性化推荐:利用 AI 可根据用户的购买历史和偏好提供个性化的产品推荐,增加销售额。 此外,汽车公司也会使用 AI 来分析市场趋势、消费者行为和销售数据,以便更好地理解客户需求,制定营销策略和优化产品定价。中小企业还能通过使用 AI 工具分析大量的客户和市场数据,为营销、产品开发等部门提供基于数据的建议和指导,形成数据驱动决策的闭环,不断优化业务。
2024-08-18
用哪些AI工具获取某个领域内的热销产品及价格,请举例具体说明
以下是关于使用 AI 工具获取某个领域内的热销产品及价格的相关信息: 使用 AI 完成阿里巴巴营销技巧和产品页面优化的步骤: 1. 市场分析:利用 AI 分析工具研究市场趋势、消费者行为和竞争对手情况,快速识别受欢迎的产品、价格区间和销量等关键信息。 2. 关键词优化:AI 分析并推荐高流量、高转化的关键词,优化产品标题和描述,提高搜索排名和可见度。 3. 产品页面设计:AI 设计工具根据市场趋势和用户偏好自动生成吸引人的产品页面布局。 4. 内容生成:AI 文案工具撰写有说服力的产品描述和营销文案,提高转化率。 5. 图像识别和优化:AI 图像识别技术帮助选择或生成高质量的产品图片,展示产品特点。 6. 价格策略:AI 分析不同价格点对销量的影响,制定有竞争力的价格策略。 7. 客户反馈分析:AI 分析客户评价和反馈,了解客户需求,优化产品和服务。 8. 个性化推荐:AI 根据用户购买历史和偏好提供个性化的产品推荐,增加销售额。 常用于营销领域的 AI 工具举例: 1. Synthesia:允许用户创建由 AI 生成的高质量视频,包括数字人视频,提供多种定价计划,从免费到商业级不等,可用于制作营销视频、产品演示等。 2. HeyGen:基于云的 AI 视频制作平台,用户可从 100 多个 AI 头像库中选择,并通过输入文本生成数字人视频,适合制作营销视频和虚拟主持人等。 3. Jasper AI:人工智能写作助手,可用于生成营销文案、博客内容、电子邮件等,提供多种语气和风格选择,写作质量较高。 4. Copy.ai:AI 营销文案生成工具,可快速生成广告文案、社交媒体帖子、电子邮件等营销内容,有免费和付费两种计划。 5. Writesonic:AI 写作助手,专注于营销内容创作,如博客文章、产品描述、视频脚本等,提供多种语气和行业定制选项。 更多的营销产品可以查看 WaytoAGI 网站:https://www.waytoagi.com/sites?tag=8 。需要注意的是,以上内容由 AI 大模型生成,请仔细甄别。
2024-08-12
如何用AI获取某个领域内的热销产品及价格
以下是关于如何用 AI 获取某个领域内的热销产品及价格的方法: 1. 市场分析:利用 AI 分析工具研究市场趋势、消费者行为和竞争对手情况,快速识别受欢迎的产品、价格区间和销量等关键信息。 2. 关键词优化:借助 AI 分析和推荐高流量、高转化的关键词,优化产品标题和描述,提高搜索排名和可见度。 3. 产品页面设计:使用 AI 设计工具,根据市场趋势和用户偏好自动生成吸引人的产品页面布局。 4. 内容生成:利用 AI 文案工具撰写有说服力的产品描述和营销文案,提高转化率。 5. 图像识别和优化:通过 AI 图像识别技术选择或生成高质量的产品图片,展示产品特点。 6. 价格策略:依靠 AI 分析不同价格点对销量的影响,制定有竞争力的价格策略。 7. 客户反馈分析:运用 AI 分析客户评价和反馈,了解客户需求,优化产品和服务。 8. 个性化推荐:借助 AI 根据用户的购买历史和偏好提供个性化的产品推荐,增加销售额。
2024-08-12
如何用Ai 做产品价格分析?
使用 AI 进行产品价格分析可以参考以下步骤: 1. 市场分析:利用 AI 分析工具研究市场趋势、消费者行为和竞争对手情况,快速识别受欢迎的产品、价格区间和销量等关键信息。 2. 关键词优化:借助 AI 分析和推荐高流量、高转化的关键词,优化产品标题和描述,提升搜索排名和可见度。 3. 价格策略:通过 AI 分析不同价格点对销量的影响,制定有竞争力的价格策略。 4. 客户反馈分析:利用 AI 分析客户评价和反馈,了解客户需求,优化产品和服务。 需要注意的是,以上内容由 AI 大模型生成,请仔细甄别。
2024-08-12