Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

对于中小企业而言,ai转型的落地过程中有什么风险和挑战?请分别回答风险和挑战是什么

Answer

对于中小企业而言,AI 转型的落地过程中存在以下风险和挑战:

风险:

  1. 管理风险:使用 AI 工具评估和管理企业面临的各种风险时,可能存在对风险评估不准确、应对策略不恰当等问题,导致企业无法有效应对潜在挑战,造成不必要的损失。
  2. 网络安全风险:引入 AI 驱动的网络安全解决方案时,若安全系统配置不当、软件和 AI 模型未及时更新、员工网络安全意识不足等,可能导致企业网络系统遭受网络威胁和攻击,造成数据泄露、业务中断等严重后果。

挑战:

  1. 任务自动化挑战:在评估和识别日常重复性高的任务时,可能存在对任务分析不准确、目标设定不清晰的情况,影响后续自动化工具的引入和效果。同时,选择合适的自动化工具并进行有效配置和测试也具有一定难度。
  2. 网络安全挑战:选择适合企业网络环境和安全需求的 AI 驱动的网络安全解决方案并非易事,需要充分了解各种方案的特点和适用性。此外,定期更新和维护安全系统、进行网络安全演练以及对员工进行培训等工作也需要投入大量的时间和精力。
Content generated by AI large model, please carefully verify (powered by aily)

References

中小企业利用人工智能(AI)进行转型

"风险管理"指的是使用人工智能(AI)工具来评估和管理企业面临的各种风险,从而使企业能够更有效地应对潜在的挑战。首先,使用AI工具进行风险评估。利用AI工具准确预测和识别潜在的风险,如财务风险、供应链风险等。根据企业的具体需求选择适合的AI风险评估工具,这些工具可能包括数据分析软件、预测模型等。收集相关的数据,如财务报表、市场数据、供应链信息等,以供AI工具分析。利用AI工具对这些数据进行分析,预测潜在的风险并识别风险的来源和可能的影响。例如,使用AI工具分析财务数据,以预测现金流短缺的风险;或通过分析供应链数据,预测可能的供应中断。其次,基于AI分析结果,制定相应的风险应对策略。根据AI提供的风险评估结果,制定有效的风险应对和管理策略。根据AI识别的风险类型和程度,制定具体的风险应对措施。这可能包括制定应急计划、调整业务策略等。执行风险管理策略,并持续监控其效果,以确保风险得到有效控制。根据市场和业务环境的变化,不断调整风险管理策略,以应对新的风险。定期复审风险评估模型和管理策略,确保它们仍然适用于当前的业务环境。随着市场和业务条件的变化,及时更新风险评估数据和模型,确保风险管理的及时性和准确性。通过实施AI驱动的风险管理,中小企业可以更有效地识别和应对潜在的风险,从而保护企业免受不必要的损失,并确保可持续发展。这种方法不仅提高了风险管理的效率,而且提升了对复杂情况的反应能力和适应性。

中小企业利用人工智能(AI)进行转型

"任务自动化"的目标是通过技术手段减少中小企业在日常运营中的重复性劳动,提高工作效率和准确性。首先,评估和识别日常重复性高的任务。确定哪些日常任务是耗时且重复性高的,这些任务通常是自动化的理想候选项。通过分析日常工作流程,观察和记录员工的日常工作,特别是那些耗时且重复性高的活动。为了有效地识别可以通过自动化或优化来提高效率的工作流程。其次,确定要通过观察和记录达成的具体目标,例如提高效率、减少错误率、优化工作流程等。计划和安排对员工日常工作的观察,确保覆盖不同的部门和职位。通过直接观察或使用工作跟踪工具来记录员工的工作流程和活动。特别注意那些看起来耗时、重复性高的任务,如数据输入、文件整理等。记录员工执行任务的时间、频率以及所采用的方法。与员工交谈,了解他们对当前工作流程的看法,以及他们认为可能存在的效率瓶颈或挑战。分析收集到的数据,识别哪些任务是最耗时和重复性最高的。基于分析结果,确定哪些任务可以通过引入自动化工具来优化。制定具体的行动计划,包括引入新工具、重新设计工作流程或提供额外培训。实施改进措施,并持续监测其效果,确保所采取的措施能够实际提高工作效率。通过这样的过程,企业可以更准确地识别并解决影响员工生产力的问题,从而提高整体工作效率和效果。最后引入自动化工具,通过引入自动化工具来处理上述识别的重复性任务,减少人工劳动,提高效率。根据企业的具体需求和预算选择合适的自动化工具。例如RPA(机器人流程自动化)技术,RPA是一种软件技术,能够模仿人类在电脑上执行的重复性任务。它可以在不改变现有系统架构的情况下工作,是一种快速部署且成本效益高的解决方案。RPA可以用于自动化各种标准化的、规则性的任务,如数据录入、文件处理等。在企业的IT系统中部署RPA或其他自动化软件。根据具体的工作流程,配置自动化软件,确保它可以准确执行所需任务。在初期实施后,对自动化流程进行测试,确保其按预期运行,并根据实际情况进行调整优化。

中小企业利用人工智能(AI)进行转型

"网络安全"是指采用先进的人工智能(AI)技术来保护企业的网络系统免受各种网络威胁和攻击。首先,引入AI驱动的网络安全解决方案。利用AI技术提高网络安全系统的智能化程度,有效预防和检测网络入侵和其他安全威胁。根据企业的网络环境和安全需求,选择适合的AI驱动的网络安全解决方案,如AI增强的入侵检测系统(IDS)、异常行为分析工具等。在企业的网络环境中部署所选的AI安全工具,并进行适当的配置,以确保其能够有效监控和保护网络系统。利用AI工具对网络活动进行实时监控,及时识别和响应潜在的安全威胁。例如,部署AI增强的入侵检测系统,该系统能够学习正常的网络流量模式,并自动检测偏离这些模式的可疑活动。其次,定期更新和维护安全系统。确保网络安全系统能够有效地抵御最新的网络威胁和攻击手段。定期更新安全系统的软件和AI模型,以包含最新的安全威胁信息和防护技术。定期检查和维护网络安全系统,确保其运行稳定并且性能最优。定期进行网络安全演练,测试系统的响应能力和有效性,并根据演练结果进行必要的调整和优化。持续关注网络安全领域的最新发展和趋势,确保企业的安全策略和工具保持最新。定期对员工进行网络安全培训,提高他们对网络威胁的认识,并教授应对方法。通过实施AI驱动的网络安全解决方案,中小企业可以大大提高其网络系统的安全性,有效防御各种复杂和不断演变的网络威胁。这种方法不仅提高了安全防护的自动化程度,还增强了系统对新型威胁的适应性和响应速度。

Others are asking
挑战一百天和AI 做朋友
以下是关于挑战一百天和 AI 做朋友的相关内容: 《雪梅 May 的 AI 学习日记》: 1. 作者介绍: 适合纯 AI 小白,可参考日记,学习模式为输入→模仿→自发创造。 学习内容因 AI 节奏快可能不适用,可去 waytoAGI 社区找感兴趣的最新内容。 学习时间不是每天依次进行,有空就学。 2024 年保持较好学习状态,能学多少算多少。 学习资源免费开源。 2. 第一阶段:迈出第一步,看书听课进社区 学习指南:系统性学习,打好基础,不要碎片化输入。 DAY1 2024.5.22 初步探索:初期会走弯路,B站 上部分内容不适合系统性学习。 DAY2 2024.5.23 加入 AI 社区:waytoAGI,是宝藏社区,可看新手指引入门。 2024 年历史更新(归档): 1. 12 月 31 日: 《雪梅 May 的 AI 学习日记》,分为三个阶段,学习路线图适合新人参考。 《Meta 首席 AI 科学家 LeCun 访谈:为什么他一直认为 AI 还不如一只猫?》,Yann LeCun 直指当前 AI 根本局限,阐述不同技术路径。 《少卿:AI 帮你赢,谈双重主体性》,强调将 AI 视为方法,提供实用应用框架。
2025-03-31
大模型时代组织和个人面临的挑战和应对策略是什么?
在大模型时代,组织和个人面临着以下挑战和应对策略: 挑战: 1. 算力投资风险:大规模算力投资使公司转变为重资产模式,可能影响公司估值和投资人收益。获取高性能算力成本高昂,包括 GPU 价格及后续部署、运营、调试和使用成本。 2. 估值泡沫风险:创业公司为抬高估值规避算力风险,可能成为突破的绊脚石,类似荷兰郁金香泡沫,当风口过去,真实收入将成为关键指标。 应对策略: 1. 对于创业公司: 挖掘新的价值点,如探索大模型在不同领域的应用,或开发中间层服务,如训练、数据处理、算力服务等。 避免盲目追逐原创大模型,根据自身情况选择合适的发展路径,如套壳开源大模型或拼装大模型时注重创新和突破。 2. 对于投资人: 保持独立判断,不人云亦云,吸取以往经验教训,专注于更有创意和机会的公司或项目。
2025-03-28
7天AI入门挑战
以下是为您提供的 7 天 AI 入门挑战的相关内容: 第一天(2024.5.22):初步探索。May 在开始想要了解 AI 的初期会走必经弯路,在 B 站看了一些介绍 ChatGPT 原理的分享,消费性观看可以,但系统性学习需要更高质量的内容,而非知识碎片。 第二天(2024.5.23):加入 AI 社区 waytoAGI。May 发现这个开源知识库,不再到处在 B 站找零碎东西。评价其为宝藏社区,感慨 AI 时代知识免费开源,考验的是如何在信息海洋中有体系地获取。第一步是看新手指引和入门的学习路径与课程。 第五天(2024.5.26):使用 kimi。May 开始研究 kimi 并使用,抱着每天向 kimi 问 100 个问题的心态,调整思考模式,养成有问题问 AI 的习惯。可参考。 第六天(2024.5.31):学习吴恩达生成式人工智能课程。应朋友强烈推荐,May 插队先看吴恩达的课程。可在 B 站搜索对应关键词获取课程资源,学习笔记可参考,抽空陆续 3 天学完。 第七天(2024.6.1):探索用 AI 解决一个真实问题。May 有一个明确的议题,比如团队要写一份行业研究报告,尝试看 AI 如何帮忙。 此外,元子从菜鸟到达人的进阶之路: Day 1:懵懵懂懂“你好,帮我写个报告” Day 7:学会表达“帮我写一份周报,重点说明项目进度” Day 14:熟练掌握“我需要一份项目总结,包含数据分析和改进建议” Day 30:把常规 AI 工具都试过一遍,并且选定自己要持续玩的方向 AI Agent Day 60:组队参加 AI Agent 比赛并有幸得奖 元子的心得: 1. 不要怕问“笨”问题,但要多直接问 AI。 2. 解决一个小问题也是进步,不积跬步,无以至千里。 3. 多试多练才是王道,来社区共学,一群人走得更远。 4. 融入生活和工作才能持久,学完就用才是王道,不要纯靠意志力。 工作中的 AI 小帮手: 1. 需要快速生成报告?AI 来帮忙。 2. 需要快速整理数据?AI 来处理。 3. 需要快速翻译文件?AI 来翻译。 4. 需要快速优化文案?AI 来优化。
2025-03-03
我是一个普通本科的大二学生,学的是软件工程专业,但是我本身编程能力不是很好,我对ai拥有浓厚的兴趣,喜欢去学习并运用ai,我想未来all in ai并成为一个产品经理,我想给你分享一下我的计划,我想今年下半年考过英语四级,并且参加苹果26年的swift 学生挑战赛,我是零基础但是我愿意学习,希望你帮我制定一个包含实施策略、里程碑和最佳实践的详细框架,以帮助我有效地实现这些目标!
以下是为您制定的包含实施策略、里程碑和最佳实践的详细框架,以帮助您有效地实现目标: 一、英语四级考试 实施策略: 1. 制定学习计划,每天安排一定时间学习英语,包括词汇、语法、听力、阅读和写作。 2. 多做历年真题,熟悉考试题型和难度。 3. 参加英语学习社群或找学习伙伴,互相监督和鼓励。 里程碑: 1. 每月进行一次模拟考试,评估学习进度。 2. 两个月内完成词汇和语法的系统学习。 最佳实践: 1. 利用碎片时间背单词,如在公交车上、课间等。 2. 听力练习时,反复听同一篇材料,直到完全听懂。 3. 写作练习后请老师或同学帮忙批改,总结错误和不足。 二、参加苹果 26 年的 Swift 学生挑战赛 实施策略: 1. 从零基础开始学习 Swift 编程语言,通过在线课程、书籍等资源进行系统学习。 2. 参与相关的编程实践项目,提升实际操作能力。 3. 关注苹果官方网站和社区,了解挑战赛的最新动态和要求。 里程碑: 1. 三个月内掌握 Swift 编程语言的基础知识。 2. 半年内完成一个小型的 Swift 项目开发。 最佳实践: 1. 遇到问题及时在技术论坛或社区寻求帮助。 2. 定期回顾和总结所学知识,加深理解和记忆。 3. 参考优秀的 Swift 项目案例,学习他人的编程思路和技巧。 三、成为 AI 产品经理 实施策略: 1. 学习 AI 相关的基础知识,包括机器学习、深度学习等。 2. 了解产品经理的职责和工作流程,通过实践项目积累经验。 3. 关注行业动态,参加相关的研讨会和培训课程。 里程碑: 1. 一年内掌握 AI 基础知识和产品经理的基本技能。 2. 参与实际的 AI 项目开发,担任产品经理助理角色。 最佳实践: 1. 多与行业内的专业人士交流,获取经验和建议。 2. 不断提升自己的沟通和协调能力,以更好地推动项目进展。 3. 学会从用户需求出发,设计具有创新性和实用性的 AI 产品。 希望以上框架对您有所帮助,祝您顺利实现目标!
2025-03-01
雪梅挑战 100 天和 AI 做朋友
雪梅 May 挑战 100 天和 AI 做朋友的相关情况如下: 作者介绍:适合纯 AI 小白参考,学习模式为输入→模仿→自发创造。学习内容不建议直接复用,可去 waytoAGI 社区发现感兴趣的领域学习最新内容。学习时间并非每天依次进行,有空时学习即可。学习状态良好,2024 年保持较好状态,还看了 33 本书。学习资源免费开源。 第一阶段: DAY5 2024.5.26:开始研究使用 kimi,抱着每天向 kimi 问 100 个问题的心态调整思考模式。 DAY6 2024.5.31:应朋友推荐学习吴恩达生成式人工智能课程,在 B 站搜索对应关键词有课程资源,抽空陆续 3 天学完。 DAY7 2024.6.1:探索用 AI 解决一个真实问题,如团队写行业研究报告。 2024 年 12 月 31 日历史更新(归档):记录了雪梅的挑战过程,分为系统性学习、模仿实践使用 AI 工具、研究 Prompt 提示词三个阶段,其学习路线图适合新人参考。同时还包括 Meta 首席 AI 科学家 LeCun 访谈以及《少卿:AI 帮你赢,谈双重主体性》相关内容。
2025-02-23
人工智能的场景应用及其对社会治理的新挑战,注意场景应用和社会治理的对应,同时突出新挑战
以下是关于人工智能的场景应用及其对社会治理新挑战的相关内容: 场景应用: 医疗领域:如利用 AI 技术预测蛋白质结构,加速科学研究和救命药物的开发,在对抗疟疾、抗生素耐药性和塑料垃圾等方面取得巨大进展。 气候领域:通过 AI 技术应对气候变化。 对社会治理的新挑战: 可能产生新的风险,如使用 AI 可能带来的未知问题。 复杂的 AI 技术可能引发公众的不安。 涉及数据获取、计算能力、可持续性以及内容生产者和 AI 开发者权利平衡等重要问题,需要综合考虑。 需确保在保护权利持有者和支持 AI 开发者获取所需数据之间保持恰当平衡。
2025-01-23
学习AI的必读书目
以下是学习 AI 的一些必读书目推荐: 《GPT1 到 Deepseek R1 所有公开论文 The 2025 AI Engineer Reading List》:涵盖了人工智能工程的 10 个领域,包括 LLMs、基准、提示、RAG、代理、CodeGen、视觉、语音、扩散、微调等,适合从零开始的学习者。 对于新手学习 AI,建议先阅读「」部分,熟悉 AI 的术语和基础概念。 还可以在「」中找到为初学者设计的课程,特别推荐李宏毅老师的课程。 三本神经科学相关书籍: 《认知神经学科:关于心智的生物学》(作者:Michael S.Gazzaniga;Richard B.Lvry;George R.Mangun):世界权威的认知神经科学教材,系统介绍认知神经科学的多个方面。 《神经科学原理》(作者:Eric R.Kandel;James H.Schwartz):让您了解神经元的细胞和分子生物学、突触传递等内容。 《神经生物学:从神经元到脑》(作者:John G.Nicholls 等著):神经生物学领域的世界级名著,涵盖神经科学的多方面内容。
2025-04-12
LOGO 设计的 AI 工具有哪些
以下是一些用于 LOGO 设计的 AI 工具: 1. Looka:这是一个在线 Logo 设计平台,使用 AI 理解用户的品牌信息和设计偏好,生成多个设计方案供选择和定制。 2. Tailor Brands:AI 驱动的品牌创建工具,通过用户回答关于品牌和设计风格的问题来生成 Logo 选项。 3. Designhill:其 Logo 制作器使用 AI 技术创建个性化 Logo,用户可选择设计元素和风格,AI 基于输入生成方案。 4. LogoMakr:提供简单易用的 Logo 设计工具,用户可拖放设计,利用 AI 建议的元素和颜色方案。 5. Canva:广受欢迎的在线设计工具,提供 Logo 设计模板和元素,有 AI 辅助的设计建议。 6. LogoAI by Tailor Brands:Tailor Brands 推出的 AI Logo 设计工具,根据用户输入的品牌名称和行业类别快速生成方案。 7. 标小智:中文 AI Logo 设计工具,利用人工智能技术帮助用户创建个性化 Logo。 您还可以访问网站的 AI 生成 Logo 工具版块获取更多好用的工具:https://waytoagi.com/category/20 。 此外,以下是一些设计海报的 AI 产品: 1. Canva(可画):https://www.canva.cn/ 是非常受欢迎的在线设计工具,提供大量模板和设计元素,AI 功能可帮助选择合适颜色搭配和字体样式。 2. 稿定设计:https://www.gaoding.com/ 稿定智能设计工具采用先进人工智能技术,自动分析和生成设计方案,稍作调整即可完成完美设计。 3. VistaCreate:https://create.vista.com/ 简单易用的设计平台,提供大量设计模板和元素,用户可使用 AI 工具创建个性化海报,智能建议功能帮助用户快速找到合适设计元素。 4. Microsoft Designer:https://designer.microsoft.com/ 通过简单拖放界面,用户可快速创建演示文稿、社交媒体帖子等视觉内容,集成丰富模板库和自动图像编辑功能,如智能布局和文字优化,简化设计流程。 内容由 AI 大模型生成,请仔细甄别。
2025-04-12
可完全白嫖的AI生成圖片大模型
以下是可完全白嫖的 AI 生成图片大模型的相关内容: 1. 搭建流程: 搭建 OneAPI:汇聚整合多种大模型接口,方便更换使用各种大模型,可参考相关链接。 搭建 FastGpt:知识库问答系统,可将知识文件放入,接入大模型作为分析知识库的大脑并回答问题,若不想接入微信,搭建完此系统即可,其有问答界面。 搭建 chatgptonwechat:接入微信,配置 FastGpt 把知识库问答系统接入到微信,建议先用小号以防封禁风险。 2. 准备工作: 领取免费云服务器:阿里、腾讯对新用户提供免费试用服务器,如腾讯云的轻量应用服务器、阿里云的服务器 ECS,服务器系统配置选择宝塔系统。 领取免费大模型接口:阿里的通义千问大模型接口,创建 API key;智谱 AI(ChatGLM)、科大讯飞(SparkDesk)也有免费接口,国内大模型多限制一定免费额度的 Token;谷歌的 Gemini 大模型、海外版 Coze 的 GPT4 模型免费且能图片识别,但需给服务器挂梯子,可参考相关教程。 3. 配置 FastGpt、OneAPI: 创建 OneApi 的令牌,名称自取,时间设为永不过期、额度设为无限额度,提交并复制令牌。 配置 FastGpt,修改宝塔系统文件 dockercompose.yml 中的 OPENAI_BASE_URL(API 地址改为云服务的,http://内网 IP:3001,需加/v1)和 CHAT_API_KEY(改为复制的 OneApi 令牌),以及修改 config.json 中的"llmModels"(添加阿里大模型 qwenmax)和"vectorModels"(阿里向量模型 textembeddingv1),修改后保存关闭并重新启动使其生效。
2025-04-12
想自学ai训练师 推荐哪个视频去学习
以下是为您推荐的自学 AI 训练师的视频: 1. 3 月 26 日|自由讨论|离谱视频切磋大会 猫先生介绍自己的背景和擅长领域 AI 学习与实践的重要性 AI 交流会:分享项目经验和技能 讨论比赛规则和资源分配 AI 工具学习与合作 广州 AI 训练师叶轻衣分享使用 AI 工具的经验和想法 组队提升工作效率 AI 技术在 3D 动画制作中的应用与优势 链接:https://waytoagi.feishu.cn/minutes/obcnc915891t51l64uyonvp2?t=0 2. AI 大神 Karpathy 再发 LLM 入门介绍视频 神经网络训练的目标:训练神经网络的目标是让模型学习 token 在序列中彼此跟随的统计关系,即预测给定上下文(token 序列)后,下一个最有可能出现的 token。 Token 窗口:训练时,模型从数据集中随机抽取固定长度的 token 窗口(例如 8000 个 token)作为输入。 神经网络的输入与输出:输入为 Token 序列(上下文),输出为预测下一个 token 的概率分布,词汇表中每个 token 都有一个概率值。 随机初始化与迭代更新:神经网络初始参数是随机的,预测也是随机的。训练过程通过迭代更新参数,调整预测结果,使其与训练数据中的统计模式相匹配。 损失函数与优化:训练过程使用损失函数来衡量模型预测与真实 token 的差距。优化算法(如梯度下降)用于调整参数,最小化损失函数,提高预测准确率。 神经网络内部结构:Transformer 包含注意力机制和多层感知器等组件,能够有效地处理序列数据并捕捉 token 之间的复杂关系。 链接:无
2025-04-12
想自学ai训练师
如果您想自学成为 AI 训练师,以下是一些相关的知识和建议: 一、AI 训练的基本概念 训练是指通过大数据训练出一个复杂的神经网络模型。这需要使用大量标记过的数据来训练相应的系统,使其能够适应特定的功能。训练过程需要较高的计算性能,能够处理海量的数据,并具有一定的通用性,以便完成各种各样的学习任务。 二、相关领域的知识 1. 机器学习:机器学习是人工智能的一个分支,是实现人工智能的途径之一,涉及概率论、统计学、逼近论、凸分析、计算复杂性理论等多门学科。 2. 自然语言处理:自然语言(NLP)认知和理解是让电脑把输入的语言变成有意思的符号和关系,然后根据目的再处理。自然语言生成系统则是把计算机数据转化为自然语言,是人工智能和语言学领域的分支学科。 三、学习资源和实践 您可以参考以下的一些资源和实践方式: 1. 参加相关的线上交流会,例如 3 月 26 日的自由讨论活动,其中会分享项目经验、技能以及使用 AI 工具的经验和想法。 2. 了解一些健身的 AI 产品,如 Keep(https://keep.com/)、Fiture(https://www.fiture.com/)、Fitness AI(https://www.fitnessai.com/)、Planfit(https://planfit.ai/)等,虽然这些主要是健身领域的应用,但也能帮助您了解 AI 在不同场景中的应用和创新。 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2025-04-12
有哪些自动生成ppt的ai平台
以下是一些自动生成 PPT 的 AI 平台: 1. Kimi.ai:选 PPT 助手暂时免费效果好,网址为 http://kimi.ai 。 2. 讯飞智文:网址为 https://zhiwen.xfyun.cn/ 。 3. Mindshow.fun:支持 Markdown 导入,网址为 http://Mindshow.fun 。 4. Tome.app:AI 配图效果好,网址为 http://Tome.app 。 5. Chatppt.com:自动化程度高。 6. Gamma:在线 PPT 制作网站,网址为 https://gamma.app/ 。 7. 美图 AI PPT:网址为 https://www.xdesign.com/ppt/ 。 这些工具通过自动化和智能化的设计流程,极大地简化了 PPT 的制作工作。目前市面上大多数 AI 生成 PPT 通常按照以下思路完成设计和制作: 1. AI 生成 PPT 大纲。 2. 手动优化大纲。 3. 导入工具生成 PPT。 4. 优化整体结构。 您可以根据自己的需求和喜好选择合适的 AI PPT 工具,以提高工作效率和演示效果。 扩展阅读: 1. 《》 2. 《》(质朴发言) 相似问题: 1. 有没有生成 PPT 的应用推荐,不用翻墙的。 2. 免费生成 PPT 的网站有哪些。 3. 推荐一款文字生成 ppt 的工具。 4. 免费 ai 制作 ppt 软件。 5. 推荐 3 款好用的 AI 制作 ppt 工具。 请注意,内容由 AI 大模型生成,请仔细甄别。
2025-04-12
角色:你是一名软件开发公司的运营经理 背景:现在要准备入局AI导航网站市场,通过AI导航网站实现布局产品流量入口,来获取AI风口的流量。 任务:请你完成AI导航网站的国内外市场调研 要求:调研内容包括AI网站导航的市场、竞品、用户分析以及产品规划、团队人员需求及资源需求、有哪些风险点
以下是对您需求的调研分析: 一、市场分析 目前,AI 领域发展迅速,AI 导航网站作为获取相关信息和资源的入口,具有较大的市场潜力。随着人们对 AI 技术的关注度不断提高,对于便捷、高效的 AI 资源导航需求也在增加。 二、竞品分析 暂未获取到直接关于 AI 导航网站的竞品详细信息。 三、用户分析 用户可能包括对 AI 技术感兴趣的个人、开发者、研究人员、企业等。他们希望通过导航网站快速找到所需的 AI 工具、资源、案例等。 四、产品规划 1. 提供全面、准确的 AI 网站分类和链接,涵盖工具、研究成果、应用案例等。 2. 设立用户评价和推荐系统,帮助用户筛选优质资源。 3. 提供个性化推荐功能,根据用户的浏览历史和偏好推送相关内容。 五、团队人员需求 1. 技术人员:负责网站的开发和维护,如前端开发、后端开发等。 2. 内容编辑:收集、整理和更新 AI 网站信息。 3. 运营人员:负责推广、用户互动和数据分析。 六、资源需求 1. 服务器和带宽资源,以保证网站的稳定运行和快速响应。 2. 数据采集和更新的工具和技术。 七、风险点 1. 市场竞争激烈,可能面临已有成熟竞品的压力。 2. AI 技术发展迅速,需要及时更新网站内容,以保持竞争力。 3. 可能存在版权和法律合规方面的风险。 4. 用户获取和留存的挑战,需要提供优质的服务和用户体验。
2025-03-11
修改以下内容,降低论文查重率:  首先需要高层管理者的重视和支持,为社交媒体营销提供必要的资源和政策支持。其次,要加强员工培训,提高全员的社交媒体素养和营销能力。再次,要建立完善的社交媒体管理制度,规范员工行为,防范潜在风险。最后,要注重技术创新,积极应用人工智能、大数据等新技术,提高社交媒体营销的智能化水平
以下是为您修改后的内容,以降低论文查重率: 首先,高层管理者的重视与支持不可或缺,应为社交媒体营销给予必需的资源及政策支撑。其次,强化员工培训工作,提升全体员工的社交媒体素养与营销能力。再次,构建完备的社交媒体管理体制,对员工行为加以规范,预防潜在风险。最后,注重技术的创新,积极运用人工智能、大数据等新型技术,增强社交媒体营销的智能化程度。
2025-03-07
养老场景实时健康监测与风险预警在技术上怎么实现,用AI大模型实现,请给出一个可行的方案
以下是一个利用 AI 大模型实现养老场景实时健康监测与风险预警的可行方案: 首先,需要明确相关的概念和技术名词。AI 即人工智能,机器学习是电脑找规律学习,包括监督学习、无监督学习和强化学习。监督学习是基于有标签的训练数据,学习输入和输出之间的映射关系,包括分类和回归。无监督学习是在无标签数据中自主发现规律,例如聚类。强化学习是从反馈中学习以最大化奖励或最小化损失,类似训小狗。深度学习参照人脑,具有神经网络和神经元,因层数多被称为深度,神经网络可用于多种学习方式。生成式 AI 能生成文本、图片、音频、视频等内容形式,LLM 是大语言模型,生成图像的扩散模型不属于大语言模型,像谷歌的 BERT 模型可用于语义理解,如上下文理解、情感分析、文本分类。 在技术里程碑方面,2017 年 6 月谷歌团队发表的《Attention is All You Need》论文首次提出了 Transformer 模型,其完全基于自注意力机制处理序列数据,不依赖循环神经网络或卷积神经网络。 对于养老场景的实时健康监测与风险预警,可利用传感器收集老人的生理数据,如心率、血压、血糖等。这些数据通过物联网传输到服务器,利用深度学习算法对数据进行分析和处理。例如,使用基于 Transformer 模型的大模型,对历史健康数据和当前实时数据进行学习和分析,建立老人的健康模型。通过与正常健康指标的对比,及时发现异常情况,并结合无监督学习中的聚类算法,对不同健康状况的老人进行分类,以便提供个性化的预警和建议。同时,利用强化学习不断优化模型的预警准确性和及时性。 总之,通过整合传感器数据采集、物联网传输、深度学习算法分析和模型优化等环节,借助 AI 大模型实现养老场景的实时健康监测与风险预警。
2025-02-20
角色:你是一名房地产开发公司的总经理 背景:现在要在公司内部推广AI工具的使用,通过具体AI工具解决公司内部各部门具体问题,来提升工作效率。 任务:请你完成年度AI提升工作效率的工作策划, 要求:工作策划要有目标、行动计划、团队人员需求及分工、具体AI工具及对应解决的问题、需要费用明细及资源需求、有哪些风险点
由于您提供的内容中没有具体的相关信息,以下为您生成一份较为通用的房地产开发公司年度 AI 提升工作效率的工作策划示例,您可以根据实际情况进行调整和完善。 一、目标 通过在公司内部推广 AI 工具的使用,在本年度内实现各部门工作效率提升 30%以上,降低人力成本 15%左右,提高项目质量和客户满意度。 二、行动计划 1. 第一季度 进行市场调研,了解适合房地产开发行业的 AI 工具。 组织内部培训,让员工初步了解 AI 工具的应用。 2. 第二季度 针对各部门需求,选择并引入相应的 AI 工具进行试点应用。 建立数据收集和分析机制,为 AI 工具的优化提供支持。 3. 第三季度 对试点部门的应用效果进行评估和总结。 根据评估结果,对 AI 工具进行调整和优化。 4. 第四季度 在全公司范围内推广成熟的 AI 工具应用。 对全年的 AI 应用效果进行总结和评估。 三、团队人员需求及分工 1. 成立 AI 推广小组 组长:负责整体工作的规划和协调。 技术专家:负责 AI 工具的选型、配置和技术支持。 培训师:负责组织员工培训和指导使用。 数据分析师:负责收集和分析数据,为工具优化提供依据。 部门联络人:每个部门指定一名联络人,负责与推广小组沟通本部门的需求和问题。 四、具体 AI 工具及对应解决的问题 1. 智能客服系统 解决客户咨询响应不及时的问题,提高客户满意度。 2. 项目管理 AI 工具 优化项目进度安排和资源分配,提高项目管理效率。 3. 市场分析 AI 工具 精准分析市场趋势和客户需求,为项目定位提供依据。 五、需要费用明细及资源需求 1. 费用明细 AI 工具采购费用:万元。 培训费用:万元。 技术支持和维护费用:万元。 数据采集和分析费用:万元。 2. 资源需求 服务器和存储设备,以支持 AI 工具的运行和数据存储。 足够的网络带宽,确保数据传输的流畅性。 六、风险点 1. 员工对新技术的接受度和适应能力可能较低,需要加强培训和引导。 2. AI 工具的应用效果可能不如预期,需要及时调整和优化。 3. 数据安全和隐私保护可能存在风险,需要建立完善的防护机制。
2025-02-13
举例说明,医疗人工智能应用的风险及其法理防范
医疗人工智能应用存在以下风险: 1. 可能对受欧盟法律保护的公共利益和基本权利造成损害,包括身体、心理、社会或经济方面的损害。 2. 在决定是否给予、拒绝、减少、取消或收回医疗保健服务等福利时,可能对人们的生计产生重大影响,并侵犯基本权利,如社会保护权、不受歧视权、人的尊严权或有效补救权。 3. 用于评估自然人信用分数或信用度的人工智能系统可能导致对个人或群体的歧视,并延续历史上的歧视模式或造成新形式的歧视性影响。 法理防范措施包括: 1. 为所有高风险人工智能系统制定统一的规则,这些规则应与《宪章》保持一致,是非歧视性的,并符合欧盟的国际贸易承诺,同时考虑相关的伦理准则。 2. 明确价值链上相关经营者的作用和具体义务,促进对法规的遵从,确保法律的确定性。 3. 在特定条件下,明确高风险人工智能系统提供者的责任和义务。 需要注意的是,欧盟法律规定的用于检测提供金融服务过程中的欺诈行为以及用于计算信贷机构和保险企业资本要求的尽职审慎目的的人工智能系统,以及用于自然人健康和人寿保险风险评估和定价的人工智能系统,在符合一定条件时不视为高风险系统。
2025-01-02
谈谈医疗人工智能的风险及其法律防范,举一个具体例子,如影响肿瘤外科内科
医疗人工智能在带来诸多益处的同时,也存在新的风险。以下为您举例说明其风险及法律防范: 以自动化医疗分诊系统为例,其具有适应性和自主性。适应性方面,它能基于对医疗数据集、患者记录和实时健康数据的分析来预测患者病情;自主性方面,它能为医疗专业人员或直接为患者生成有关症状可能原因的信息,并推荐潜在的干预和治疗措施。 然而,这也带来了一些风险和监管问题。比如,若该系统提供了错误的医疗建议,导致患者出现负面健康结果,责任归属不明确,影响患者获得赔偿。 在法律防范方面,需要明确此类系统的责任界定,制定相关法律法规,确保患者在因错误建议受到损害时能够获得有效的救济。同时,应加强对医疗人工智能系统的监管和评估,确保其准确性和可靠性。
2025-01-02
AI在企业落地
企业落地 AI 可以参考以下内容: Anthropic 在 AI Engineer Summit 2025 上分享了相关最佳实践,并总结了常见错误。核心挑战包括如何入手、如何评估效果、技术选择困惑(如是否需要微调)。关键经验是评估先行,明确“智能度、成本、延迟”之间的平衡,避免过早微调,先进行基础优化。例如 Intercom 通过评估优化 AI Agent Fin,使其处理 86%的客服请求,其中 51%无需人工介入。相关链接: 影刀 RPA+AI Power 方面:大模型有输入和输出限制,AI Power 集成丰富组件及技能组件可拓展 AI 服务能力边界,打造 AI Agent,如搜索引擎组件可让 AI 接入互联网获取实时信息,RPA 组件可直接调用影刀 RPA 客户端应用实现自动化操作。其具有无缝多样的使用方式,如嵌入方式包括网页分享、对话助理、API 集成等。企业系统分散,AI Power 提供多种调用方式方便企业灵活选择接入方式。此外,影刀 AI Power 为企业提供教学培训、技术答疑、场景共创等贴身服务支持,帮助企业把 AI 落地。 此外,相关知识库还介绍了面向学习者、创作者和企业的不同服务: 面向学习者:社区提供清晰学习路径,学习者通过丰富课程、活动和竞赛提升自己,积累能力成为高素质 AI 人才。 面向创作者:创作者掌握 AI 技术利用社区资源创作,满足企业需求,为社区发展注入活力。 面向企业:链接 AI 产品和传统企业,通过与社区合作获得优质内容与服务,从学习者中获取潜在流量。社区合作实践为学习者和创作者提供应用场景和技术经验。
2025-04-12
AI在BizDevOps中的场景落地及应用
以下是关于 AI 在 BizDevOps 中的场景落地及应用的相关内容: AI 在 DevOps 中的应用: AI 可以承担指定计划、拆分任务和调用工具的角色,但目前无法完全评定任务结果的正确性和质量。 现阶段更适合让 AI 辅助完成部分任务,如画原型图、设计表结构、写自动化测试代码等,但需要人类验证后才能进行下一步操作。 完全依赖 AI 可能带来风险,如生产环境出错或被黑客恶意利用漏洞。 AI 的记忆能力: ChatGPT 支持记忆功能,可通过摘要保存对话内容以延续角色和对话风格,但新开会话可能在高推理任务中效果更好。 建议将角色设定和部分对话作为样例(fewshot)放入提示词中,以优化生成质量。 学习 GPT 的妙招: 结合视频教程、文字转录和基础资料,通过 ChatGPT 讲解学习内容。 角色反转,自己当老师,ChatGPT 当学生,通过提问互动和查漏补缺能有效提升学习效果。 AI 对软件工程的影响: 涵盖自动代码生成、智能调试、AI 驱动的 DevOps 和敏捷开发优化。 自动代码生成工具(如 GitHub Copilot)提高编程效率,AI 也助力智能测试与运维。 DevOps 迎来 AI 驱动的 CI/CD 和 AIOps,提升部署自动化和智能监控能力。 AI 让敏捷开发更加高效,通过自动化需求分析、测试优化和团队协作增强生产力。 其他相关动态: OpenAI CEO 宣布开发 AI 设备,目标颠覆智能手机。 OpenAI 推出全新 Deep Research,让 ChatGPT 成为研究助理。
2025-04-01
chatbi落地方案
以下是关于 ChatGPT 落地方案的相关内容: 产品经理如何用 ChatGPT: 背景前提:非专业 BI 工程师,依靠 GPT 提示和查询资料解决不擅长领域问题及学习成长。使用免费的 ChatGPT3.5 版本,因充值问题未解决,且账号登录出现问题无法截图还原完整对话过程。 使用过程: 先整理与 GPT 交互的基本思路及步骤,包括旧代码输入、需求及现状问题输入、调试优化、结果输出验证。 旧代码输入时,1900 行代码直接粘贴报错,采取分次输入再联合的方式,让 GPT 理解旧代码实现效果及熟悉查询表和字段,方便后续生成优化代码直接在数据库运行。原 SQL 主要逻辑是统计近 30 天内每天的业务数据日报,按天和地区分组汇总,需查询多张表几百万条数据。GPT 理解基本正确,并主动提出优化建议。 LLM 落地思考: 对大模型的任务理解、编程能力、输出遵循有较高要求,需要 LLM 前处理与后处理工程兜底,因企业流程自动化出错影响面广。该方向能帮助企业完成数字化转型并升级至业务自动化,多为定制化服务,业务爆发期可能在几年后经济回暖时,目前需求方可能优先是国企与金融等数字化成熟且有国家 AI+任务驱动的地方。 采用 RAG 方案进行知识应用的工程框架,包括 AI 搜索、智能客服、流水线问题定位等场景,通过给予大模型已有行业知识解决问题,但前处理过程对方案效果影响较大。 ToC 业务方面,当前爆款产品如 ChatGPT、Midjourney 等,暂未出现像微信这样的大杀器 C 端产品,未来 C 端产品形态难以确定。
2025-03-22
育儿智能体落地实践推荐,相关案例和资讯
以下是为您整理的育儿智能体落地实践的相关案例和资讯: 在“通往 AGI 之路知识库使用指南”中,提到了智能纪要、智能章节等内容。包括博主精美解释六大策略,小七姐在社区带来共学课程及直播分享与回放,介绍了官方最佳 prompt 的 6 个实践办法。还提到了 AI 智能体的进阶、案例拆解及扣子的应用,如景淮老师的相关成果,阐述扣子、千帆百炼属于智能体范畴,扣子更偏 ToC 应用。同时提到 Cos 平台功能全面,社区共学成果显著,学习 AI agent 建议先吃透 prompt,官方文档内容全面,社区小伙伴参加 cos 比赛常获奖并分享经验。 在“张翼然:AI 赋能教学,创新引领未来.pdf_AI 赋能教学创新引领未来”中,涵盖了教育目标由知识本位向能力为重的转型、群智协同与知识动态生成、核心能力、关键价值等方面。还包括设计实验或观察方法、收集与分析数据、得出结论并撰写报告等研究过程的指导,以及黎加厚关于让教师掌握教育智能体金钥匙的相关内容。同时探讨了 AIGC 教育革命、AI 从工具到助手、赋能教师提升效率与能力、大语言模型的教学潜力、AI 与教育场景融合拓展教学边界与创新场景、一线教师的 AI 需求与高效工具推荐、AI 赋能课堂的核心逻辑、AI 与人类智能的共生放大学生思考力塑造深度学习能力、解码 AI 教学案例、能力的普遍性与局限性、现阶段 AI 在教育领域应用的局限性等内容。 在“扣子案例合集社区内容分享”中,包含了如“用 Coze 扣子轻松搭个 Bot,从此告别‘标题党’”“扣子官方:用扣子/Coze 揭秘吴恩达的 4 种 AI Agent 设计模式”“扣子官方:这届 00 后已经学会用扣子/Coze‘偷懒’了”“【2 万字长文】如何用 Kimi 全自动创建扣子智能体?这喂饭级教程将揭晓一切!”“保姆级教程:Coze 打工你躺平”“扣子 Coze 智能体开发实战教程|智能体开发”等案例。
2025-03-20
企业落地都有哪些工具或者方案
企业落地 AI 可以考虑以下工具和方案: 火山引擎: 豆包大模型的 tokens 调用量增长迅速,其视觉理解模型具备强大的视觉识别与推理能力,能处理复杂视觉任务,满足多行业需求。 其 AI 应用开发平台“扣子”发布 1.5 版本,新增支持 GUI 界面的开发环境,增强多模态能力,结合智能语音 OpenAPI 和实时语音通话能力。 还发布了专为企业定制的 AI 应用开发平台“HiAgent”,通过 100+行业模板支持,帮助企业快速构建 AI 能力中心,并与现有系统深度集成。 百度文心大模型:在智能终端行业,超半数手机厂商使用,包括三星、荣耀等主流品牌;十余家车企已接入。百度表现突出,拿下关键中标项目数量和金额两项第一,其智能云增长由多行业需求带动。 Dify:开源的大模型应用开发平台,结合后端即服务和 LLMOps 理念,提供直观界面构建和部署生产级别生成式 AI 应用,具备强大工作流构建工具、广泛模型集成、提示词 IDE、RAG Pipeline 等,允许定义 Agent 智能体,可监控和优化性能,提供云服务和本地部署选项,个人研究可单独使用,企业级落地项目推荐多种框架结合。
2025-03-19
更通用一点,更落地一点,主题换成学习AI&LLM吧
以下是关于学习 AI&LLM 的相关知识: 一、AI 相关概念与技术 1. 概念 生成式 AI 生成的内容称为 AIGC。 AI 即人工智能。 2. 机器学习 电脑通过找规律进行学习,包括监督学习、无监督学习、强化学习。 监督学习:使用有标签的训练数据,算法目标是学习输入和输出之间的映射关系,包括分类和回归。 无监督学习:学习的数据没有标签,算法自主发现规律,经典任务如聚类。 强化学习:从反馈中学习,以最大化奖励或最小化损失,类似训小狗。 3. 深度学习 一种参照人脑神经网络和神经元的方法(因有很多层所以叫深度)。 神经网络可用于监督学习、无监督学习、强化学习。 4. 生成式 AI 可以生成文本、图片、音频、视频等内容形式。 5. LLM(大语言模型) 对于生成式 AI,生成图像的扩散模型不是大语言模型。 对于大语言模型,生成只是其中一个处理任务,如谷歌的 BERT 模型,可用于语义理解(不擅长文本生成),如上下文理解、情感分析、文本分类。 二、技术里程碑 2017 年 6 月,谷歌团队发表论文《Attention is All You Need》,首次提出了 Transformer 模型,它完全基于自注意力机制(SelfAttention)来处理序列数据,而不需要依赖于循环神经网络(RNN)或卷积神经网络(CNN)。 三、RL 与 LLM 融合的本质与阐释 AI 本质是一堆 scaling law。今天能看到最好的模型规模在 10 的 25 到 26 次方 FLOPs 这种规模,且数量级还会持续增长,算力是必要条件。一个值得被 scale up 的架构是基础,要支持不断加入更多数据。现在“吃”的是 base model 的 scaling law,未来可能会“吃”用户数据源的 scaling law。alignment 也有 scaling law,只要能找到对的数据就能解决。当 next token prediction 足够好时,能够平衡创造性和事实性。多模态数据的引入可推迟数据瓶颈问题,如视频和多模态的卡点解决不了,文本的数据瓶颈就会很关键。在限定问题(如数学或写代码)上,数据相对好生成,通用问题还没有完全的解法,但有探索方向。统计模型没有问题。
2025-03-17