Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

如何用coze搭建一个ai应用

Answer

用 Coze 搭建一个 AI 应用需要关注以下几个方面:

  1. Coze 的 AI 应用架构类似于网页应用,包括前端页面用于用户输入文字或上传图片等,以及数据处理端对这些数据进行处理,数据处理端通常是工作流或插件。处理完成后,数据有展示在前端页面供用户查看或保存在数据库/知识库中供额外查询两种路径。
  2. 在搭建时,需要重点关注三个方面:
    • Coze AI 应用的前端页面构建,包括布局、组件构成及它们之间的关系。
    • 前端页面如何将页面数据(输入的文字或上传的图片)传递给工作流或插件。
    • 工作流/插件处理完成后输出的数据如何返回给前端页面展示。
  3. 通过多个官方案例来学习,例如 AI 翻译应用,应掌握前端的基本结构,如页面、组件、Form 表单、Div 容器、文本框等及相关事件,还有表单向工作流传递数据以及工作流数据返回前端组件展示的方式。
  4. Coze 的工作流是一种可视化方式,由多个节点组成,包括 Start 节点和 End 节点,用户可通过拖拽添加各种功能模块,如插件、大语言模型、代码块等,实现复杂业务流程编排。创建和编辑工作流无需编写代码,降低了门槛,创建好的工作流可集成到聊天机器人中使用。
  5. 搭建第一个 AI Bot 的步骤:
    • 创建一个 Bot:系统默认创建 Personal 个人团队,也可创建或加入其他团队。进入团队空间的 Bots 页面,单击创建 Bot,输入名称和介绍,生成头像后确认。创建后进入 Bot 编排页面,可在左侧描述 Bot 身份和任务,中间配置扩展能力,右侧实时调试。
    • 编写提示词:这是配置 Bot 的第一步,提示词是给大型语言模型的指令,输入内容后可单击优化。更多详细信息参考相关编写提示的文档。
Content generated by AI large model, please carefully verify (powered by aily)

References

【90分钟视频教程】全网最详细的Coze AI应用教学

其实Coze的AI应用跟网页应用是非常类似的架构:1.Coze的AI应用也有一个前端页面:用来让用户进行文字输入或者图片上传等工作。2.Coze的AI应用也有一个数据处理端,将前端页面用户写入的文字或者上传的图片进行处理。这个数据处理端就是:工作流或者插件1.当工作流或者插件将数据处理完成后,有两种路径:将处理完成的数据展示在前端页面,供用户查看将处理完成的数据保存在数据库/知识库中,供用户额外查询所以在搭建Coze的AI应用的时候,我们只需要关注3个方面:1.Coze AI应用的前端页面怎么构建,布局是怎样?页面有哪些组件构成?以及他们之间的关系2.Coze AI应用的前端页面应该如何将页面数据(输入的文字或者上传的图片)传递给工作流或插件3.工作流/插件处理完成后输出的数据应该如何返回给前端页面展示下面你会发现,我们在构建任何AI应用时,都在解决这三个问题,下面我开始通过多个官方案例来学习如何构建一个完整的Coze AI应用![heading1]案例1:AI翻译应用[content]AI翻译应用是官方提供的最基本的AI应用,我们通过这个案例把AI应用的基础打牢!这个应用中我们应该掌握以下几点内容:1.AI应用前端的基本结构:页面(Page)组件(Component)Form表单Div容器文本框......事件(组件上绑定事件)1.Form表单的数据提交2.表单如何向工作流传递数据3.工作流产生的数据如何返回给前端组件展示

问:怎么描述 Coze 的工作流

Coze的工作流是一种可视化的方式,允许用户组合各种功能模块,如插件、大语言模型、代码块等,从而实现复杂和稳定的业务流程编排。具体来说:1.工作流是由多个节点组成的,包括Start节点和End节点。用户可以在这些节点之间添加各种功能模块,构建出所需的业务流程。2.工作流支持丰富的功能模块,包括调用大语言模型进行文本生成、调用插件进行数据处理等。用户可以根据需求灵活组合这些模块。3.工作流的创建和编辑都可以通过可视化的拖拽界面完成,无需编写代码。这大大降低了工作流搭建的门槛。4.创建好的工作流可以直接集成到Coze的聊天机器人中使用,实现复杂的业务逻辑。总的来说,Coze的工作流为用户提供了一种可视化、低代码的方式,来快速搭建满足业务需求的AI应用和服务。这极大地降低了开发门槛,让更多人可以利用AI技术来提升工作效率。内容由AI大模型生成,请仔细甄别

Coze官方教程

无论你是否有编程基础,你都可以在扣子平台快速搭建一个AI Bot。本文以一个可以给你发送AI新闻的Bot为例演示如何在扣子平台搭建Bot。[heading4]步骤1:创建一个Bot[content]系统默认创建了一个Personal的个人团队,该团队内创建的资源例如Bot、插件、知识库等无法分享给其他团队成员。你也可以创建团队或加入其他团队,更多信息,请参考[管理团队](https://www.coze.cn/docs/guides/teams)。进入团队空间后,默认打开Bots页面。1.在Bots页面,单击创建Bot。2.输入Bot名称和介绍,然后单击图标旁边的生成图标,自动生成一个头像。3.单击确认。Bot创建后,你会直接进入Bot编排页面。你可以在左侧人设与回复逻辑面板中描述Bot的身份和任务。单击复制可使用模板格式添加描述。你可以在中间技能面板为Bot配置各种扩展能力。在右侧预览与调试面板中,实时调试Bot。[heading4]步骤2:编写提示词[content]配置Bot的第一步就编写提示词(Bot的人设与回复逻辑功能)。提示词是给大型语言模型(LLM)的指令,以指导其生成输出。Bot根据LLM对提示词的理解来回答用户的问题。提示越清晰,就越符合预期。在Bot配置页面的人设与回复逻辑面板中输入内容。例如:你可以单击优化,让大语言模型优化为结构化内容。更多详细信息,参考[编写提示](https://www.coze.cn/docs/guides/prompt)。

Others are asking
有什么AI创建网站的工具
以下是一些常见的 AI 创建网站的工具: 1. Wix ADI(Artificial Design Intelligence) 网址:https://www.wix.com/ 特点:基于用户提供的信息自动生成定制化网站,提供多个设计选项和布局,集成了 SEO 工具和分析功能。 2. Bookmark 网址:https://www.bookmark.com/ 特点:AIDA 通过询问用户几个简单问题快速生成网站,提供直观的拖放编辑器,包括多种行业模板和自动化营销工具。 3. Firedrop 网址:https://firedrop.ai/ 特点:Sacha 是其 AI 设计助手,可根据用户指示创建和修改网站设计,提供实时编辑和预览功能,包含多种现代设计风格和自定义选项。 4. The Grid 网址:https://thegrid.io/ 特点:Molly 是其 AI 设计助手,可自动调整网站设计和布局,基于内容和用户互动进行优化,支持多种内容类型。 5. Zyro 网址:https://zyro.com/ 特点:使用 AI 生成网站内容,包括文本、图像和布局建议,提供 AI 驱动的品牌和标志生成器,包含 SEO 和营销工具。 6. 10Web 网址:https://10web.io/ 特点:基于 AI 的 WordPress 网站构建工具,可自动生成网站布局和设计,提供一键迁移功能,集成 AI 驱动的 SEO 分析和优化工具。 7. Jimdo Dolphin 网址:https://www.jimdo.com/ 特点:Dolphin 是其 AI 网站构建器,通过询问用户问题定制网站,提供自动生成的内容和图像,包含电子商务功能。 8. Site123 网址:https://www.site123.com/ 特点:简单易用,适合初学者,提供多种设计模板和布局,包括内置的 SEO 和分析工具。 在选择合适的 AI 网站制作工具时,可以考虑以下因素: 1. 目标和需求:确定网站目标(如个人博客、商业网站、在线商店)和功能需求。 2. 预算:有些工具提供免费计划或试用版,但高级功能可能需要付费订阅。 3. 易用性:选择符合自身技术水平的工具,确保能轻松使用和管理网站。 4. 自定义选项:检查工具是否提供足够的自定义选项,满足设计和功能需求。 5. 支持和资源:查看是否有足够的客户支持和学习资源(如教程、社区论坛),帮助解决问题。
2025-01-16
如何通过AI更好地提升自己的视频脚本
以下是通过 AI 更好地提升自己视频脚本的方法: 1. 小说内容分析:使用 AI 工具(如 ChatGPT)分析小说内容,提取关键场景、角色和情节。 2. 生成角色与场景描述:根据小说内容,使用工具(如 Stable Diffusion 或 Midjourney)生成角色和场景的视觉描述。 3. 图像生成:使用 AI 图像生成工具根据描述创建角色和场景的图像。 4. 视频脚本制作:将提取的关键点和生成的图像组合成视频脚本。 5. 音频制作:利用 AI 配音工具(如 Adobe Firefly)将小说文本转换为语音,添加背景音乐和音效。 6. 视频编辑与合成:使用视频编辑软件(如 Clipfly 或 VEED.IO)将图像、音频和文字合成为视频。 7. 后期处理:对生成的视频进行剪辑、添加特效和转场,以提高视频质量。 8. 审阅与调整:观看生成的视频,根据需要进行调整,比如重新编辑某些场景或调整音频。 9. 输出与分享:完成所有编辑后,输出最终视频,并在所需平台上分享。 需要注意的是,具体的操作步骤和所需工具可能会根据项目的具体需求和个人偏好有所不同。此外,AI 工具的可用性和功能也可能会随时间而变化,建议直接访问上述提供的工具网址获取最新信息和使用指南。 在视频工作流里,前期策划和后期制作是核心。前期利用 ChatGPT 生成文案,后期利用 AI 工具进行自动化视频制作。把想写的选题告诉 ChatGPT,数十秒时间它就能生成一条完整的视频脚本,包括具体场景和转场画面。虽然在创意上可能有所不足,但对于非专业人士入手视频创作有一定帮助。还可以让 ChatGPT 为视频筛选合适的 BGM,告诉它视频的情绪,它会给出参考建议。 如果是商业级的 AI 视频广告脚本创作,需要明确脚本的结构内容,包括时长、内容(开场白、汽车基本介绍、亮点展示、客户证言或推荐、呼吁行动)、音乐、台词、道具、景别、运镜等。可以使用 Claude 生成脚本,如有不满意可要求修改。
2025-01-16
怎么用AI赚钱
以下是关于如何用 AI 赚钱的一些分析和指导: 首先,对于 GPTs/GLMs 能否赚钱的问题,答案是能,但大多数人不能。从最俗气的“钱”的角度,以 AI 产品经理的角色复盘 2023 年的所见所闻所感来聊,虽然目前最大的第三方 GPTs 商店 BeBeGPTs 收录了大量数据,但结果显示并非所有人都能通过其赚到钱。 其次,大型语言模型在处理小学数学题时可能会出错,因为它们主要基于语言理解和生成,而非专门的数学计算,训练数据主要是自然语言。 再者,学了 AI 有可能赚钱,人工智能领域有很多高薪工作,如数据科学家、机器学习工程师等,掌握 AI 技术可增加在金融、医疗、制造业等行业的就业机会和职业发展可能性。但能否赚钱还取决于个人的学习能力、实际应用能力、对市场和商业的理解等因素,仅学会基础知识可能不够,需要持续学习和实践。 此外,生成式 AI 在艺术创作方面表现出色,内容创作是其第一个主流用例,如 Lensa 应用。生成式 AI 产品将服务于各种用例,从消费者“仅为了娱乐”地创造内容,到创作者或个体创业者通过内容实现盈利,且已在几乎每一种媒介中推出相关工具。
2025-01-16
ai 基础知识学习
以下是新手和中学生学习 AI 基础知识的方法和建议: 新手学习 AI : 1. 了解 AI 基本概念:阅读「」,熟悉术语和基础概念,了解主要分支及联系。 2. 浏览入门文章:了解 AI 的历史、应用和发展趋势。 3. 开始学习之旅:在「」中找到初学者课程,推荐李宏毅老师的课程。也可通过在线教育平台(如 Coursera、edX、Udacity)按自己节奏学习并获取证书。 4. 选择感兴趣模块深入:AI 领域广泛,如图像、音乐、视频等,可根据兴趣选择特定模块,掌握提示词技巧。 5. 实践和尝试:理论学习后进行实践,巩固知识,尝试使用各种产品创作,分享实践成果。 6. 体验 AI 产品:与 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人互动,了解其工作原理和交互方式。 中学生学习 AI : 1. 从编程语言入手:学习 Python、JavaScript 等编程语言,掌握编程语法、数据结构、算法等基础知识。 2. 尝试使用工具和平台:使用 ChatGPT、Midjourney 等生成工具,探索百度“文心智能体平台”、Coze 智能体平台等面向中学生的教育平台。 3. 学习基础知识:了解 AI 基本概念、发展历程、主要技术及在各领域的应用案例。 4. 参与实践项目:参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动,尝试用 AI 技术解决实际问题,培养动手能力。 5. 关注前沿动态:关注权威媒体和学者,了解最新进展,思考 AI 对未来社会的影响。 对于希望继续精进的学习者,还可以尝试了解以下 AI 基础内容: 1. AI 背景知识:包括基础理论、历史发展。 2. 数学基础:统计学基础(如均值、中位数、方差)、线性代数(向量、矩阵)、概率论(条件概率、贝叶斯定理)。 3. 算法和模型:监督学习(线性回归、决策树、支持向量机)、无监督学习(聚类、降维)、强化学习。 4. 评估和调优:性能评估(交叉验证、精确度、召回率)、模型调优(网格搜索)。 5. 神经网络基础:网络结构(前馈网络、卷积神经网络、循环神经网络)、激活函数(ReLU、Sigmoid、Tanh)。
2025-01-16
关于ai的最早的论文文献
以下是关于 AI 最早的一些论文文献相关信息: 《报告:GPT4 通用人工智能的火花》:文中提到智能是一个多方面而难以捉摸的概念,1994 年一组心理学家对其进行了定义。现代 AI 研究的创始人在早期著作中提出了理解智能的宏伟目标,几十年来 AI 研究人员不断追求智能原则。“通用人工智能”(AGI)一词在 2000 年代初流行起来。 《游戏中的生成式 AI 革命》:介绍了生成式 AI 是一种机器学习类别,能根据用户提示生成新内容。AI 在游戏中并非新鲜事物,但早期游戏中的计算机对手只是简单脚本程序,如今因计算能力提升可构建大型神经网络。 《【AI 学习笔记】小白如何理解技术原理与建立框架(通俗易懂内容推荐)》:包括了对 AI 大模型原理的解释,如相关技术名词,如监督学习、无监督学习、强化学习、深度学习等,还提到了技术里程碑,如 2017 年 6 月谷歌团队发表的提出 Transformer 模型的论文。
2025-01-16
如何学习ai
以下是新手学习 AI 的方法和建议: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,可根据自己的兴趣选择特定模块深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解其工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 对于中学生学习 AI,建议如下: 1. 从编程语言入手学习: 可以从 Python、JavaScript 等编程语言开始,学习编程语法、数据结构、算法等基础知识,为后续的 AI 学习打下基础。 2. 尝试使用 AI 工具和平台: 可以使用 ChatGPT、Midjourney 等 AI 生成工具,体验 AI 的应用场景。 探索一些面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. 学习 AI 基础知识: 了解 AI 的基本概念、发展历程、主要技术如机器学习、深度学习等。 学习 AI 在教育、医疗、金融等领域的应用案例。 4. 参与 AI 相关的实践项目: 参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动。 尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 5. 关注 AI 发展的前沿动态: 关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展。 思考 AI 技术对未来社会的影响,培养对 AI 的思考和判断能力。 记住,学习 AI 是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,您将逐渐建立起自己的 AI 知识体系,并能够在这一领域取得成就。完整的学习路径建议参考「通往 AGI 之路」的布鲁姆分类法,设计自己的学习路径。
2025-01-16
coze教程
以下是关于 Coze 的教程: 一泽 Eze 的教程: 可能是全网最好的 Coze 教程之一,一次性带你入门 Coze 工作流。 即使是非技术出身的爱好者也能上手跟学,一站式学会 AI Agent 从设计到落地的全流程方法论。 阅读指南:长文预警,请视情况收藏保存。 核心看点:通过实际案例逐步演示,用 Coze 工作流构建能稳定按模板要求生成结构化内容的 AI Agent;开源 AI Agent 的设计到落地的全过程思路;10+项常用的 Coze 工作流的配置细节、常见问题与解决方法。 适合人群:玩过 AI 对话产品的一般用户;希望深入学习 AI 应用开发平台(如 Coze、Dify),对 AI Agent 工作流配置感兴趣的爱好者。 注:本文不单独讲解案例所涉及 Prompt 的撰写方法。文末「拓展阅读」中,附有相关 Prompt 通用入门教程、Coze 其他使用技巧等内容,以供前置或拓展学习。 大圣的教程: Coze 概述:字节的官方解释为 Coze 是新一代一站式 AI Bot 开发平台,无论是否有编程基础,都可在其上快速搭建基于 AI 模型的各类问答 Bot,从解决简单问答到处理复杂逻辑对话,并能将 Bot 发布到各类社交平台和通讯软件上互动。个人认为 Coze 是字节针对 AI Agent 领域的初代产品,在 Coze 中称 AI Agent 为 Bot。字节针对 Coze 部署了国内版和海外版两个站点。 国内版:网址为 https://www.coze.cn ,官方文档教程为 https://www.coze.cn/docs/guides/welcome ,使用字节自研的云雀大模型,国内网络可正常访问。 海外版:网址为 https://www.coze.com ,官方文档教程为 https://www.coze.com/docs/guides/welcome ,使用 GPT4、GPT3.5 等大模型(访问需突破网络限制的工具),参考文档:https://www.coze.com/docs/zh_cn/welcome.html 。 AI Agent 的开发流程:Bot 的开发和调试页面布局主要分为提示词和人设的区块、Bot 的技能组件、插件、工作流、Bot 的记忆组件、知识库、变量、数据库、长记忆、文件盒子、一些先进的配置、触发器(例如定时发送早报)、开场白(用户和 Bot 初次对话时,Bot 的招呼话语)、自动建议(每当和 Bot 一轮对话完成后,Bot 给出的问题建议)、声音(和 Bot 对话时,Bot 读对话内容的音色),下面会逐一讲解每个组件的能力以及使用方式。
2025-01-16
coze 搭建学习
以下是关于 Coze 搭建学习的相关内容: 5 月 7 号():大聪明分享,主题为“Agent 的前世今生”,每个分享人分享最初接触 Coze 的经历以及现在用 Coze 做什么。20:00 由 @🌈AJ 主持开场,20:00 21:00 大聪明分享,21:00 21:30 关于 Coze 随便聊聊。 5 月 8 号():大圣分享,主题为“我眼中的 AI Agent 以及通过搭建知识库实例入门 Coze”,20:00 21:20 大圣分享。 5 月 9 号():艾木分享,主题为“Agent 系统的核心构成:Workflow 和 Multiagent Flow(以‘Dr.Know’和‘卧底’为例)”,20:00 21:00 艾木分享,21:00 21:30 线上答疑。 5 月 10 号():罗文分享,主题为“一个方法解锁 COEZ 所有插件的用法+如何自动化解锁每天抓取 X 内容+改写+发布到飞书”,20:00 21:00 罗文分享。 5 月 11 号():Itao 分享,主题为“和 AI 成为搭子”,20:00 21:00 Itao 分享,21:00 21:30 线上答疑。 此外,还有用 Coze 学习 RAG 的方法: 推荐使用 Claude + Coze 的方法学习新知识。Claude 是目前最强的 AI 大模型,一个月 20 美元,好用到飞起。Coze 是一款 AI Agent 的衍生产品,最大价值在于依靠它跟进当前 AI Agent 工具的发展情况,发现商业化机会,以及做产品 Demo。 在学习 RAG 的过程中,首先通过 Claude 了解细节概念,然后通过 Coze 搭建 Demo 动手实践。 学习 RAG 过程中创建了 4 个 Bot: 产品资料问答机器人,利用了 Coze 的知识库能力,演示知识库在企业中的应用。相关资料参考公开分享: Query 改写助手学习 Bot,专门做了一个 Bot 机器人进行学习。Bot 地址:https://www.coze.cn/store/bot/7400077517299957800?panel=1&bid=6dkpl06gg601j
2025-01-15
国内coze调用api的例子
以下是国内 Coze 调用 API 的一些例子: 1. 通过已有服务 API 创建插件: 进入 Coze 个人空间,选择插件,新建一个插件并命名,如 api_1。 在插件的 URL 部分,填入 Ngrok 随机生成的 https 链接地址。 按照 Coze 的指引配置输出参数,测试后发布插件。 2. 手捏简单的 Bot 并接入创建的插件:创建测试 API 的 Bot,将创建的 api_1 插件接入,在 prompt 里让其调用插件。 3. 测试 AI Bot 时可能遇到的情况:Coze 国内版刚发布不久,有些官方和第三方插件的 API 调用和返回结果不太稳定,可能出现回答不完整的情况,但相信官方会尽快解决。 4. 获取 Coze 的 accessToken 和 botid: 获取 accessToken:在 Coze 界面右侧扣子 API 授权,或者打开链接 https://www.coze.cn/open/oauth/pats,添加令牌,设置名称、过期时间和权限,完成后点击确定按钮并复制下拉令牌。 获取 botid:通过工作空间获取,从“工作空间”打开一个 bot,点击商店按钮查看地址栏中的数字即为 botid。 发布为 bot api:注意在前端使用 bot 必须发布成为 API,点击发布并选择 API,等待审核通过后可按上述方法拿到 botid。 获取空间 id:进入 Coze 后,左边打开工作空间,找到 url 中的 id 并复制。
2025-01-12
如何通过程序代码调用coze的api?
要通过程序代码调用 Coze 的 API,大致步骤如下: 1. 创建一个插件: 填入插件名和插件描述。 选择云侧插件作为创建方式。 选择 Python 作为 IDE 运行时。 点击【在 IDE 中创建工具】。 在创建工具面板里: 填入工具名称。 填入工具介绍。 2. API 接入相关操作: Glif 允许通过 API 调用平台上的应用,API 接入:https://docs.glif.app/api/gettingstarted 。 去创建一个新的 Token 并复制备用。 将自己发布的 glif 链接上的 id 复制备用。 3. 在 Coze 的 IDE 中: 引入依赖和编写 handler 方法。 代码中对应的数据字段在元数据 Tab 中设置: 填写入参字段和描述,对完整链接要写清楚。 填写出参字段。 左侧的依赖包添加【requests】。 填入测试数据运行,测试通过后即可发布。 4. 创建一个 Bot,挂载新创建的插件,在 Prompt 中做一些对入参的校验和约束。 5. 测试从 Coze 调用 Glif 功能跑通,发布 Coze。 另外,获取 Coze 的 accessToken 和 botid 时,需要了解以下内容: 1. OAuth 授权的范围控制: 个人空间:访问个人创建的 bot。 团队空间:可以跨账号授权,比如让其他团队成员访问你创建的 bot。 2. 跨账号授权流程: 用户 A 在用户 B 的团队空间创建了 bot。 用户 A 要使用这个 bot,需要: 先让空间所有者安装这个 OAuth 应用。 然后用户 A 才能获取授权码访问其在该团队空间创建的 bot。 3. OAuth 和 PAT的主要区别: OAuth token 有效期更短,安全性更高。 OAuth 可以实现跨账号的授权。 PAT 只能访问个人的资源。 在 Coze 中用现有服务创建自己的 plugin 时: 1. 进入 Coze,在个人空间中选择插件,新建一个插件,起名并填写描述。 2. 在插件的 URL 部分,填入 Ngrok 随机生成的 https 的链接地址。 3. 配置输出参数。 4. 测试后发布插件。 5. 创建 Bot 并接入创建的插件,在 prompt 中设置调用插件的相关要求。
2025-01-12
如果通过程序调用coze的api?
要通过程序调用 Coze 的 API,您需要以下步骤: 1. 获取 accessToken: 在 Coze 界面右侧扣子 API 授权,或者打开链接 https://www.coze.cn/open/oauth/pats 。 找到“个人访问令牌”,添加令牌。设置令牌的名称和过期时间(最多 1 个月),并选择权限。 完成后点击“确定”按钮,一定要点击按钮复制下拉获取令牌,因为该令牌只会出现一次。 2. 获取 botid: 通过工作空间获取,从“工作空间”打开一个 bot,点击商店按钮,查看地址栏中的数字即为 botid。 注意:如果要在前端使用 bot,必须将其发布成为 API,点击发布并选择 API,等审核通过后即可按上述方法拿到 botid。 3. 获取空间 id:进入 Coze 后,左边打开工作空间,找到 url 中的 id 并复制出来。 此外,OAuth 授权的范围控制包括个人空间和团队空间。个人空间可访问个人创建的 bot,团队空间可以跨账号授权。OAuth 和 PAT(个人访问令牌)的主要区别在于 OAuth token 有效期更短、安全性更高且可以实现跨账号授权,而 PAT 只能访问个人的资源。 如果要将 Glif 的功能通过 API 方式接入 Coze,步骤如下: 1. 先创建一个插件: 填入插件名和插件描述。 创建方式选择云侧插件。 IDE 运行时选择 Python,点击【在 IDE 中创建工具】。 在创建工具面板里:填入工具名称和工具介绍。 2. 进行相关设置: 去创建一个新的 Token 并复制备用。 将自己发布的 glif 链接上的 id 复制备用。 在 Coze 的 IDE 中引入依赖(如 requests)和编写 handler 方法。 在代码中对应的数据字段在元数据 Tab 中设置,包括填写入参字段和描述、出参字段等。 3. 填入测试数据运行,测试通过后即可发布。创建一个 Bot,挂载新创建的插件,在 Prompt 中做一些对入参的校验和约束。最后,测试从 Coze 调用 Glif 功能跑通,发布 Coze。
2025-01-12
Coze扣子这个智能体搭建平台是什么?能做什么?作为一个非IT专业的普通人,怎么学习用它来创建智能体?学习的路径和步骤
Coze 扣子是一款基于自然语言处理和人工智能技术的智能助手平台,具有以下特点和功能: 1. 提供丰富的插件生态,能帮助用户快速实现个性化的智能应用,无需编写复杂代码。 2. 经过一年多的用户打磨,插件生态和分发渠道对个人用户够用,上手难度不高,信息获取插件丰富。 3. 推出专业版服务,主要特性包括企业级 SLA 保障、高级特性支持(如批量处理、私有数据等)以及更优惠的计费项。 对于非 IT 专业的普通人,学习用它来创建智能体的路径和步骤如下: 1. 体验和了解 Coze 扣子平台的基本功能和操作,熟悉其界面和常用工具。 2. 学习相关的基础知识,例如自然语言处理的基本概念、智能体的工作原理等。 3. 参考平台提供的教程和示例,逐步尝试创建简单的智能体。 4. 加入相关的学习交流群,与其他用户交流经验,共同学习进步。 需要注意的是,目前提示词攻击在业内是公开的秘密,像扣子这样的智能体编排平台,其热门智能体的核心提示词可能会被轻易获取,存在一定的安全风险。
2025-01-12
waytoagi怎么搭建的
WaytoAGI 的搭建过程如下: 大家在杭州西湖边上的明月楼竹林间进行了深入探讨,第二天便用飞书文档搭建了整个目录。 所有节目均由 AI 工具制作,历时 30 天,有 40 个节目,300 多人参与共创,最终实现了 AI 春晚 150 万的曝光。 2023 年 4 月 26 日诞生,2024 年举办其生日庆典。它是由一群热爱 AI 的专家和爱好者共同建设的开源知识库,在无任何推广的情况下,一年时间已有超 70 万用户和超千万次访问量。社群的 Slogan 是让更多的人因 AI 而强大,有很多学社和共学共建的活动。打开“waytoagi.com”可找到社群。
2025-01-16
搭建个人知识库
搭建个人知识库主要包括以下内容: 1. 了解 RAG 技术: 利用大模型的能力搭建知识库是 RAG 技术的应用。 大模型训练数据有截止日期,当需要依靠不在训练集中的数据时,可通过检索增强生成 RAG 实现。 RAG 应用包括文档加载、文本分割、存储、检索和输出 5 个过程。 文档加载:从多种来源加载文档,LangChain 提供 100 多种文档加载器,包括非结构化、结构化数据和代码等。 文本分割:把文档切分为指定大小的块。 存储:包括将切分好的文档块嵌入转换成向量形式,并将向量数据存储到向量数据库。 检索:通过检索算法找到与输入问题相似的嵌入片。 输出:把问题及检索出来的嵌入片提交给 LLM 生成答案。 2. 基于 GPT API 搭建: 涉及给 GPT 输入定制化知识,但 GPT3.5 一次交互容量有限,可使用 OpenAI 的 embedding API 解决方案。 embeddings 是浮点数字的向量,向量之间的距离衡量关联性,小距离表示高关联度。 3. 本地知识库进阶: 若要更灵活掌控,需额外软件 AnythingLLM,其包含 Open WebUI 能力,并支持选择文本嵌入模型和向量数据库。 安装地址:https://useanything.com/download 。 安装完成后进入配置页面,主要分为三步:选择大模型、选择文本嵌入模型、选择向量数据库。 AnythingLLM 中有 Workspace 概念,可创建独有 Workspace 与其他项目数据隔离。 构建本地知识库包括创建工作空间、上传文档并嵌入、选择对话模式(Chat 模式综合给出答案,Query 模式仅依靠文档数据给出答案)、测试对话。 最后,“看十遍不如实操一遍,实操十遍不如分享一遍”。如果对 AI Agent 技术感兴趣,可联系或加入免费知识星球(备注 AGI 知识库)。
2025-01-15
智能体搭建教程
以下是关于智能体搭建的教程: 1. 在品牌卖点提炼中的应用: 确定智能体的结构:按照市场营销逻辑组织,包括品牌卖点定义与分类助手、品牌卖点提炼六步法、STP 市场分析助手、用户画像分析助手、触点收集助手等,还包括用户需求分析的 KANO 助手、营销六层转化漏斗分析、超级转化率六要素等在后续应用中有效的分析工具。 2. 智谱 BigModel 共学营第二期: 注册智谱 Tokens 智谱 AI 开放平台:https://bigmodel.cn/ 。新注册用户送 2000 万 Tokens,可充值/购买多种模型的低价福利资源包,如语言资源包、多模态资源包等,所有资源包购买地址:https://bigmodel.cn/finance/resourcepack 。 先去【财务台】左侧的【资源包管理】查看自己的资源包,本次项目会使用到的有 GLM4、GLM4VPlus、CogVideoX、CogView3Plus 模型。 进入智能体中心我的智能体,开始创建智能体。 3. 旅行青蛙——最佳创意奖,百宝箱智能体开源分享: 整体框架:由一条主线和四条分支组装成。 主线节点: 开始节点,选择单个文本。 大模型节点 1(更名为月):提取触发事件中的月份,输出为数字。 大模型节点 2(更名为日):提取触发事件中的日,输出为数字。 插件——历史上的今天,选择 day 变量的引入值为“日/结果”,选择 month 变量的引入值为“月/结果”。 设置意图识别,包括上下文引用和设定功能分支。
2025-01-15
可以搭建微信小程序的AI有哪些
以下是一些可以用于搭建微信小程序的 AI 相关工具和方法: 1. 通过 Zion 可以以 API 形式链接并搭建,相关教程可参考: 自定义配置方面,变现模版 UI 交互、API、数据库等拓展功能,支持在 Zion 内自由修改,可参考文档配置。支付相关可参考: Zion 支持小程序、Web、AI 行为流全栈搭建,APP 端全栈搭建预计 2025 上线。 2. Coze 变现模板正在全新升级,微信小程序变现模版正在开发中,12 月将会上线。目前实现小程序端可以通过 API 形式搭建,可参考 API 形式。同时有△AI 变现的小程序端案例。
2025-01-13
小白怎么搭建一个智能体?
对于小白搭建智能体,可参考以下步骤: 1. 智能体创建: 进入 coze 官网(www.coze.cn),注册并登录。 点击页面左上角的⊕,通过【标准创建】填入 bot 的基本信息。 了解 Bot 开发调试界面: 人设与回复逻辑(左侧区域):设定 Bot 的对话风格、专业领域定位,配置回复的逻辑规则和限制条件,调整回复的语气和专业程度。 功能模块(中间区域): 技能配置:插件可扩展 Bot 的专业能力,如计算器、日历等工具;工作流可设置固定的处理流程和业务逻辑;图像流可处理和生成图像;触发器可设置自动化响应条件。 知识库管理:文本可存储文字类知识材料,表格可结构化数据的存储和调用,照片可作为图像素材库。 记忆系统:变量可存储对话过程中的临时信息,数据库可管理持久化的结构化数据,长期记忆可保存重要的历史对话信息,文件盒子可管理各类文档资料。 交互优化(底部区域):开场白可设置初次对话的问候语,用户问题建议可配置智能推荐的后续问题,快捷指令可设置常用功能的快速访问,背景图片可自定义对话界面的视觉效果。 预览与调试(右侧区域):实时测试 Bot 的各项功能,调试响应效果,优化交互体验。 2. 图像流搭建: 创建第一个图像流:由于文本类型大语言模型无法直接生成图片,需要通过【技能】部分的图像流,为文本大模型提供图像生成能力。比如为 marvin 机器人加入图像流,按照步骤创建图像流并设定图像流名称以及描述(注意名称只能是英文)。 了解图像流节点的意义:在图像流编辑界面,左侧的工具栏集合了所有可能用到的功能。智能处理工具包括“智能生成”“智能抠图”和“画质提升”等;基础编辑工具如画板、裁剪、调整、添加文字等可满足日常图片编辑需求;风格处理类工具如风格迁移、背景替换能让图片更有创意。 根据需求进行图像流设计: 生成海报功能在总结故事后,将完整的故事作为输入。 对输入的故事进行一轮提示词优化,从自然语言转变为更符合文生图大模型的提示词。 将优化后的提示词输入生图大模型,调整生图的基础风格和信息,输出最终的配图海报。 测试图像流。
2025-01-13
一般可以应用快速生成思维导图的工具有什么
以下是一些可以快速生成思维导图的工具: 1. GitMind:免费的跨平台思维导图软件,支持多种模式,可通过 AI 自动生成思维导图。 2. ProcessOn:国内的思维导图+AIGC 工具,能利用 AI 生成思维导图。 3. AmyMind:轻量级在线工具,无需注册登录,支持自动生成节点。 4. Xmind Copilot:Xmind 推出的基于 GPT 的助手,可一键拓展思路并生成文章大纲。 5. TreeMind:“AI 人工智能”思维导图工具,输入需求即可由 AI 自动生成。 6. EdrawMind:提供一系列 AI 工具,包括头脑风暴功能,有助于提升生产力。 总的来说,这些工具都能借助 AI 技术自动生成思维导图,提高制作效率,为知识工作者带来便利。
2025-01-16
AI手机端和网页端的应用场景有什么区别?
AI 手机端和网页端的应用场景存在以下区别: 网页端产品更倾向于支持涉及内容创作和编辑的复杂、多步骤工作流程,例如 AI 语音工具包 ElevenLabs、AI 艺术创作器 Leonardo 以及 AI 演示文稿构建器 Gamma 等。 移动端应用更倾向于通用型助手,不少在功能上模仿了 ChatGPT。 在移动设备上,图片和视频的内容编辑是最常见的用途。例如,美图秀秀、SNOW 和 Adobe Express 等传统创意工具转型为生成式 AI 优先,并在移动排名中表现出色。 ChatGPT 以巨大优势成为网络和移动端排名第一的产品,而争夺最佳消费者助手的竞争正在升温。Perplexity 在网络上排名第三,专注于提供简明、实时和准确的查询答案,且用户参与度很高,还首次进入移动端前 50 名榜单。Anthropic 的 Claude 是 ChatGPT 的直接竞争对手,在网页排名中进入前五。
2025-01-16
Agent 现在已经落地应用场景有哪些?
AI Agent 已经在以下场景得到落地应用: 1. 软件开发:基于大型语言模型的 Agent 利用自然语言理解和生成能力,能够与其他 Agent 进行交流和协作。 2. 科学研究:在相关研究中发挥作用。 3. 手机操作:如 AppAgent 可以通过自主学习和模仿人类的点击和滑动手势,在手机上执行各种任务,包括社交媒体发帖、撰写和发送邮件、使用地图、在线购物、图像编辑等。 4. 日常服务:如点外卖、写点评、看公众号等。 例如,AutoGLM 能够根据用户意图准确选择合适的应用场景,如“帮我买一杯咖啡”时打开美团,“帮我买一包咖啡豆”时打开淘宝。但目前仍存在一些问题,如语音识别有时偏差、复杂界面操作稳定性待提升、仅支持安卓等,不过这些可通过技术迭代解决。
2025-01-16
AI在教育上应用分类
AI 在教育上的应用主要包括以下几类: 1. 个性化学习:通过集成算法和大数据分析,实时跟踪学生学习进度,诊断学习难点,提供个性化学习建议和资源,如 Knewton 平台。 2. 自动评估:利用自然语言处理技术(NLP)自动批改学生的作文和开放性答案题,如 Pearson 的 Intelligent Essay Assessor,减轻教师批改负担,提高评估效率和一致性。 3. 智能辅助教学:推出智能辅助教学工具,如 AI 教师引导学生通过对话学习、解答疑问并提供即时反馈,Google 的 AI 教育工具 AutoML 用于创建定制学习内容,提高学习动机和知识掌握程度。 4. 虚拟现实(VR)和增强现实(AR):学生可通过 VR 头盔进入虚拟实验室进行安全实验操作并获得 AI 系统反馈,如 Labster 的虚拟实验室平台。
2025-01-14
AI教育应用
AI 在教育领域有以下应用: 1. 个性化学习平台:通过集成算法和大数据分析,实时跟踪学生学习进度,诊断学习难点,提供个性化学习建议和资源。例如 Knewton 平台,通过对数百万学生行为模式分析,精准预测学习难点并提前给出解决方案,大幅提升学习效率。 2. 自动评估:利用自然语言处理技术(NLP)自动批改学生作文和开放性答案题。如 Pearson 的 Intelligent Essay Assessor,能够分析和理解写作内容,给出准确评分和反馈,减轻教师批改负担,提高评估效率和一致性。 3. 智能辅助教学工具:如 AI 教师能引导学生通过对话学习,解答疑问并提供即时反馈。Google 的 AI 教育工具 AutoML 用于创建定制学习内容,提高学习动机,加深知识掌握。 4. 虚拟现实(VR)和增强现实(AR):学生可通过 VR 头盔进入虚拟实验室,安全进行实验操作并得到 AI 系统反馈。例如 Labster 的虚拟实验室平台,提供高科技实验室场景,让学生尝试复杂实验流程,无需昂贵设备或专业环境。 然而,AI 技术在教育领域的广泛应用也带来了一些挑战,如教育体系内部的惯性、教师技能更新、课程内容适时调整、评估和认证机制改革等。
2025-01-14
智能体(AI Agent)对比大模型在应用中的优势是什么
智能体(AI Agent)对比大模型在应用中的优势主要包括以下方面: 1. 能够回答私有领域问题,例如公司制度、人员信息等,而大模型存在无法回答此类问题的局限性。 2. 可以及时获取最新信息,如实时天气、比赛结果等,大模型在这方面有所不足。 3. 能准确回答专业问题,如复杂数学计算、图像生成等,大模型在这些方面表现欠佳。 4. 适用于多种客户场景,如有企业官网、钉钉、微信等渠道,期望为客户提供产品咨询服务的场景,以及缺少技术人员开发大模型问答应用的情况。 5. 基于大模型,通过集成特定的外部能力,弥补大模型的不足。例如集成实时信息获取、回答私有领域问题等外部能力。 6. 典型场景丰富,包括私有领域知识问答、个性化聊天机器人、智能助手等。如私有领域知识问答,只需准备好相关知识库文件,就可在百炼控制台快速创建应用;个性化聊天机器人可通过长期记忆保存关键历史对话信息,并集成夸克搜索和图像生成等插件扩展功能;智能助手可引入 RAG 能力、长期记忆和自定义插件等功能提升工作效率。 在基准测评方面,AI Agent 智能体正在最大程度释放 LLM 潜能,逐渐成为通向 AGI 的技术共识。现有关于 Agent 能力的测评,主要在英文场景或任务,目前还没有一个在中文任务和场景上针对中文大模型的全面测评。通过测评结果发现,在 Agent 核心基础能力上,国内模型已经较为接近或部分超过 GPT3.5 水平。 从原理上看,智能体中间的“智能体”就是 LLM 或大模型,通过为其增加工具、记忆、行动、规划四个能力来实现。行业里主要用到的是 langchain 框架,它把 LLM 之间以及 LLM 和工具之间通过代码或 prompt 的形式进行串接,在 prompt 层和工具层完成主要的设计逻辑。
2025-01-13