AI(人工智能)和 AGI(通用人工智能)主要有以下区别:
AI分为ANI和AGI,ANI得到巨大发展但是AGI还没有取得巨大进展。ANI,artificial narrow intelligence弱人工智能。这种人工智能只可做一件事,如智能音箱,网站搜索,自动驾驶,工厂与农场的应用等。AGI,artificial general intelligence,做任何人类可以做的事[heading5]机器学习[content]监督学习,从A到B,从输入到输出。为什么近期监督学习会快速发展,因为现有的数据快速增长,神经网络规模发展以及算力快速发展。[heading5]什么是数据?[content]数据集,又称为资料集、数据集合或资料集合,是一种由数据所组成的集合。Data set(或dataset)是一个数据的集合,通常以表格形式出现。每一列代表一个特定变量。每一行都对应于某一成员的数据集的问题。它列出的价值观为每一个变量,如身高和体重的一个物体或价值的随机数。每个数值被称为数据资料。对应于行数,该数据集的数据可能包括一个或多个成员。如何获取数据,一,手动标注,二,观察行为,三,网络下载。使用数据的方法,如果开始搜集数据,可以马上将数据展示或者喂给某个AI团队,因为大多数AI团队可以反馈给IT团队,说明那种类型数据需要收集,以及应该继续构建那种类型的IT基础框架。数据不一定多就有用,可以尝试聘用AI团队要协助梳理数据。有时数据中会出现,不正确,缺少的数据,这就需要有效处理数据。数据同时分为结构化数据与非结构化数据。结构化数据可以放在巨大的表格中,人们理解图片,视频,文本很简单,但是这种非结构化数据机器处理起来更难一些。
|弱人工智能|强人工智能||-|-||弱人工智能指的是针对特定任务或范围较小的任务来设计和训练的AI系统。|强人工智能,或通用人工智能(AGI),是指具有人类水平的智能和理解能力的AI系统。||这些AI系统不是通用智能的;它们只擅长执行提前定义好的任务,但缺乏真正的理解和意识。|这些AI系统有能力完成任何人类可以完成的智力任务,适用于不同的领域,同时拥有某种形式的意识或自我意识。||弱人工智能的例子包括Siri或Alexa等虚拟助手,流媒体服务所使用的推荐算法,以及为特定客服任务所设计的对话机器人。|实现强人工智能是人工智能研究的长期目标,这需要我们开发出在各种任务和环境中都能够进行推理、学习、理解和适应的AI系统。||弱人工智能是高度专业化的,它不具备像人类一样的认知能力,也无法超出为它设定的小范围领域来解决一般问题。|强人工智能目前还只是一个理论概念,还没有任何AI系统能达到这种通用智能水平。|更多信息请见[通用人工智能](https://en.wikipedia.org/wiki/Artificial_general_intelligence)(AGI)。
在生成式AI的下一个阶段,我们预计推理研发的成果将快速且深入地渗透到应用层。过去,很多认知架构依赖于巧妙的“解锁”技术;而随着这些能力逐渐深度嵌入到模型中,自主应用程序的复杂性和稳健性将会迅速提升。在研究实验室中,推理和推理时计算将继续成为未来的重要议题。随着新的扩展法则的出现,新的竞赛已经开始。但在特定领域中,获取真实世界的数据并构建领域和应用特定的认知架构仍然是一个巨大的挑战。这意味着,在解决现实世界中多样化问题时,“最后一公里”的应用提供商可能更具优势。展望未来,多代理系统,如Factory的“机器人”,可能会成为建模推理和社会学习过程的主流方式。一旦AI能够执行工作,我们将能组建团队,让“工人”完成更多任务。我们所期待的,是生成式AI的“第37步”时刻——就像AlphaGo在与李世石对战的第二局中出人意料的那一步棋。当一个通用AI系统展现出超越人类的思考和决策时,那一刻便会到来。这并不意味着AI将“觉醒”(AlphaGo并没有),而是AI在感知、推理和行动的模拟过程中,能够以全新的方式进行探索。这或许就是通用人工智能(AGI),但如果是这样,它并不会是单一的奇迹,而是技术发展的下一个阶段。