Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

AI和AGI有什么区别

Answer

AI(人工智能)和 AGI(通用人工智能)主要有以下区别:

  1. 任务范围:
    • AI 通常是针对特定任务或范围较小的任务来设计和训练的,例如智能音箱、网站搜索、自动驾驶等。
    • AGI 则具有能够完成任何人类可以完成的智力任务的能力,适用于不同的领域。
  2. 认知能力:
    • AI 不具备像人类一样的认知能力,无法超出为其设定的小范围领域来解决一般问题。
    • AGI 拥有人类水平的智能和理解能力,同时可能拥有某种形式的意识或自我意识。
  3. 应用实例:
    • 弱人工智能的例子包括 Siri 或 Alexa 等虚拟助手,流媒体服务所使用的推荐算法,以及为特定客服任务所设计的对话机器人。
    • 目前还没有任何 AGI 系统的实际应用案例,它仍是人工智能研究的长期目标。
  4. 发展阶段:
    • AI 中的 ANI(弱人工智能)已经得到了巨大发展。
    • AGI 还没有取得巨大进展,目前仍处于理论概念阶段。
Content generated by AI large model, please carefully verify (powered by aily)

References

学习笔记:AI for everyone吴恩达

AI分为ANI和AGI,ANI得到巨大发展但是AGI还没有取得巨大进展。ANI,artificial narrow intelligence弱人工智能。这种人工智能只可做一件事,如智能音箱,网站搜索,自动驾驶,工厂与农场的应用等。AGI,artificial general intelligence,做任何人类可以做的事[heading5]机器学习[content]监督学习,从A到B,从输入到输出。为什么近期监督学习会快速发展,因为现有的数据快速增长,神经网络规模发展以及算力快速发展。[heading5]什么是数据?[content]数据集,又称为资料集、数据集合或资料集合,是一种由数据所组成的集合。Data set(或dataset)是一个数据的集合,通常以表格形式出现。每一列代表一个特定变量。每一行都对应于某一成员的数据集的问题。它列出的价值观为每一个变量,如身高和体重的一个物体或价值的随机数。每个数值被称为数据资料。对应于行数,该数据集的数据可能包括一个或多个成员。如何获取数据,一,手动标注,二,观察行为,三,网络下载。使用数据的方法,如果开始搜集数据,可以马上将数据展示或者喂给某个AI团队,因为大多数AI团队可以反馈给IT团队,说明那种类型数据需要收集,以及应该继续构建那种类型的IT基础框架。数据不一定多就有用,可以尝试聘用AI团队要协助梳理数据。有时数据中会出现,不正确,缺少的数据,这就需要有效处理数据。数据同时分为结构化数据与非结构化数据。结构化数据可以放在巨大的表格中,人们理解图片,视频,文本很简单,但是这种非结构化数据机器处理起来更难一些。

人工智能简介和历史

|弱人工智能|强人工智能||-|-||弱人工智能指的是针对特定任务或范围较小的任务来设计和训练的AI系统。|强人工智能,或通用人工智能(AGI),是指具有人类水平的智能和理解能力的AI系统。||这些AI系统不是通用智能的;它们只擅长执行提前定义好的任务,但缺乏真正的理解和意识。|这些AI系统有能力完成任何人类可以完成的智力任务,适用于不同的领域,同时拥有某种形式的意识或自我意识。||弱人工智能的例子包括Siri或Alexa等虚拟助手,流媒体服务所使用的推荐算法,以及为特定客服任务所设计的对话机器人。|实现强人工智能是人工智能研究的长期目标,这需要我们开发出在各种任务和环境中都能够进行推理、学习、理解和适应的AI系统。||弱人工智能是高度专业化的,它不具备像人类一样的认知能力,也无法超出为它设定的小范围领域来解决一般问题。|强人工智能目前还只是一个理论概念,还没有任何AI系统能达到这种通用智能水平。|更多信息请见[通用人工智能](https://en.wikipedia.org/wiki/Artificial_general_intelligence)(AGI)。

生成式人工智能的行动 o1

在生成式AI的下一个阶段,我们预计推理研发的成果将快速且深入地渗透到应用层。过去,很多认知架构依赖于巧妙的“解锁”技术;而随着这些能力逐渐深度嵌入到模型中,自主应用程序的复杂性和稳健性将会迅速提升。在研究实验室中,推理和推理时计算将继续成为未来的重要议题。随着新的扩展法则的出现,新的竞赛已经开始。但在特定领域中,获取真实世界的数据并构建领域和应用特定的认知架构仍然是一个巨大的挑战。这意味着,在解决现实世界中多样化问题时,“最后一公里”的应用提供商可能更具优势。展望未来,多代理系统,如Factory的“机器人”,可能会成为建模推理和社会学习过程的主流方式。一旦AI能够执行工作,我们将能组建团队,让“工人”完成更多任务。我们所期待的,是生成式AI的“第37步”时刻——就像AlphaGo在与李世石对战的第二局中出人意料的那一步棋。当一个通用AI系统展现出超越人类的思考和决策时,那一刻便会到来。这并不意味着AI将“觉醒”(AlphaGo并没有),而是AI在感知、推理和行动的模拟过程中,能够以全新的方式进行探索。这或许就是通用人工智能(AGI),但如果是这样,它并不会是单一的奇迹,而是技术发展的下一个阶段。

Others are asking
通往Agi之路
“通往 AGI 之路”(WaytoAGI)是一个致力于人工智能学习的中文知识库和社区平台。 社区简介:为学习者提供系统全面的 AI 学习路径,涵盖基础概念到实际应用,由开发者、学者和 AI 爱好者共同建设,提供丰富学习资源,包括文章、教程、工具推荐及最新行业资讯,还定期组织活动,如视频挑战赛、模型创作大赛等,鼓励实践学习、促进交流合作。对 AI 学习感兴趣的加入是不错选择,可获取知识、参与活动、共同成长。 品牌 VI:融合独特设计元素,以彩虹色彰显多元性和创新,以鹿的形象象征智慧与优雅,通过非衬线字体展现现代感和清晰性,共同构建充满活力和前瞻性的品牌形象。颜色选择彩虹色代表多样性、包容性和创新;图案标志性是鹿,与“路”谐音,象征通往 AGI 未来的道路,其形象优雅智慧;字体选择简洁现代的非衬线字体,强调信息传达的清晰直接。 知识库特色:是由开发者、学者和有志人士等参与的学习社区和开源的 AI 知识库,以“无弯路,全速前进”为目标,助力怀揣 AI 梦想的人疾速前行。不仅是知识库,也是连接学习者、实践者和创新者的社区,大家在此碰撞思想、相互鼓舞、一同成长。通过举办活动和分享,获得奖项和媒体报道,期待为大家带来更多更好内容。 角色设计:因 AI 发展产生各式各样学习交流社区,进行第一期小鹿形象设计,根据每个社区特点设计角色,以可爱形象消解对 AI 的陌生感和恐惧感,更好学习 AI 融入社区。第一期共计 10 个角色,每个都有自己的性格、喜好和故事。
2025-01-10
什么是AGI?
AGI 即通用人工智能(Artificial General Intelligence),是指具有人类水平的智能和理解能力的 AI 系统。它有能力完成任何人类可以完成的智力任务,适用于不同的领域,同时拥有某种形式的意识或自我意识。 目前 AGI 还只是一个理论概念,尚未有任何 AI 系统能达到这种通用智能水平。 OpenAI 在其内部会议上分享了 AGI 的五个发展等级,分别为: 1. 聊天机器人(Chatbots):具备基本对话能力的 AI,主要依赖预设脚本和关键词匹配,用于客户服务和简单查询响应。 2. 推理者(Reasoners):具备人类推理水平的 AI,能够解决复杂问题,如 ChatGPT,能够根据上下文和文件提供详细分析和意见。 3. 智能体(Agents):不仅具备推理能力,还能执行全自动化业务的 AI。目前许多 AI Agent 产品在执行任务后仍需人类参与,尚未达到完全智能体的水平。 4. 创新者(Innovators):能够协助人类完成新发明的 AI,如谷歌 DeepMind 的 AlphaFold 模型,可以预测蛋白质结构,加速科学研究和新药发现。 5. 组织(Organizations):最高级别的 AI,能够自动执行组织的全部业务流程,如规划、执行、反馈、迭代、资源分配和管理等。 在 AI 的分类中,与 AGI 相对的是 ANI(Artificial Narrow Intelligence,弱人工智能),弱人工智能只可做一件事,如智能音箱、网站搜索、自动驾驶、工厂与农场的应用等。
2025-01-10
请问什么是AGI
AGI 即通用人工智能(Artificial General Intelligence),是指具有人类水平的智能和理解能力的 AI 系统。 它有以下特点和相关内容: 与弱人工智能不同,强人工智能能够完成任何人类可以完成的智力任务,适用于不同的领域,同时拥有某种形式的意识或自我意识。 目前还只是一个理论概念,还没有任何 AI 系统能达到这种通用智能水平。 阿兰·图灵提出了图灵测试,将某一计算机系统和真人进行比较,若人类评审员在文本对话中无法区分真人和计算机系统,那么这个计算机系统就会被认为是“智能”的,该测试目前也被用作“智能”的定义。 例如 OpenAI 有关于实现 AGI 的计划,如原计划在 2026 年发布的 GPT7 因埃隆·马斯克的诉讼而被暂停,计划在 2027 年发布的 Q2025(GPT8)将实现完全的 AGI。GPT3 及其半步后继者 GPT3.5 在某种程度上是朝着 AGI 迈出的巨大一步。 更多信息请见 。
2025-01-10
AGI是什么意思
AGI 即 artificial general intelligence,意为通用人工智能。它指的是能够做任何人类可以做的事的人工智能。 在 AI 领域,AI 分为 ANI 和 AGI,ANI(artificial narrow intelligence,弱人工智能)只可做一件事,如智能音箱、网站搜索、自动驾驶、工厂与农场的应用等,而 AGI 则涵盖了广泛的认知技能和能力,包括推理、规划、解决问题、抽象思维、理解复杂思想、快速学习和从经验中学习等。 在 1990 年代末至 2000 年代,越来越多的人呼吁开发更普适的 AI 系统,名词“通用人工智能”(AGI)在 2000 年代初流行起来,以强调从“狭义 AI”到更广泛的智能概念的追求。我们使用 AGI 来指代符合 1994 年定义所捕捉到的智能广泛能力的系统,且包括了这些能力在或超过人类水平的附加要求。然而,目前并没有一个被广泛接受的 AGI 定义。
2025-01-10
怎么使用agi
AGI 即通用人工智能(Artificial General Intelligence),目前还处于研究阶段。以下是一些与 AGI 相关的使用信息: 对于编程方面,在配置 AI 插件之前,需要先安装 python 的运行环境。安装步骤为:点击左上角的 FileSettingsPluginsMarketplace。安装完成插件会提示登录,按要求注册登录即可。使用上和 Fitten 差不多。具体配置 python 运行环境可参考。 有一款 AI 浏览器插件,使用方法如下: 在 Chrome、Edge 等浏览器中安装插件,下载地址:https://aicard.eze.is 。 固定插件到浏览器工具栏,方便后续使用。 在想分享的网页中,点击插件→生成 AI 卡片。 复制或下载图片,即可轻松分享。 小技巧:在微信电脑版【点开图片】后【右键图片识别图中二维码】就可以访问链接。 安装方式有: 访问官网 https://aicard.eze.is,即可开箱即用。 Chrome 应用商店安装,也可以 Chrome 应用商店直接搜索 AI Share Card(需要正确网络环境访问,安装后支持自动更新)。 下载最新安装包,访问官网下载最新安装包,适用于无法访问应用商店的用户,本地安装指南详见《AI Share Card 插件本地安装指南》。 弱人工智能指针对特定任务或范围较小的任务来设计和训练的 AI 系统,如 Siri 或 Alexa 等虚拟助手,流媒体服务所使用的推荐算法,以及为特定客服任务所设计的对话机器人。强人工智能是指具有人类水平的智能和理解能力的 AI 系统,目前还只是一个理论概念,还没有任何 AI 系统能达到这种通用智能水平。更多信息请见(AGI)。
2025-01-09
你们waytogoagi这个网站怎么做的
WaytoAGI 网站具有以下功能和特点: 1. 提供和 AI 知识库对话的功能,您可以在此询问任何关于 AI 的问题。 2. 集合了精选的 AI 网站,方便您按需求找到适合的工具。 3. 拥有精选的 AI 提示词,您可以复制到 AI 对话网站使用。 4. 会将每天知识库的精华内容呈现给大家。 WaytoAGI 网站的愿景和目标是让每个人在学习 AI 的过程中少走弯路,让更多的人因 AI 而强大。它是一个全面系统的 AI 学习平台,提供从 AI 常见名词到 AI 应用等各方面的知识。 此外,WaytoAGI 网站和 WaytoAGI 知识库相互关联但各自独立,希望成为您学习 AI 路上的好助手。它还通过公众号、B 站、小红书、X(Twitter)等渠道进行内容传播和消息传递。
2025-01-09
视频转文字的ai
以下是关于视频相关的 AI 内容: 文字生成视频的 AI 产品: Pika:擅长动画制作,支持视频编辑。 SVD:可在 Stable Diffusion 图片基础上生成视频,是 Stability AI 开源的 video model。 Runway:老牌 AI 视频生成工具,提供实时涂抹修改视频功能,但收费。 Kaiber:视频转视频 AI,能将原视频转换成各种风格。 Sora:由 OpenAI 开发,可生成长达 1 分钟以上的视频。 更多相关网站可查看:https://www.waytoagi.com/category/38 用 AI 把小说做成视频的制作流程: 1. 小说内容分析:使用 AI 工具(如 ChatGPT)分析小说内容,提取关键场景、角色和情节。 2. 生成角色与场景描述:根据小说内容,使用工具(如 Stable Diffusion 或 Midjourney)生成角色和场景的视觉描述。 3. 图像生成:使用 AI 图像生成工具根据描述创建角色和场景的图像。 4. 视频脚本制作:将提取的关键点和生成的图像组合成视频脚本。 5. 音频制作:利用 AI 配音工具(如 Adobe Firefly)将小说文本转换为语音,添加背景音乐和音效。 6. 视频编辑与合成:使用视频编辑软件(如 Clipfly 或 VEED.IO)将图像、音频和文字合成为视频。 7. 后期处理:对生成的视频进行剪辑、添加特效和转场,以提高视频质量。 8. 审阅与调整:观看生成的视频,根据需要进行调整,比如重新编辑某些场景或调整音频。 9. 输出与分享:完成所有编辑后,输出最终视频,并在所需平台上分享。 给视频配音效的 AI 工具: 功能特点: 支持 50 多种语言的配音,音质自然流畅。 提供实时配音功能,适用于直播和演讲。 将语音转录为文本,方便后期字幕制作和编辑。 与多种生产力和学习工具整合。 工具举例: Vidnoz AI: 功能特点:支持 23 多种语言的配音,音质高保真。支持文本转语音和语音克隆功能。提供语音参数自定义和背景音乐添加工具。提供面向个人和企业的经济实惠的定价方案。 请注意,具体的操作步骤和所需工具可能会根据项目的具体需求和个人偏好有所不同。此外,AI 工具的可用性和功能也可能会随时间而变化,建议直接访问上述提供的工具网址获取最新信息和使用指南。
2025-01-10
提供所有类型的国内可用的免费AI工具
以下是国内可用的免费 AI 工具: 视频类: Hidreamai:有免费额度,支持文生视频、图生视频,提示词使用中文、英文都可以,文生视频支持多种控制,可生成不同时长和尺寸的视频,网址:https://hidreamai.com//AiVideo 。 ETNA:由七火山科技开发的文生视频 AI 模型,可根据文本描述生成相应视频内容,画质可达 4K,最高 38402160,帧率 60fps,支持中文,时空理解,网址:https://etna.7volcanoes.com/ 。 图像类: 可灵:由快手团队开发,用于生成高质量的图像和视频,图像质量高,但价格相对较高,有不同的收费选项,最初采用内测邀请制,现向所有用户开放。 通义万相:在中文理解和处理方面表现出色,可选择多种艺术和图像风格,操作界面简洁直观,用户友好度高,重点是现在免费,每天签到获取灵感值即可,但存在一些局限性,如某些类型图像无法生成等。 编程类: 通义灵码:阿里巴巴团队推出,提供多种编程辅助能力。 CodeGeeX:智谱 AI 推出的开源免费 AI 编程助手,基于 130 亿参数的预训练大模型,可快速生成代码。 CodeFuse:蚂蚁集团支付宝团队为国内开发者提供智能研发服务的免费 AI 代码助手。 更多辅助编程 AI 产品,还可以查看这里:https://www.waytoagi.com/category/65 。每个工具的功能和适用场景可能不同,您可以根据自身需求选择最适合的工具。
2025-01-10
国内可用免费AI工具
以下是国内可用的免费 AI 工具: 辅助编程方面: GitHub Copilot:由 GitHub 联合 OpenAI 和微软 Azure 团队推出,支持多种语言和 IDE,能为程序员快速提供代码建议。 通义灵码:阿里巴巴团队推出,提供多种编程相关能力。 CodeWhisperer:亚马逊 AWS 团队推出,由机器学习技术驱动,为开发人员实时提供代码建议。 CodeGeeX:智谱 AI 推出的开源免费编程助手,基于 130 亿参数的预训练大模型。 Cody:代码搜索平台 Sourcegraph 推出,借助强大的代码语义索引和分析能力了解开发者的整个代码库。 CodeFuse:蚂蚁集团支付宝团队为国内开发者提供的免费 AI 代码助手。 Codeium:一个由 AI 驱动的编程助手工具,提高编程效率和准确性。 更多辅助编程 AI 产品,可查看:https://www.waytoagi.com/category/65 思维导图方面: GitMind:免费跨平台,可通过 AI 自动生成思维导图,支持多种模式。 ProcessOn:国内思维导图+AIGC 工具,可利用 AI 生成思维导图。 AmyMind:轻量级在线,无需注册登录,支持自动生成节点。 Xmind Copilot:Xmind 推出的基于 GPT 的 AI 思维导图助手,可一键拓展思路,生成文章大纲。 TreeMind:“AI 人工智能”思维导图工具,可输入需求由 AI 自动完成生成。 EdrawMind:提供一系列 AI 工具,包括 AI 驱动的头脑风暴功能。 图像类方面: 通义万相:在中文理解和处理方面表现出色,可从多种艺术风格和图像风格中选择,操作界面简洁直观,用户友好度高,重点是现在免费,每天签到获取灵感值即可。但为符合国内监管要求,某些类型图像无法生成,处理非中文语言或国际化内容可能不够出色,处理多元文化内容时可能存在偏差。
2025-01-10
怎样提高ai识别题库准确性
要提高 AI 识别题库的准确性,可以从以下几个方面入手: 1. 检索原理方面: 信息筛选与确认:对检索器提供的信息进行评估,筛选出最相关和最可信的内容,同时验证信息的来源、时效性和相关性。 消除冗余:识别并去除多个文档或数据源中的重复信息,避免在生成回答时出现重复或矛盾的内容。 关系映射:分析不同信息片段之间的逻辑和事实关系,如因果、对比、顺序等,构建结构化的知识框架,使信息在语义上更连贯。 上下文构建:将筛选和结构化的信息组织成连贯的上下文环境,包括对信息进行排序、归类和整合。 语义融合:在必要时合并意义相近但表达不同的信息片段,减少语义重复并增强信息表达力。 预备生成阶段:将整合好的上下文信息编码成适合生成器处理的格式,如转化为适合输入到生成模型的向量形式。 2. 知识库方面: 知识库中的文档需要转换成向量形式,以便在数值级别上与问题向量进行比较。使用知识库工具上传文档时,会完成文档的向量化,这依靠 Embedding Model 完成。 知识库检索:根据问题向量,检索器在庞大的向量空间中搜索相关内容,通过相似性计算(如余弦相似性)找出与问题最接近的文档,再根据相似性得分排序并选择得分最高的几个文档,从中抽取具体的信息片段或答案。 3. 信息整合阶段:将检索到的全部信息连同用户问题和系统预设整合成全新的上下文环境,为生成回答提供基础。 RAG(RetrievalAugmented Generation,检索增强生成)是一种结合信息检索和文本生成能力的技术,由检索器和生成器组成。检索器从外部知识中快速找到与问题相关的信息,生成器利用这些信息制作精确和连贯的答案,适合处理需要广泛知识的任务,如问答系统。
2025-01-10
怎样提高ai识别文档准确性
以下是一些提高 AI 识别文档准确性的方法: 1. 对于过期的文档,在标题里加上【已废弃】【已过期】等字眼,这样在召回排序过程中会被过滤掉,避免影响答案的准确性。 2. 现阶段尽量使用普通文本进行描述,避免过多表格、图片等内容。当前文档里插入的表格内容虽然能被 AI 识别,但识别效果还在提升中,图片等内容还不支持识别。随着技术发展,这些局限会逐渐消除。 3. 文档的标题内容需要跟正文有强相关性,因为召回排序的逻辑里文档总标题在相似度计算中占有较高权重。 4. 不同的知识点尽量分段书写、合理控制段落长度。不同的主题通过文档内的子标题进行区分,子标题下正文里每个段落最好对应一个明确的知识点,每个段落尽量不超过 500 字,避免段落过长在文档分割时导致主题打散。 5. 对于经常被问到的内容,可以写成问答对(FAQ)的格式,当用户提出相关问题时,包含该问答对的片段在召回排序里会更靠前,给出的答案也更准确。
2025-01-10
ai智能体怎么创建
创建 AI 智能体的方法如下: 1. 扣子(Coze)平台: 扣子是字节跳动旗下的新一代一站式 AI Bot 开发平台。 步骤:首先起一个智能体的名称,然后写一段智能体的简单介绍,最后使用 AI 创建一个头像即可。 扣子官网:https://www.coze.cn/ 2. 阿里云百炼: 进入应用创建页面:访问百炼控制台中“我的应用”,单击新增应用,在智能体应用页签,单击直接创建。如果之前已创建过应用,则单击右上角的新增应用。控制台页面链接:https://bailian.console.aliyun.com/?spm=5176.29619931.J__Z58Z6CX7MY__Ll8p1ZOR.1.2f3e59fciQnmL7/home 选择大模型:进入智能体应用管理界面后,进行大模型的选择与参数配置。 测试智能体应用:选择大模型之后,即完成创建,可输入问题进行测试。 3. 基于公开的大模型应用产品(如 Chat GLM、Chat GPT、Kimi 等): 点击“浏览 GPTs”按钮。 点击“Create”按钮创建自己的智能体。 使用自然语言对话进行具体设置或手工设置。 开始调试智能体并发布。 基于大模型的智能体具有强大的学习能力、灵活性和泛化能力。AI 智能体的出现是为了解决如胡编乱造、时效性、无法满足个性化需求等问题,它包含了自己的知识库、工作流、还可以调用外部工具,再结合大模型的自然语言理解能力,就可以完成比较复杂的工作。
2025-01-10
向量数据库和矢量数据库的区别
向量数据库和传统数据库(可视为您所提到的“矢量数据库”)主要有以下区别: 1. 查找方式: 传统数据库需要精确的关键词或类别进行查找,如同在普通图书馆中需知道书的具体位置或分类。 向量数据库可以通过自然语言描述所需内容,系统能理解意图并找到最相关的内容。 2. 组织方式: 传统数据库中信息被严格分类和组织,类似图书馆里的书架和编号系统。 向量数据库中信息根据内在特征和相似性自然聚集,如同魔法图书馆里书籍自动根据内容相似性浮动聚集。 3. 灵活性: 传统数据库若要更换组织方式,可能需重新安排整个架构。 向量数据库中,新加入的数据会自动找到合适位置,无需重新组织整个系统。 4. 发现新内容: 传统数据库较难偶然发现相关但之前未知的内容。 向量数据库在搜索时可能发现许多相关但之前不知道的内容,因其理解内容本质而非仅依赖标签。 此外,向量数据库以多维向量形式保存信息,代表某些特征或质量,能根据数据的向量接近度或相似度快速、精确地定位和检索数据,从而实现根据语义或上下文相关性进行搜索。而传统数据库通常以表格形式存储简单数据,搜索依赖精确匹配或设定标准。 为了在人工智能和机器学习应用中利用非结构化数据(如文本、图像和音频等),需要使用嵌入技术将其转换为数字表示,嵌入过程通常通过特殊神经网络实现,使计算机能更有效地辨别数据中的模式和关系。
2025-01-10
stable diffusion和国内的这些AI绘画的模型有什么区别
Stable Diffusion 和国内的 AI 绘画模型主要有以下区别: 1. 数据集和学习方式: 在线的国内模型可以访问庞大且不断更新扩展的数据集,还能实时从用户的弱监督学习中获得反馈,从而不断调整和优化绘画策略。而 Stable Diffusion 通常受限于本地设备的计算能力,其数据集和学习反馈相对有限。 2. 计算能力: 在线的国内模型能利用云计算资源进行大规模并行计算,加速模型的训练和推理过程。Stable Diffusion 受本地设备计算能力限制,性能可能不如在线模型。 3. 模型更新: 在线的国内模型可以随时获得最新的版本和功能更新,更好地适应不断变化的绘画风格和技巧。Stable Diffusion 的模型更新相对较慢。 4. 协同学习: 在线的国内模型可以从全球范围内的用户中学习,更好地理解各种绘画风格和技巧。Stable Diffusion 则只能依赖于有限的本地模型,对绘画可能性的了解可能不够全面。 例如,Niji·journey 5 在二次元角色设计领域就展现出比 Stable Diffusion 更强大的性能和实用性。同时,国内还有 DeepSeek、阿里巴巴的 Qwen2 系列、清华大学的 OpenBMB 项目等在不同方面表现出色的模型。
2025-01-08
微调和增量训练的区别
微调和增量训练是在人工智能领域中用于改进模型性能的两种不同方法,它们有以下区别: 微调: 参数调整范围:分为全量微调(FFT)和参数高效微调(PEFT)。全量微调对全量的模型参数进行全量训练,PEFT 则只对部分模型参数进行训练。 数据使用:在较小的、特定领域的数据集上继续大语言模型(LLM)的训练过程,通过调整模型本身的参数来提高在特定任务中的性能。 效果和优势: 能大幅提高模型在特定任务中的性能,因为可以输入更多示例。 提高模型效率,可通过专门化模型使用更小的模型,且由于只对输入输出对进行训练,能舍弃示例或指令,进一步改善延迟和降低成本。 但经过微调的模型可能会失去一些通用性。 增量训练:文中未明确提及增量训练的相关内容。 总的来说,微调是一种针对特定任务和数据集对模型参数进行调整的有效方法,而增量训练的具体特点和与微调的详细对比在提供的内容中未充分阐述。
2025-01-07
我想知道你和Chat gpt的区别
以下是关于 ChatGPT 的相关介绍: 1. Gen AI/Generative AI 是“生成式人工智能”的正式称呼,能够生成新内容,如文本、图像、音乐等。AIGC 指的是由人工智能生成的内容的创作方式,是 Generative AI 的应用结果。 2. 从 OpenAI 的官网可知,2022 年宣发时称 ChatGPT 是一种模型,在官网的帮助页面中又称其是一种服务。目前我们所熟知的 ChatGPT 逐渐演变成了一种可以兼容多种 GPT 模型的聊天应用(服务),它依赖 GPT 系列模型来运转。 3. ChatGPT 名称中的 GPT 为 Generative PreTraining Transformer,意为生成式、预训练、转换器。其本质是“单字接龙”,长文由单字接龙的回归所生成。GPT 作为大脑即模型需要训练,通过材料学习形成模型,训练目的是学习“提问和回答的通用规律”,实现举一反三。但它不是搜索引擎的升级版,存在可能混淆记忆、无法直接查看和更新所学、高度依赖学习材料、缺乏及时性和准确性等缺点。 4. ChatGPT 是一种基于 GPT(生成式预训练变换器)架构的人工智能模型,由 OpenAI 开发,是目前最先进的人工智能模型,是一种自然语言处理(NLP)工具,能够理解和生成接近人类水平的文本。目前 ChatGPT 官网有两个版本,GPT3.5 是免费版本,拥有 GPT 账号即可使用,但智能程度不如 GPT4,且无法使用 DALL.E3(AI 画图功能)和 GPTs 商店和高级数据分析等插件。GPT4 有 PLUS 套餐(20 美金一个月)、团队版和企业版,一般推荐使用 PLUS 套餐。
2025-01-03
ai和agi的区别
AI(人工智能)和 AGI(通用人工智能)主要有以下区别: 1. 任务范围: AI 通常指的是弱人工智能(ANI),是针对特定任务或范围较小的任务来设计和训练的系统,例如智能音箱、网站搜索、自动驾驶等,只擅长执行提前定义好的任务,缺乏真正的理解和意识。 AGI 则是具有人类水平的智能和理解能力的系统,能够完成任何人类可以完成的智力任务,适用于不同的领域,同时拥有某种形式的意识或自我意识。 2. 能力表现: 弱人工智能是高度专业化的,不具备像人类一样的认知能力,也无法超出为它设定的小范围领域来解决一般问题。 AGI 有能力在各种任务和环境中进行推理、学习、理解和适应。 3. 发展现状: 弱人工智能已经得到了巨大的发展,并在许多领域得到了广泛应用。 AGI 目前还只是一个理论概念,尚未有任何系统能达到这种通用智能水平。 图灵测试常被用于判断是否创造了真正的智能系统,若人类评审员在文本对话中无法区分真人和计算机系统,则该计算机系统被认为是“智能”的。
2024-12-30
openai 发布的sora最新模型中,生成视频的提示词与一般问答提示词有什么区别或者注意事项?
Sora 是 OpenAI 于 2024 年 2 月发布的文本到视频的生成式 AI 模型。 生成视频的提示词与一般问答提示词的区别和注意事项如下: 1. 对于视频生成,神经网络是单射函数,拟合的是文本到视频的映射。由于视频的动态性高,值域大,因此需要丰富且复杂的提示词来扩大定义域,以学好这个函数。 2. 详细的文本提示能迫使神经网络学习文本到视频内容的映射,加强对提示词的理解和服从。 3. 和 DALL·E 3 一样,OpenAI 用内部工具(很可能基于 GPT4v)给视频详尽的描述,提升了模型服从提示词的能力以及视频的质量(包括视频中正确显示文本的能力)。但这会导致在使用时的偏差,即用户的描述相对较短。OpenAI 用 GPT 来扩充用户的描述以改善这个问题,并提高使用体验和视频生成的多样性。 4. 除了文本,Sora 也支持图像或者视频作为提示词,支持 SDEdit,并且可以向前或者向后生成视频,因此可以进行多样的视频编辑和继续创作,比如生成首尾相连重复循环的视频,甚至连接两个截然不同的视频。 以下是一些 Sora 的案例提示词,如:“小土豆国王戴着雄伟的王冠,坐在王座上,监督着他们广阔的土豆王国,里面充满了土豆臣民和土豆城堡。”“咖啡馆的小地图立体模型,装饰着室内植物。木梁在上方纵横交错,冷萃咖啡站里摆满了小瓶子和玻璃杯。”“一张写有‘SORA’的写实云朵图像。”“一群萨摩耶小狗学习成为厨师的电影预告片‘cinematic trailer for a group of samoyed puppies learning to become chefs’”
2024-12-27