Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

微调和增量训练的区别

Answer

微调和增量训练是在人工智能领域中用于改进模型性能的两种不同方法,它们有以下区别:

微调:

  • 参数调整范围:分为全量微调(FFT)和参数高效微调(PEFT)。全量微调对全量的模型参数进行全量训练,PEFT 则只对部分模型参数进行训练。
  • 数据使用:在较小的、特定领域的数据集上继续大语言模型(LLM)的训练过程,通过调整模型本身的参数来提高在特定任务中的性能。
  • 效果和优势:
    • 能大幅提高模型在特定任务中的性能,因为可以输入更多示例。
    • 提高模型效率,可通过专门化模型使用更小的模型,且由于只对输入输出对进行训练,能舍弃示例或指令,进一步改善延迟和降低成本。
    • 但经过微调的模型可能会失去一些通用性。

增量训练:文中未明确提及增量训练的相关内容。

总的来说,微调是一种针对特定任务和数据集对模型参数进行调整的有效方法,而增量训练的具体特点和与微调的详细对比在提供的内容中未充分阐述。

Content generated by AI large model, please carefully verify (powered by aily)

References

3. 如何让 LLM 应用性能登峰造极

参数规模的角度,大模型的微调分成两条技术路线:全量微调FFT(Full Fine Tuning):对全量的模型参数,进行全量的训练。PEFT(Parameter-Efficient Fine Tuning):只对部分模型参数进行训练。从成本和效果的角度综合考虑,PEFT是目前业界比较流行的微调方案。OpenAI官方微调教程:[https://github.com/openai/openai-cookbook/blob/main/examples/How_to_finetune_chat_models.ipynb](https://github.com/openai/openai-cookbook/blob/main/examples/How_to_finetune_chat_models.ipynb)微调是在较小的、特定领域的数据集上继续LLM的训练过程。这可以通过调整模型本身的参数,而不是像提示工程和RAG那样仅仅更改提示,来大幅提高模型在特定任务中的性能。把微调想象成把通用工具打磨成精密仪器。微调有两大好处:提高模型在特定任务中的性能。微调意味着你可以输入更多的示例。您可以在数以百万计的代币上进行微调,而根据上下文的大小,少量学习提示仅限于数以万计的代币。经过微调的模型可能会失去一些通用性,但对于其特定任务而言,您应该期待它有更好的表现。提高模型效率。LLM应用程序的效率意味着更低的延迟和更低的成本。实现这一优势有两种方法。通过专门化模型,您可以使用更小的模型。此外,由于只对输入输出对进行训练,而不是对完整的提示及其任何提示工程技巧和提示进行训练,因此可以舍弃示例或指令。这可以进一步改善延迟和成本。

RAG提示工程(一):基础概念

大语言模型技术的本质导致了大模型的输出结果具有不可预测性,此外,静态的训练数据导致了大模型所掌握的知识存在截止日期,无法即时掌握最新信息。因此,当我们将大模型应用于实际业务场景时会发现,通用的基础大模型无法满足我们的实际业务需求。主要存在以下原因:知识的局限性:模型自身的知识完全源于它的训练数据,而现有的主流大模型(ChatGPT、文心一言、通义千问…)的训练集基本都是抓取网络公开的数据用于训练,对于一些实时性的、非公开的或离线的数据是无法获取到的,这部分知识也就无从具备。幻觉问题:大模型的底层原理是基于数学概率的文字预测,即文字接龙。因此大模型存在幻觉问题,会在没有答案的情况下提供虚假信息,提供过时或通用的信息,从可信度低非权威来源的资料中提供结果等。数据安全性:对于企业来说,数据安全至关重要,没有企业愿意承担数据泄露的风险,将自身的私域数据上传第三方平台进行训练。因此如何大模型落地应用时如何保障企业内部数据安全是一个重要问题。而RAG是解决上述问题的一套有效方案。它可以让大模型从权威的、预先确定的知识来源中检索、组织相关信息,更好地控制大模型生成的文本输出,并且用户可以深入了解LLM如何生成最终的结果。并且,RAG可以和微调结合使用,两者并不冲突。RAG类似于为模型提供教科书,允许它基于特定查询检索信息。这该方法适用于模型需要回答特定的询问或解决特定的信息检索任务。然而,RAG不适合教模型来理解广泛的领域或学习新的语言,格式或样式。微调类似于让学生通过广泛的学习内化知识。这种方法当模型需要复制特定的结构、样式或格式时非常有用。以下是RAG与微调从维度方面的比较:参考资料:《Retrieval-Augmented Generation for Large Language Models:A Survey》(https://arxiv.org/pdf/2312.10997.pdf)

十七问解读生成式人工智能

这种模型通过一个叫做“扩散过程”的方法,先把数据(比如图像)变得越来越随机(加噪声),然后再通过学习如何逆转这个过程,把随机数据变回有意义的数据(去噪)。这样,模型就能从随机噪声中生成新的、逼真的图像或其他数据。类似于在一幅图像上逐渐增加模糊,然后再逐渐恢复清晰。扩散模型的概念来自于物理学中的扩散过程,最早在图像生成领域中应用。稳定扩散模型通过反复训练,学习如何在不同的噪声水平下恢复数据,从而能够生成非常逼真的图像。比如,OpenAI的DALL-E和谷歌的Imagen都是基于这种技术,能够根据文本描述生成高质量的图像。通过这种逐步去噪的过程,模型能够生成多样化且细节丰富的内容。[heading1]问题十四、提示词跟微调有什么关系?[content]提示词和微调都是用来提高模型表现的方法,但它们的方式不同。提示词是通过给模型提供特定的指令或上下文,来引导模型生成合适的回答。而微调是对模型进行进一步训练,使其在特定任务上表现得更好。1.提示词:直接在使用模型时提供,灵活方便,不需要重新训练模型。比如你问模型一个问题,它根据提示词生成回答。2.微调:需要对模型进行额外的训练,使用特定任务的数据来调整模型的参数,使其在该任务上表现更佳。微调后的模型在特定任务上会有更好的表现,但需要时间和计算资源。[heading1]问题十五、提示词的本质是什么?[content]提示词的本质就是给模型提供指令或者上下文,让它知道该怎么回应。当你给模型一个提示词时,实际上是在给它提供一个方向或者背景信息,这样模型就能根据这些信息生成相应的回答。提示词可以是一个问题、一段话或者某种情景描述甚至是专业结构化提示词,模型会根据这些内容来理解你的意图,并生成合适的回应。

Others are asking
微调
微调(Finetuning)是一种迁移学习技术,常用于深度学习中。其基本思路是先有一个在大量数据上预训练过的模型,该模型已学会一些基本模式和结构,然后在特定任务数据上继续训练,使其适应新任务。 例如在情感分类中,可先使用大量语料库预训练模型学会基本语法和单词语义,再用标注过的电影评论继续训练以判断情感。在图像分类中,先使用大量图片预训练模型学会识别基本形状和纹理,再用标注的猫和狗图片继续训练以区分二者。 创建微调模型时,假设已准备好训练数据,可使用 OpenAI CLI 开始微调工作。需确定从哪个基本模型(如 ada、babbage、curie 或 davinci)开始,并可使用后缀参数自定义微调模型名称。运行命令会上传文件、创建微调作业、流式传输事件直至作业完成。每个微调工作默认从 curie 模型开始,模型选择会影响性能和成本。作业开始后可能需几分钟或几小时完成,若事件流中断可恢复。此外,还可列出现有作业、检索作业状态或取消作业。 微调的超参数方面,选择了适用于一系列用例的默认超参数,唯一需要的参数是训练文件。但调整超参数通常可产生更高质量输出的模型,可能需配置的内容包括:要微调的基本模型名称(如“ada”“babbage”“curie”“davinci”);训练模型的时期数(n_epochs,默认为 4);批量大小(batch_size,默认为训练集中示例数量的 0.2%,上限为 256);微调学习率乘数(learning_rate_multiplier,默认为 0.05、0.1 或 0.2);是否计算分类指标(compute_classification_metrics,默认为假)。配置这些超参数可通过 OpenAI CLI 上的命令行标志传递。
2025-01-11
微调是什么意思
微调(Finetuning)是一种迁移学习技术,常用于深度学习中。其基本思路是:先有一个在大量数据上预训练过的模型,该模型已学会一些基本模式和结构(如自然语言处理中学会基本语法和单词语义,图像识别中学会基本形状和纹理)。然后,在特定任务数据上继续训练这个模型,使其适应新的任务。 以下是两个例子帮助理解: 1. 情感分类:先使用大量语料库预训练模型,使其学会基本语法和单词语义。再收集标注过的电影评论(一部分积极,一部分消极),在这些评论上继续训练模型,使其学会判断评论情感。 2. 图像分类:先使用大量图片(如 ImageNet 数据集)预训练模型,使其学会识别图片中的基本形状和纹理。再收集标注过的图片(一部分是猫,一部分是狗),在这些图片上继续训练模型,使其学会区分猫和狗。 微调在 LLM 应用中,是在已经训练好的模型基础上进一步调整,让模型的输出更符合预期。Finetune、Finetuning 是常用的英文写法。微调是在较小的、针对特定任务的标注数据集上进一步训练已经预训练过的 LLM 的过程,可调整部分模型参数以优化其在特定任务或任务集上的性能。 微调可让您从 API 提供的模型中获得更多收益,如比即时设计更高质量的结果、能够训练比提示中更多的例子、由于更短的提示而节省 Token、更低的延迟请求。GPT3 已在大量文本上预训练,微调通过训练比提示中更多的示例来改进小样本学习,让您在大量任务中取得更好的结果。对模型进行微调后,您将不再需要在提示中提供示例,这样可以节省成本并实现更低延迟的请求。 微调涉及以下步骤: 1. 准备和上传训练数据。 2. 训练新的微调模型。 3. 使用您的微调模型。 微调目前仅适用于以下基础模型:davinci、curie、babbage 和 ada。这些是原始模型,在训练后没有任何说明(例如 textdavinci003)。您还可以继续微调微调模型以添加其他数据,而无需从头开始。建议使用 OpenAI 命令行界面,安装时需注意相关要求。
2025-01-11
如何微调大模型
微调大模型主要包括以下几个方面: 1. 理解大模型:大模型是通过输入大量语料,让计算机获得类似人类的“思考”能力,能够进行文本生成、推理问答、对话、文档摘要等工作。可以用“上学参加工作”来类比大模型的训练和使用过程,包括找学校(需要大量 GPU 进行训练)、确定教材(需要大量数据)、找老师(选择合适算法)、就业指导(微调)和搬砖(推导)。 2. 准备数据集:数据集是让大模型重新学习的知识。例如,对于 Llama3 的微调,可以参考相关文档获取和了解数据集,如下载数据集。 3. 选择微调方式:从参数规模的角度,大模型的微调分成两条技术路线,全量微调 FFT(Full Fine Tuning)对全量的模型参数进行全量训练,PEFT(ParameterEfficient Fine Tuning)只对部分模型参数进行训练。从成本和效果综合考虑,PEFT 是目前业界较流行的微调方案。 4. 进行微调操作:有了数据集后,将其上传到服务器,编写微调代码并执行,大概 15 分钟左右可完成微调。 5. 参考资源:OpenAI 官方微调教程 。 微调的好处包括提高模型在特定任务中的性能和提高模型效率。经过微调的模型可能会失去一些通用性,但对于特定任务会有更好的表现,同时还能实现更低的延迟和成本。
2025-01-10
训练以及部署微调模型
以下是关于训练以及部署微调模型的相关信息: 创建微调模型: 假设您已准备好训练数据。使用 OpenAI CLI 开始微调工作,需指定从哪个 BASE_MODEL(如 ada、babbage、curie 或 davinci)开始,可使用后缀参数自定义微调模型的名称。运行命令后会进行以下操作: 1. 使用文件 API 上传文件(或使用已上传的文件)。 2. 创建微调作业。 3. 流式传输事件直到作业完成,这通常需要几分钟,但如果队列中有很多作业或数据集很大,可能需要数小时。 每个微调工作都从默认为 curie 的基本模型开始,模型的选择会影响性能和成本。您的模型可以是 ada、babbage、curie 或 davinci,可访问定价页面了解微调费率的详细信息。 开始微调作业后,可能需要一些时间才能完成。工作可能排在其他工作之后,训练模型可能需要几分钟或几小时,具体取决于模型和数据集的大小。若事件流中断,可通过运行特定命令恢复。工作完成后,会显示微调模型的名称。此外,还可以列出现有作业、检索作业状态或取消作业。 GPT 助手的训练: 在有监督的微调阶段,收集少量但高质量的数据集,要求人工承包商收集提示和理想响应的数据,通常是几万个或类似数量。然后对这些数据进行语言建模,算法不变,只是训练集从互联网文档变为问答提示响应类型的数据。训练后得到有监督的微调模型(SFT 模型),可实际部署。 大型语言模型的微调: 一旦有了基础模型,进入计算成本相对较低的微调阶段。编写标签说明,明确助手的表现期望,雇佣人员创建文档,如收集 100,000 个高质量的理想问答对来微调基础模型,此过程可能只需一天。然后进行大量评估,部署模型并监控表现,收集不当行为实例并纠正,将正确答案加入训练数据,重复此过程。由于微调成本较低,可每周或每天进行迭代。 例如 Llama2 系列,Meta 发布时包括基础模型和助手模型。基础模型不能直接使用,助手模型可直接用于回答问题。若想自己微调,Meta 完成的昂贵的第一阶段结果可提供很大自由。
2025-01-06
全量微调与少量参数微调
在参数规模的角度,大模型的微调分为全量微调(FFT,Full Fine Tuning)和少量参数微调(PEFT,ParameterEfficient Fine Tuning)两条技术路线。 全量微调是对全量的模型参数进行全量的训练。少量参数微调则只对部分模型参数进行训练。从成本和效果的综合考虑,PEFT 是目前业界较流行的微调方案。 微调是在较小的、特定领域的数据集上继续 LLM 的训练过程,通过调整模型本身的参数,而非像提示工程和 RAG 那样仅更改提示,能大幅提高模型在特定任务中的性能。微调有两大好处:一是提高模型在特定任务中的性能,可输入更多示例,经过微调的模型可能会失去一些通用性,但对于特定任务会有更好表现;二是提高模型效率,实现更低的延迟和成本,可通过专门化模型使用更小的模型,且只对输入输出对进行训练,舍弃示例或指令进一步改善延迟和成本。 关于微调的具体实现,LoRA 微调脚本见:。 在微调的超参数方面,选择了适用于一系列用例的默认超参数,唯一需要的参数是训练文件。调整超参数通常可产生更高质量输出的模型,可能需要配置的内容包括:model(要微调的基本模型的名称,可选择“ada”“babbage”“curie”或“davinci”之一)、n_epochs(默认为 4,训练模型的时期数)、batch_size(默认为训练集中示例数量的 0.2%,上限为 256)、learning_rate_multiplier(默认为 0.05、0.1 或 0.2,具体取决于 final batch_size)、compute_classification_metrics(默认为假,若为 True,为对分类任务进行微调,在每个 epoch 结束时在验证集上计算特定于分类的指标)。要配置这些额外的超参数,可通过 OpenAI CLI 上的命令行标志传递。 OpenAI 官方微调教程:
2025-01-06
微调训练框架的选择
以下是关于微调训练框架选择的相关内容: 在 Stable Diffusion 中: 首先,config 文件夹中有两个配置文件 config_file.toml 和 sample_prompt.toml,分别存储着训练超参数与训练中的验证 prompt。 config_file.toml 文件主要包含了 model_arguments、optimizer_arguments、dataset_arguments、training_arguments、sample_prompt_arguments 以及 saving_arguments 六个维度的参数信息。 v2 和 v_parameterization:两者同时设置为 true 时,开启 Stable Diffusion V2 版本的训练。 pretrained_model_name_or_path:读取本地 Stable Diffusion 预训练模型用于微调训练。 optimizer_type:有七种优化器可以选择。不进行选择时默认启动 AdamW 优化器;显存不太充足时,可选择 AdamW8bit 优化器,但会有轻微性能损失;Lion 优化器是较新的版本,性能优异,但学习率需设置较小,比如为 AdamW 优化器下的 1/3。 learning_rate:单卡推荐设置 2e6,多卡推荐设置 1e7。 除了上述的训练环境参数传入,还需将配置好的 config_file.toml 和 sample_prompt.txt 参数传入训练脚本中。 当设置 1024 分辨率+FP16 精度+xformers 加速时,SD 模型进行 Batch Size=1 的微调训练需要约 17.1G 的显存,进行 Batch Size=4 的微调训练需要约 26.7G 的显存,所以最好配置一个 24G 以上的显卡。 微调训练完成后,模型权重会保存在之前设置的 output_dir 路径下。可以使用 Stable Diffusion WebUI 作为框架加载模型进行 AI 绘画,需将训练好的模型放入/models/Stablediffusion 文件夹下。 在 OpenAI 中: 使用 OpenAI CLI 开始微调工作,需指定从哪个 BASE_MODEL 开始(ada、babbage、curie 或 davinci),还可使用后缀参数自定义微调模型的名称。 运行命令后会上传文件、创建微调作业并流式传输事件直到作业完成。 每个微调工作都从一个默认为 curie 的基本模型开始,模型的选择会影响性能和成本。 开始微调作业后,可能需要几分钟或几小时才能完成,工作完成后会显示微调模型的名称。此外,还可以列出现有作业、检索作业状态或取消作业。
2025-01-06
增量预训练
以下是关于增量预训练的相关内容: Atom 系列模型的预训练: Atom 系列模型包含 Atom7B 和 Atom13B,基于 Llama2 做了中文能力的持续优化。 采用大规模的中文数据进行持续预训练,数据来源广泛,包括百科、书籍、博客、新闻、公告、小说、金融数据、法律数据、医疗数据、代码数据、专业论文数据、中文自然语言处理竞赛数据集等,并对数据进行过滤、打分、去重,筛选出超过 1T token 的高质量中文数据持续加入训练迭代。 针对 Llama2 模型的词表进行深度优化,扩展词库至 65,000 个单词,提高中文编码/解码速度约 350%,扩大中文字符集覆盖范围,包括所有 emoji 符号。 默认支持 4K 上下文,利用位置插值 PI 和 Neural Tangent Kernel(NTK)方法,经过微调可将上下文长度扩增到 32K。 GPT 助手的预训练: GPT 以完全随机的权重开始,随着训练时间增长,输出会越来越连贯和一致。 预训练阶段占用了训练计算时间和浮点运算的 99%,是所有计算工作主要发生的地方。 收集大量数据,如 Common Crawl、C4、GitHub、维基百科、图书、ArXiv、StackExchange 等,按照一定比例采样形成训练集。 在训练前需进行预处理步骤 Tokenization(分词/标记化),将原始文本翻译成整数序列。
2025-01-10
AI 增量训练 Lora
以下是关于 AI 增量训练 Lora 的相关知识: 参数理解: 1. 学习步数:指 AI 对每张图片的学习次数。二次元图片的 repeat 一般在 10 15,写实人物图片的 repeat 一般在 30 50,真实世界的景观场景可能要达到 100。理论上讲,图片精细度越高,学习步数越高。 2. 循环次数:AI 将所有图片按照学习步数学习一轮为一次循环,循环次数一般在 10 20 之间。次数并非越多越好,过多会导致过拟合,即画什么都和样图一样。 3. 效率设置:主要控制电脑的训练速度。可保持默认值,也可根据电脑显存微调,但要避免显存过载。 总的训练步数为:图片张数×学习步数×循环次数。 此外,沃尔夫勒姆提到人工智能是基于机器学习(通常通过神经网络实现),根据给出的示例进行增量训练,且这些示例包括大量人类生成的科学文本等,或者关于世界上发生的事情的实际经验。
2024-09-13
AI 增量训练和模型微调的区别
AI 增量训练和模型微调存在以下区别: 目的:增量训练通常是为了持续更新模型以适应新的数据和任务,而模型微调主要是为了使模型在特定的小领域数据集上针对特定任务达到更好的性能。 范围:增量训练可能涉及对模型的较大范围的更新,而微调往往集中在较小范围的参数调整。 方式:增量训练可能会对全量的模型参数进行训练,而微调存在全量微调(FFT)和参数高效微调(PEFT)两种技术路线,PEFT 只对部分模型参数进行训练,且目前在业界较为流行。 成本和效果:从成本和效果综合考虑,PEFT 是较好的微调方案。微调可以大幅提高模型在特定任务中的性能,但可能会使模型失去一些通用性。 数据使用:增量训练可能需要更多新的数据,而微调是在较小的、特定领域的数据集上进行。 如需了解更多关于微调的内容,可参考 OpenAI 官方微调教程:https://github.com/openai/openaicookbook/blob/main/examples/How_to_finetune_chat_models.ipynb
2024-09-13
我们是做小红书笔记的,目前有没有哪个软件可以把我们上千篇以往人工写的笔记,投喂给它,训练出一个能按照以往风格来写笔记的呢?比如扣子或者钉钉,可以吗
目前市面上常见的软件中,豆包暂时未获取到扣子或钉钉有此功能的相关信息。不过,像一些专门的自然语言处理和机器学习平台,如 OpenAI 的 GPT 系列、百度的文心一言等,在一定的技术支持和合规操作下,有可能实现您的需求。但需要注意的是,将大量以往的笔记用于训练模型可能涉及到数据隐私和版权等问题,需要谨慎处理。
2025-02-07
我们是做小红书笔记的,目前有没有哪个软件可以把我们上千篇以往人工写的笔记,投喂给它,训练出一个能按照以往风格来写笔记的呢
目前市面上还没有专门针对小红书笔记且能完全满足您需求的成熟软件。一般来说,使用现有的自然语言处理模型进行这样的训练存在诸多限制和法律风险。小红书对于内容的原创性和合规性有严格要求,使用以往的笔记进行训练可能违反平台规定。但您可以通过学习和借鉴以往笔记的写作风格、结构和主题,人工创作出新的优质笔记。
2025-02-07
你是基于哪个模型训练出来的
以下是为您整合的相关内容: 在 Comfy UI 中训练 LoRA 模型:确保后面有一个空格,将 requirements_win.txt 文件(Windows 系统)或 requirements.txt 文件(非 Windows 系统)拖到命令提示符中,按 Enter 键安装依赖项。若使用虚拟环境,需先激活。图像应放在特定命名格式的文件夹中,data_path 需写入包含数据库文件夹的路径,Python 需要斜杠,节点会自动转换反斜杠,文件夹名称中的空格不是问题。第一行可从 checkpoint 文件夹中选择模型,据说训练需选择基本模型。 训练 Midjourney 的 prompt:V5 是在其 AI 超级集群上训练了 5 个月的第二个模型。基本参数包括:Aspect Ratios 可改变生成的纵横比;Chaos 可改变结果的多样性;No 用于负向提示;Quality 决定渲染质量时间;Seed 用于指定生成图像的起始点,相同种子和提示会产生相似结果;Stop 可在过程中途停止作业。 如何使用 AI 来做事:制作图像时,不同模型创建的图像有比较。这些系统存在内置偏见,可能存在法律和道德问题,目前不能创建真正的文本。
2025-02-06
如何训练一个自己的模型用来识别不同的图片类别
训练自己的模型来识别不同的图片类别可以参考以下方法: 对于扩散模型(如 Midjourney): 强大的扩散模型训练往往消耗大量 GPU 资源,推理成本高。在有限计算资源下,可在强大预训练自动编码器的潜在空间中应用扩散模型,以在复杂度降低和细节保留间达到平衡,提高视觉保真度。引入交叉注意力层可使其成为灵活的生成器,支持多种条件输入。 Midjourney 会定期发布新模型版本以提升效率、连贯性和质量。最新的 V5 模型具有更广泛的风格范围、更高的图像质量、更出色的自然语言提示解读能力等。 用 SD 训练贴纸 LoRA 模型: 对于原始形象,可通过 MJ 关键词生成不同风格的贴图,总结其特征。注意关键词中对颜色的限制,保持正面和负面情绪数据比例平衡。若训练 25626 大小的表情包,初始素材可能够用,若训练更高像素图片,可能需进一步使用 MJ 垫图和高清扩展功能。 进行高清化时,从 256 到 1024 分辨率,输入左图并加入内容和风格描述,挑选合适的图片。 多模态模型(以 StableDiffusion 为例): 多模态模型包括文生图、图生图、图生视频、文生视频等,底层逻辑通常从生图片源头开始。 扩散模型(如 StableDiffusion 中使用的)的训练是对图片加减噪点的过程。先对海量带有标注文字描述的图片逐渐加噪点,模型学习每一步图片向量值和文字向量值的数据分布演变规律,完成训练。输入文字后,模型根据文字向量指导充满噪点的图片减噪点生成最终图片。扩散模型加减噪点方式与大脑构思图片方式类似,且多模态模型会关联文字向量值和图片像素点向量值。
2025-01-31
如何对扣子智能体做专属训练
对扣子智能体进行专属训练时,需要注意以下要点: 1. 跳转设置:扣子在节点切换提供了独立和非独立两种识别模式。独立识别模式中每个节点都有一个独立识别模型,非独立模式则直接使用当前智能体模型进行判断,实际使用中推荐独立模式。 2. 独立模式的选择:独立模式有两种选择。第一种是面对通用指令时,选择已经训练好的、专门用于节点切换的大型模型,其优点是经过特定训练,无需额外操心设计。第二种是在遇到非常复杂的情景时,使用自定义的大型模型,可根据需求定制模型和编写特定提示词以适应复杂交互场景,但实际测试效果不理想,所以推荐使用第一种。 3. 关键注意点:在使用专门训练的意图识别模型进行节点切换时,要特别注意两个关键点。一是每个智能体的用途必须清晰明确,在设计和实现时要清楚标注其功能和目的,以确保系统能准确识别和响应用户意图。二是智能体的名称非常重要,应清晰、易于识别,便于系统识别和记忆。
2025-01-27
预训练
以下是关于预训练的相关内容: Atom 系列模型的预训练: Atom 系列模型包含 Atom7B 和 Atom13B,基于 Llama2 做了中文能力的持续优化。Atom 大模型在 Llama2 的基础上,采用大规模的中文数据进行持续预训练,数据来源广泛,包括百科、书籍、博客、新闻、公告、小说、金融数据、法律数据、医疗数据、代码数据、专业论文数据、中文自然语言处理竞赛数据集等。同时对庞大的数据进行了过滤、打分、去重,筛选出超过 1T token 的高质量中文数据,持续不断加入训练迭代中。为了提高中文文本处理的效率,针对 Llama2 模型的词表进行了深度优化,扩展词库至 65,000 个单词,提高了中文编码/解码速度约 350%,还扩大了中文字符集的覆盖范围,包括所有 emoji 符号。Atom 大模型默认支持 4K 上下文,利用位置插值 PI 和 Neural Tangent Kernel(NTK)方法,经过微调可以将上下文长度扩增到 32K。 GPT 助手的预训练: 预训练阶段是 GPT 训练中计算工作基本发生的地方,占用了训练计算时间和浮点运算的 99%。在这个阶段,需要收集大量的数据,如 Common Crawl、C4、GitHub、维基百科、图书、ArXiv、StackExchange 等,并按照一定比例采样形成训练集。在实际训练前,需要进行预处理步骤 Tokenization(分词/标记化),将原始文本翻译成整数序列。 OpenAI o1 的预训练: GPT 4 等 LLM 模型训练一般由“预训练”和“后训练”两个阶段组成。“预训练”通过 Next Token Prediction 从海量数据吸收语言、世界知识、逻辑推理、代码等基础能力,模型规模越大、训练数据量越多,则模型能力越强。
2025-01-24
deepseek与其他大模型有什么区别
DeepSeek 与其他大模型的区别主要体现在以下几个方面: 1. 模型类型:DeepSeek 是推理型大模型,与指令型大模型不同,不需要用户提供详细步骤指令,而是通过理解用户真实需求和场景提供答案。 2. 语言理解:能够理解用户用“人话”表达的需求,不需要用户学习和使用特定提示词模板。 3. 思考深度:在回答问题时能够进行深度思考,而非简单罗列信息。 4. 文风转换:可以模仿不同作家的文风进行写作,适用于多种文体和场景。 5. 技术路线:DeepSeek R1 与 OpenAI 现在最先进的模型 o1、o3 同属于基于强化学习 RL 的推理模型,在回答用户问题前会先进行“自问自答”式的推理思考,提升最终回答质量。 6. 发展路径:从一开始,DeepSeek 与国内诸多大模型新秀选择的不是同一个战场。它不拿融资,不抢座次,不比国内舆论声势,不搞产品投放投流,而是选择走全球开源社区,分享直接的模型、研究方法和成果,吸引反馈,再迭代优化。开源彻底,包括模型权重、数据集、预训练方法和高质量论文。
2025-02-07
ai本地部署对比网页版区别在哪
AI 本地部署和网页版主要有以下区别: 1. 出图速度:网页版出图速度快,本地部署可能相对较慢。 2. 硬件配置要求:网页版不吃本地显卡配置,本地部署对电脑配置要求较高,配置不高可能出现生成半天后爆显存导致出图失败的情况。 3. 出图质量:本地部署出图质量通常高于网页版。 4. 功能扩展性:本地部署可以自己添加插件,网页版功能相对固定。 5. 算力限制:网页版为节约算力成本,通常只支持出最高 1024×1024 左右的图,制作横板、高清等图片受限;本地部署算力限制较小。 6. 电脑使用状态:本地部署使用期间电脑基本处于宕机状态,网页版则无此问题。 例如,在图像生成方面,线上的优势在于找参考、测试模型,线下则是主要的出图工具。一些在线体验平台如哩布哩布 AI 每天有一百次生成次数,集成了最新模型;Clipdrop 每天免费 400 张图片,需排队,出图约需二三十秒。
2025-02-05
豆包和coze有什么区别
Dify 和 Coze 都是大模型中间层产品,有以下主要异同点: 开源性: Dify 是开源的,允许开发者自由访问和修改代码以定制,由专业团队和社区共同打造。 Coze 由字节跳动推出,目前未明确是否开源,可能更侧重商业化服务和产品。 功能和定制能力: Dify 提供直观界面,结合多种功能,支持基于任何 LLM 部署 API 和服务。 Coze 有丰富插件能力和高效搭建效率,支持发布到多个平台作为 Bot 能力使用。 社区和支持: Dify 作为开源项目有活跃社区,开发者可参与共创共建。 Coze 可能更多依赖官方更新和支持,社区参与和开源协作程度可能不如 Dify。 豆包和 Coze 的区别在于: 豆包主要是大模型交互,功能相对默认。 Coze 不用魔法,上手简单,更新快,插件多。在模型选择方面,GLM 模型和 MoonShot 模型对结构化提示词理解良好,适合处理精确输入输出任务;豆包系列模型在角色扮演和工具调用方面有优势,能识别用户意图并选择合适工具或服务。将这三种模型结合在工作流或多 Agent 中可实现优势互补。
2025-01-25
精准率和召回率有什么区别
精准率和召回率是常见的评估指标,主要区别如下: 精准率(Precision):指返回的检索内容中有用信息的占比。也就是说,在所有被检索出来的内容中,真正有用的信息所占的比例。其计算公式为:精准率 = 真正例 / (真正例 + 假正例)。 召回率(Recall):指相关信息被正确预测出来的比例,即真正例在所有实际相关信息中的占比。其计算公式为:召回率 = 真正例 / (真正例 + 假反例)。 例如,在一个文档检索的场景中,精准率体现的是检索出的文档中有多少是真正有用的;召回率则体现的是相关的文档有多少被包含在返回的检索结果里。 总的来说,精准率关注的是检索结果的准确性,而召回率关注的是检索结果的完整性。
2025-01-23
深度学习跟机器学习有啥区别呀?能不能举个通俗易懂的例子
深度学习和机器学习的区别主要体现在以下几个方面: 1. 学习方式:机器学习通常需要人工选择和设计特征,而深度学习能够自动从数据中学习特征。 2. 模型结构:机器学习模型相对简单,深度学习则使用多层的神经网络,结构更复杂。 3. 数据处理能力:深度学习能够处理更大量和更复杂的数据模式。 例如,在图像识别任务中,如果使用机器学习,可能需要人工提取图像的颜色、形状等特征,然后基于这些特征进行分类。但在深度学习中,神经网络可以自动从大量的图像数据中学习到有效的特征表示,从而实现更准确的分类。 机器学习是人工智能的一个子领域,让计算机通过数据学习来提高性能,不是直接编程告诉计算机如何完成任务,而是提供数据让机器找出隐藏模式或规律,然后用这些规律预测新的未知数据。 深度学习是机器学习的一个子领域,模拟人脑工作方式,创建人工神经网络处理数据,包含多个处理层,能学习和表示大量复杂模式,在图像识别、语音识别和自然语言处理等任务中非常有效。 大语言模型是深度学习在自然语言处理领域的应用之一,目标是理解和生成人类语言,需要在大量文本数据上训练,如 ChatGPT、文心一言。同时,大语言模型具有生成式 AI 的特点,不仅能理解和分析数据,还能创造新的独特输出。
2025-01-21
深度学习跟机器学习有啥区别呀
深度学习和机器学习的区别主要体现在以下几个方面: 1. 范畴:机器学习是人工智能的一个子领域,深度学习则是机器学习的一个子集。 2. 工作方式:机器学习通过输入数据训练模型,让计算机在没有明确编程的情况下学习。深度学习模拟人脑工作方式,创建人工神经网络处理数据。 3. 处理模式:机器学习模型可以是监督的或无监督的,监督模型使用标记的数据学习并预测未来值,无监督模型专注于发现原始数据中的模式。深度学习使用人工神经网络,能处理更复杂的模式,神经网络可使用标记和未标记的数据,实现半监督学习。 4. 应用效果:深度学习在图像识别、语音识别和自然语言处理等任务中表现出色,因为其能学习和表示大量复杂的模式。 例如,大语言模型是深度学习在自然语言处理领域的应用,其不仅能理解和分析数据,还能创造新的独特输出,如 ChatGPT、文心一言等。
2025-01-21