Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

微调和增量训练的区别

Answer

微调和增量训练是在人工智能领域中用于改进模型性能的两种不同方法,它们有以下区别:

微调:

  • 参数调整范围:分为全量微调(FFT)和参数高效微调(PEFT)。全量微调对全量的模型参数进行全量训练,PEFT 则只对部分模型参数进行训练。
  • 数据使用:在较小的、特定领域的数据集上继续大语言模型(LLM)的训练过程,通过调整模型本身的参数来提高在特定任务中的性能。
  • 效果和优势:
    • 能大幅提高模型在特定任务中的性能,因为可以输入更多示例。
    • 提高模型效率,可通过专门化模型使用更小的模型,且由于只对输入输出对进行训练,能舍弃示例或指令,进一步改善延迟和降低成本。
    • 但经过微调的模型可能会失去一些通用性。

增量训练:文中未明确提及增量训练的相关内容。

总的来说,微调是一种针对特定任务和数据集对模型参数进行调整的有效方法,而增量训练的具体特点和与微调的详细对比在提供的内容中未充分阐述。

Content generated by AI large model, please carefully verify (powered by aily)

References

3. 如何让 LLM 应用性能登峰造极

参数规模的角度,大模型的微调分成两条技术路线:全量微调FFT(Full Fine Tuning):对全量的模型参数,进行全量的训练。PEFT(Parameter-Efficient Fine Tuning):只对部分模型参数进行训练。从成本和效果的角度综合考虑,PEFT是目前业界比较流行的微调方案。OpenAI官方微调教程:[https://github.com/openai/openai-cookbook/blob/main/examples/How_to_finetune_chat_models.ipynb](https://github.com/openai/openai-cookbook/blob/main/examples/How_to_finetune_chat_models.ipynb)微调是在较小的、特定领域的数据集上继续LLM的训练过程。这可以通过调整模型本身的参数,而不是像提示工程和RAG那样仅仅更改提示,来大幅提高模型在特定任务中的性能。把微调想象成把通用工具打磨成精密仪器。微调有两大好处:提高模型在特定任务中的性能。微调意味着你可以输入更多的示例。您可以在数以百万计的代币上进行微调,而根据上下文的大小,少量学习提示仅限于数以万计的代币。经过微调的模型可能会失去一些通用性,但对于其特定任务而言,您应该期待它有更好的表现。提高模型效率。LLM应用程序的效率意味着更低的延迟和更低的成本。实现这一优势有两种方法。通过专门化模型,您可以使用更小的模型。此外,由于只对输入输出对进行训练,而不是对完整的提示及其任何提示工程技巧和提示进行训练,因此可以舍弃示例或指令。这可以进一步改善延迟和成本。

RAG提示工程(一):基础概念

大语言模型技术的本质导致了大模型的输出结果具有不可预测性,此外,静态的训练数据导致了大模型所掌握的知识存在截止日期,无法即时掌握最新信息。因此,当我们将大模型应用于实际业务场景时会发现,通用的基础大模型无法满足我们的实际业务需求。主要存在以下原因:知识的局限性:模型自身的知识完全源于它的训练数据,而现有的主流大模型(ChatGPT、文心一言、通义千问…)的训练集基本都是抓取网络公开的数据用于训练,对于一些实时性的、非公开的或离线的数据是无法获取到的,这部分知识也就无从具备。幻觉问题:大模型的底层原理是基于数学概率的文字预测,即文字接龙。因此大模型存在幻觉问题,会在没有答案的情况下提供虚假信息,提供过时或通用的信息,从可信度低非权威来源的资料中提供结果等。数据安全性:对于企业来说,数据安全至关重要,没有企业愿意承担数据泄露的风险,将自身的私域数据上传第三方平台进行训练。因此如何大模型落地应用时如何保障企业内部数据安全是一个重要问题。而RAG是解决上述问题的一套有效方案。它可以让大模型从权威的、预先确定的知识来源中检索、组织相关信息,更好地控制大模型生成的文本输出,并且用户可以深入了解LLM如何生成最终的结果。并且,RAG可以和微调结合使用,两者并不冲突。RAG类似于为模型提供教科书,允许它基于特定查询检索信息。这该方法适用于模型需要回答特定的询问或解决特定的信息检索任务。然而,RAG不适合教模型来理解广泛的领域或学习新的语言,格式或样式。微调类似于让学生通过广泛的学习内化知识。这种方法当模型需要复制特定的结构、样式或格式时非常有用。以下是RAG与微调从维度方面的比较:参考资料:《Retrieval-Augmented Generation for Large Language Models:A Survey》(https://arxiv.org/pdf/2312.10997.pdf)

十七问解读生成式人工智能

这种模型通过一个叫做“扩散过程”的方法,先把数据(比如图像)变得越来越随机(加噪声),然后再通过学习如何逆转这个过程,把随机数据变回有意义的数据(去噪)。这样,模型就能从随机噪声中生成新的、逼真的图像或其他数据。类似于在一幅图像上逐渐增加模糊,然后再逐渐恢复清晰。扩散模型的概念来自于物理学中的扩散过程,最早在图像生成领域中应用。稳定扩散模型通过反复训练,学习如何在不同的噪声水平下恢复数据,从而能够生成非常逼真的图像。比如,OpenAI的DALL-E和谷歌的Imagen都是基于这种技术,能够根据文本描述生成高质量的图像。通过这种逐步去噪的过程,模型能够生成多样化且细节丰富的内容。[heading1]问题十四、提示词跟微调有什么关系?[content]提示词和微调都是用来提高模型表现的方法,但它们的方式不同。提示词是通过给模型提供特定的指令或上下文,来引导模型生成合适的回答。而微调是对模型进行进一步训练,使其在特定任务上表现得更好。1.提示词:直接在使用模型时提供,灵活方便,不需要重新训练模型。比如你问模型一个问题,它根据提示词生成回答。2.微调:需要对模型进行额外的训练,使用特定任务的数据来调整模型的参数,使其在该任务上表现更佳。微调后的模型在特定任务上会有更好的表现,但需要时间和计算资源。[heading1]问题十五、提示词的本质是什么?[content]提示词的本质就是给模型提供指令或者上下文,让它知道该怎么回应。当你给模型一个提示词时,实际上是在给它提供一个方向或者背景信息,这样模型就能根据这些信息生成相应的回答。提示词可以是一个问题、一段话或者某种情景描述甚至是专业结构化提示词,模型会根据这些内容来理解你的意图,并生成合适的回应。

Others are asking
训练以及部署微调模型
以下是关于训练以及部署微调模型的相关信息: 创建微调模型: 假设您已准备好训练数据。使用 OpenAI CLI 开始微调工作,需指定从哪个 BASE_MODEL(如 ada、babbage、curie 或 davinci)开始,可使用后缀参数自定义微调模型的名称。运行命令后会进行以下操作: 1. 使用文件 API 上传文件(或使用已上传的文件)。 2. 创建微调作业。 3. 流式传输事件直到作业完成,这通常需要几分钟,但如果队列中有很多作业或数据集很大,可能需要数小时。 每个微调工作都从默认为 curie 的基本模型开始,模型的选择会影响性能和成本。您的模型可以是 ada、babbage、curie 或 davinci,可访问定价页面了解微调费率的详细信息。 开始微调作业后,可能需要一些时间才能完成。工作可能排在其他工作之后,训练模型可能需要几分钟或几小时,具体取决于模型和数据集的大小。若事件流中断,可通过运行特定命令恢复。工作完成后,会显示微调模型的名称。此外,还可以列出现有作业、检索作业状态或取消作业。 GPT 助手的训练: 在有监督的微调阶段,收集少量但高质量的数据集,要求人工承包商收集提示和理想响应的数据,通常是几万个或类似数量。然后对这些数据进行语言建模,算法不变,只是训练集从互联网文档变为问答提示响应类型的数据。训练后得到有监督的微调模型(SFT 模型),可实际部署。 大型语言模型的微调: 一旦有了基础模型,进入计算成本相对较低的微调阶段。编写标签说明,明确助手的表现期望,雇佣人员创建文档,如收集 100,000 个高质量的理想问答对来微调基础模型,此过程可能只需一天。然后进行大量评估,部署模型并监控表现,收集不当行为实例并纠正,将正确答案加入训练数据,重复此过程。由于微调成本较低,可每周或每天进行迭代。 例如 Llama2 系列,Meta 发布时包括基础模型和助手模型。基础模型不能直接使用,助手模型可直接用于回答问题。若想自己微调,Meta 完成的昂贵的第一阶段结果可提供很大自由。
2025-01-06
全量微调与少量参数微调
在参数规模的角度,大模型的微调分为全量微调(FFT,Full Fine Tuning)和少量参数微调(PEFT,ParameterEfficient Fine Tuning)两条技术路线。 全量微调是对全量的模型参数进行全量的训练。少量参数微调则只对部分模型参数进行训练。从成本和效果的综合考虑,PEFT 是目前业界较流行的微调方案。 微调是在较小的、特定领域的数据集上继续 LLM 的训练过程,通过调整模型本身的参数,而非像提示工程和 RAG 那样仅更改提示,能大幅提高模型在特定任务中的性能。微调有两大好处:一是提高模型在特定任务中的性能,可输入更多示例,经过微调的模型可能会失去一些通用性,但对于特定任务会有更好表现;二是提高模型效率,实现更低的延迟和成本,可通过专门化模型使用更小的模型,且只对输入输出对进行训练,舍弃示例或指令进一步改善延迟和成本。 关于微调的具体实现,LoRA 微调脚本见:。 在微调的超参数方面,选择了适用于一系列用例的默认超参数,唯一需要的参数是训练文件。调整超参数通常可产生更高质量输出的模型,可能需要配置的内容包括:model(要微调的基本模型的名称,可选择“ada”“babbage”“curie”或“davinci”之一)、n_epochs(默认为 4,训练模型的时期数)、batch_size(默认为训练集中示例数量的 0.2%,上限为 256)、learning_rate_multiplier(默认为 0.05、0.1 或 0.2,具体取决于 final batch_size)、compute_classification_metrics(默认为假,若为 True,为对分类任务进行微调,在每个 epoch 结束时在验证集上计算特定于分类的指标)。要配置这些额外的超参数,可通过 OpenAI CLI 上的命令行标志传递。 OpenAI 官方微调教程:
2025-01-06
微调训练框架的选择
以下是关于微调训练框架选择的相关内容: 在 Stable Diffusion 中: 首先,config 文件夹中有两个配置文件 config_file.toml 和 sample_prompt.toml,分别存储着训练超参数与训练中的验证 prompt。 config_file.toml 文件主要包含了 model_arguments、optimizer_arguments、dataset_arguments、training_arguments、sample_prompt_arguments 以及 saving_arguments 六个维度的参数信息。 v2 和 v_parameterization:两者同时设置为 true 时,开启 Stable Diffusion V2 版本的训练。 pretrained_model_name_or_path:读取本地 Stable Diffusion 预训练模型用于微调训练。 optimizer_type:有七种优化器可以选择。不进行选择时默认启动 AdamW 优化器;显存不太充足时,可选择 AdamW8bit 优化器,但会有轻微性能损失;Lion 优化器是较新的版本,性能优异,但学习率需设置较小,比如为 AdamW 优化器下的 1/3。 learning_rate:单卡推荐设置 2e6,多卡推荐设置 1e7。 除了上述的训练环境参数传入,还需将配置好的 config_file.toml 和 sample_prompt.txt 参数传入训练脚本中。 当设置 1024 分辨率+FP16 精度+xformers 加速时,SD 模型进行 Batch Size=1 的微调训练需要约 17.1G 的显存,进行 Batch Size=4 的微调训练需要约 26.7G 的显存,所以最好配置一个 24G 以上的显卡。 微调训练完成后,模型权重会保存在之前设置的 output_dir 路径下。可以使用 Stable Diffusion WebUI 作为框架加载模型进行 AI 绘画,需将训练好的模型放入/models/Stablediffusion 文件夹下。 在 OpenAI 中: 使用 OpenAI CLI 开始微调工作,需指定从哪个 BASE_MODEL 开始(ada、babbage、curie 或 davinci),还可使用后缀参数自定义微调模型的名称。 运行命令后会上传文件、创建微调作业并流式传输事件直到作业完成。 每个微调工作都从一个默认为 curie 的基本模型开始,模型的选择会影响性能和成本。 开始微调作业后,可能需要几分钟或几小时才能完成,工作完成后会显示微调模型的名称。此外,还可以列出现有作业、检索作业状态或取消作业。
2025-01-06
测试微调模型
以下是关于测试微调模型的相关内容: 在完成微调之后,需要对结果进行测试。微调不会直接影响原有的大模型,而是生成一些文件,包括模型权重文件、配置文件、训练元数据、优化器状态等。这些文件可以和原有大模型合并并输出新的大模型。 在测试之前,先通过不合并的方式进行微调结果的验证。例如,若数据集中有问答“问:你是谁?答:家父是大理寺少卿甄远道”,当给微调后的模型指定角色“现在你要扮演皇帝身边的女人甄嬛”,然后问模型“你是谁?”,若回答是“家父是大理寺少卿甄远道”,则认为模型微调有效果。 测试代码结果成功。之后可以将微调结果和原有大模型进行合并,然后输出新的模型,使用 webdemo 进行测试。包括切换到对应的目录、执行合并代码、生成相应文件、创建 chatBotLora.py 文件并执行代码进行本地测试、开启自定义服务等步骤,最终验收成功。 此外,当作业成功时,fine_tuned_model 字段将填充模型名称,可将此模型指定为 Completions API 的参数,并使用 Playground 向它发出请求。首次完成后,模型可能需要几分钟准备好处理请求,若超时可能是仍在加载中,几分钟后重试。可通过将模型名称作为 model 完成请求的参数传递来开始发出请求,包括 OpenAI 命令行界面、cURL、Python、Node.js 等方式。 要删除微调模型,需在组织中被指定为“所有者”。 创建微调模型时,假设已准备好训练数据。使用 OpenAI CLI 开始微调工作,需指定基本模型的名称(ada、babbage、curie 或 davinci),还可使用后缀参数自定义微调模型的名称。运行命令会上传文件、创建微调作业、流式传输事件直到作业完成,每个微调工作都从默认为 curie 的基本模型开始,模型选择会影响性能和成本。开始微调作业后,可能需要一些时间才能完成,若事件流中断可恢复。工作完成后会显示微调模型的名称,还可列出现有作业、检索作业状态或取消作业。
2025-01-06
模型微调对模型的影响和价值
模型微调对模型具有重要的影响和价值,主要体现在以下几个方面: 1. 提高结果质量:能够获得比即时设计更高质量的结果。 2. 增加训练示例:可以训练比提示中更多的例子,从而改进小样本学习,在大量任务中取得更好的效果。 3. 节省 Token 和成本:由于更短的提示而节省了 Token,对模型进行微调后,不再需要在提示中提供示例,能够节省成本并实现更低延迟的请求。 4. 提高模型效率:通过专门化模型,可以使用更小的模型,并且由于只对输入输出对进行训练,舍弃示例或指令,进一步改善延迟和成本。 5. 适应特定领域:针对特定领域进行微调,优化所有层的参数,提高模型在该领域的专业性。 目前,微调适用于以下基础模型:davinci、curie、babbage 和 ada。参数规模角度,大模型的微调分成全量微调 FFT(Full Fine Tuning)和 PEFT(ParameterEfficient Fine Tuning)两条技术路线,从成本和效果综合考虑,PEFT 是目前业界较流行的微调方案。 通用大模型如 GPT4.0、GPT3.5 等具有广泛的自然语言理解能力,但在特定领域表现可能不理想。而通过微调,可以在现有模型基础上,更经济、高效地适应新的应用领域,节省成本并加快模型部署和应用速度。
2025-01-06
训练以及部署微调模型
以下是关于训练以及部署微调模型的相关知识: 创建微调模型: 假设您已准备好训练数据,使用 OpenAI CLI 开始微调工作。需指定从哪个 BASE_MODEL 开始,如 ada、babbage、curie 或 davinci,还可使用后缀参数自定义微调模型的名称。运行命令后会进行以下操作: 1. 使用文件 API 上传文件(或使用已上传的文件)。 2. 创建微调作业。 3. 流式传输事件直到作业完成,这通常需要几分钟,但如果队列中有很多作业或数据集很大,则可能需要数小时。每个微调工作都从默认为 curie 的基本模型开始,模型的选择会影响性能和成本,您可访问定价页面了解微调费率的详细信息。开始微调作业后,可能需要一些时间才能完成,若事件流中断,可通过运行特定命令恢复。工作完成后,会显示微调模型的名称。此外,还可以列出现有作业、检索作业状态或取消作业。 GPT 助手的训练: 在有监督的微调阶段,收集少量但高质量的数据集,要求人工承包商收集提示和理想响应的数据,通常是几万个或类似数量。然后对这些数据进行语言建模,算法不变,只是训练集从互联网文档变为问答提示响应类型的数据。训练后得到有监督的微调模型(SFT 模型),可实际部署,它们在某种程度上是有用的。 大型语言模型的微调: 一旦有了基础模型,就进入计算成本相对较低的微调阶段。在这个阶段,编写标签说明明确助手的表现期望,雇佣人员创建文档,例如收集 100,000 个高质量的理想问答对来微调基础模型,这个过程可能只需一天。然后进行大量评估,部署模型并监控表现,收集不当行为实例并纠正,将正确答案加入训练数据,由于微调成本较低,可每周或每天进行迭代。例如 Llama2 系列,Meta 发布时包括基础模型和助手模型,基础模型不能直接使用,助手模型可直接用于回答问题。
2025-01-06
AI 增量训练 Lora
以下是关于 AI 增量训练 Lora 的相关知识: 参数理解: 1. 学习步数:指 AI 对每张图片的学习次数。二次元图片的 repeat 一般在 10 15,写实人物图片的 repeat 一般在 30 50,真实世界的景观场景可能要达到 100。理论上讲,图片精细度越高,学习步数越高。 2. 循环次数:AI 将所有图片按照学习步数学习一轮为一次循环,循环次数一般在 10 20 之间。次数并非越多越好,过多会导致过拟合,即画什么都和样图一样。 3. 效率设置:主要控制电脑的训练速度。可保持默认值,也可根据电脑显存微调,但要避免显存过载。 总的训练步数为:图片张数×学习步数×循环次数。 此外,沃尔夫勒姆提到人工智能是基于机器学习(通常通过神经网络实现),根据给出的示例进行增量训练,且这些示例包括大量人类生成的科学文本等,或者关于世界上发生的事情的实际经验。
2024-09-13
AI 增量训练和模型微调的区别
AI 增量训练和模型微调存在以下区别: 目的:增量训练通常是为了持续更新模型以适应新的数据和任务,而模型微调主要是为了使模型在特定的小领域数据集上针对特定任务达到更好的性能。 范围:增量训练可能涉及对模型的较大范围的更新,而微调往往集中在较小范围的参数调整。 方式:增量训练可能会对全量的模型参数进行训练,而微调存在全量微调(FFT)和参数高效微调(PEFT)两种技术路线,PEFT 只对部分模型参数进行训练,且目前在业界较为流行。 成本和效果:从成本和效果综合考虑,PEFT 是较好的微调方案。微调可以大幅提高模型在特定任务中的性能,但可能会使模型失去一些通用性。 数据使用:增量训练可能需要更多新的数据,而微调是在较小的、特定领域的数据集上进行。 如需了解更多关于微调的内容,可参考 OpenAI 官方微调教程:https://github.com/openai/openaicookbook/blob/main/examples/How_to_finetune_chat_models.ipynb
2024-09-13
用于训练销售助手类型业务的私有模型
以下是关于训练销售助手类型业务私有模型的相关信息: 1. 提示词方面:设计了一套模拟江南皮革厂销售的拟人化提示词模板,并将其应用于国内的豆包角色扮演模型,生成吸引人的广告词。若与语音技术结合用于宣传,能创造出有趣且有效的销售助手,吸引顾客注意。拟人化提示词母体可通过关注作者微信领取。 2. 增加私有知识方面:通过前面步骤拥有可与客户对话的 AI 助手后,若想让其像公司员工一样精准专业回答商品相关问题,需为大模型应用配置知识库。例如在售卖智能手机的公司,网站上有很多相关信息,不同机型的详细配置清单可参考相关文档。
2025-01-07
理解LoRA训练以及参数
LoRA 训练的参数主要包括以下方面: 1. 学习步数:指 AI 对每张图片的学习次数。二次元图片的 repeat 一般在 10 15,写实人物图片的 repeat 一般在 30 50,真实世界的景观场景可能要达到 100。repeat 值越高,AI 越能读懂图片,但图片精细度越高,学习步数也要越高。 2. 循环次数:AI 将所有图片按照学习步数学习一轮就是一次循环,循环次数就是将这个过程重复的遍数。一般数值在 10 20 之间,次数并非越多越好,过多会导致过拟合。总的训练步数 = 图片张数×学习步数×循环次数。 3. 效率设置:主要控制电脑的训练速度,可保持默认值,也可根据电脑显存微调,但要避免显存过载。 4. DIM:不同场景有不同的推荐值。如二次元一般为 32,人物常见为 32 128,实物、风景则≥128。DIM 为 64 时,输出文件一般为 70MB +;DIM 为 128 时,输出文件一般为 140MB + 。 5. 样图设置:主要控制训练过程中的样图显示,可实时观测训练效果。“sample every n steps”为 50 代表每 50 步生成一张样图,prompts 提示词可预设效果或自定义。 6. 并行数量:代表 AI 同一时间学习的图片数量。数值越大,训练速度越快,内存占用越大,收敛得慢;数值越小,训练速度越慢,内存占用越小,收敛得快。以 512×512 的图片为例,显存小于等于 6g,batch size 设为 1;显存为 12g 以上,batch size 可设为 4 或 6。增加并行数量时,通常也会增加循环次数。 7. 质量设置: 学习率:指 AI 学习图片的效率,过高会过拟合,过低会不拟合。1e 4 即 1 除以 10 的 4 次方,等于 0.0001;1e 5 即 1 除以 10 的 5 次方,等于 0.00001。一般保持默认,如需调整可点击数值旁的加减号。 网格维度:network dim 决定出图精细度,数值越高有助于 AI 学会更多细节,但数值越大学习越慢,训练时间越长,易过拟合。
2025-01-06
理解LoRA训练以及参数
LoRA 训练的参数主要包括以下方面: 1. 学习步数:指 AI 对每张图片的学习次数。二次元图片的 repeat 一般在 10 15,写实人物图片的 repeat 一般在 30 50,真实世界的景观场景可能要达到 100。repeat 值越高,AI 越能读懂图片,但图片精细度越高,学习步数也要越高。 2. 循环次数:AI 将所有图片按照学习步数学习一轮就是一次循环,循环次数就是将这个过程重复的遍数。一般数值在 10 20 之间,次数并非越多越好,过多会导致过拟合。总的训练步数 = 图片张数×学习步数×循环次数。 3. 效率设置:主要控制电脑的训练速度,可保持默认值,也可根据电脑显存微调,但要避免显存过载。 4. DIM:不同场景有不同的推荐值。如二次元一般为 32,人物常见为 32 128,实物、风景则≥128。DIM 为 64 时,输出文件一般为 70MB +;DIM 为 128 时,输出文件一般为 140MB + 。 5. 样图设置:主要控制训练过程中的样图显示,“sample every n steps”为 50 代表每 50 步生成一张样图。Prompts 提示词可预设效果或自定义。 6. 并行数量:代表 AI 同一时间学习的图片数量。数值越大,训练速度越快,内存占用越大,但收敛得慢;数值越小,训练速度越慢,内存占用越小,但收敛得快。显存小于等于 6g 时,batch size 设为 1;显存为 12g 以上时,batch size 可设为 4 或 6。 7. 质量设置: 学习率:指 AI 学习图片的效率,过高会过拟合,过低会不拟合。1e 4 实际为 1 除以 10 的 4 次方,即 0.0001;1e 5 为 1 除以 10 的 5 次方,即 0.00001。一般保持默认,如需调整可点击数值旁的加减号。 网格维度:network dim 决定出图精细度,数值越高有助于 AI 学会更多细节,但数值越大学习越慢,训练时间越长,易过拟合。
2025-01-06
我想知道你和Chat gpt的区别
以下是关于 ChatGPT 的相关介绍: 1. Gen AI/Generative AI 是“生成式人工智能”的正式称呼,能够生成新内容,如文本、图像、音乐等。AIGC 指的是由人工智能生成的内容的创作方式,是 Generative AI 的应用结果。 2. 从 OpenAI 的官网可知,2022 年宣发时称 ChatGPT 是一种模型,在官网的帮助页面中又称其是一种服务。目前我们所熟知的 ChatGPT 逐渐演变成了一种可以兼容多种 GPT 模型的聊天应用(服务),它依赖 GPT 系列模型来运转。 3. ChatGPT 名称中的 GPT 为 Generative PreTraining Transformer,意为生成式、预训练、转换器。其本质是“单字接龙”,长文由单字接龙的回归所生成。GPT 作为大脑即模型需要训练,通过材料学习形成模型,训练目的是学习“提问和回答的通用规律”,实现举一反三。但它不是搜索引擎的升级版,存在可能混淆记忆、无法直接查看和更新所学、高度依赖学习材料、缺乏及时性和准确性等缺点。 4. ChatGPT 是一种基于 GPT(生成式预训练变换器)架构的人工智能模型,由 OpenAI 开发,是目前最先进的人工智能模型,是一种自然语言处理(NLP)工具,能够理解和生成接近人类水平的文本。目前 ChatGPT 官网有两个版本,GPT3.5 是免费版本,拥有 GPT 账号即可使用,但智能程度不如 GPT4,且无法使用 DALL.E3(AI 画图功能)和 GPTs 商店和高级数据分析等插件。GPT4 有 PLUS 套餐(20 美金一个月)、团队版和企业版,一般推荐使用 PLUS 套餐。
2025-01-03
ai和agi的区别
AI(人工智能)和 AGI(通用人工智能)主要有以下区别: 1. 任务范围: AI 通常指的是弱人工智能(ANI),是针对特定任务或范围较小的任务来设计和训练的系统,例如智能音箱、网站搜索、自动驾驶等,只擅长执行提前定义好的任务,缺乏真正的理解和意识。 AGI 则是具有人类水平的智能和理解能力的系统,能够完成任何人类可以完成的智力任务,适用于不同的领域,同时拥有某种形式的意识或自我意识。 2. 能力表现: 弱人工智能是高度专业化的,不具备像人类一样的认知能力,也无法超出为它设定的小范围领域来解决一般问题。 AGI 有能力在各种任务和环境中进行推理、学习、理解和适应。 3. 发展现状: 弱人工智能已经得到了巨大的发展,并在许多领域得到了广泛应用。 AGI 目前还只是一个理论概念,尚未有任何系统能达到这种通用智能水平。 图灵测试常被用于判断是否创造了真正的智能系统,若人类评审员在文本对话中无法区分真人和计算机系统,则该计算机系统被认为是“智能”的。
2024-12-30
openai 发布的sora最新模型中,生成视频的提示词与一般问答提示词有什么区别或者注意事项?
Sora 是 OpenAI 于 2024 年 2 月发布的文本到视频的生成式 AI 模型。 生成视频的提示词与一般问答提示词的区别和注意事项如下: 1. 对于视频生成,神经网络是单射函数,拟合的是文本到视频的映射。由于视频的动态性高,值域大,因此需要丰富且复杂的提示词来扩大定义域,以学好这个函数。 2. 详细的文本提示能迫使神经网络学习文本到视频内容的映射,加强对提示词的理解和服从。 3. 和 DALL·E 3 一样,OpenAI 用内部工具(很可能基于 GPT4v)给视频详尽的描述,提升了模型服从提示词的能力以及视频的质量(包括视频中正确显示文本的能力)。但这会导致在使用时的偏差,即用户的描述相对较短。OpenAI 用 GPT 来扩充用户的描述以改善这个问题,并提高使用体验和视频生成的多样性。 4. 除了文本,Sora 也支持图像或者视频作为提示词,支持 SDEdit,并且可以向前或者向后生成视频,因此可以进行多样的视频编辑和继续创作,比如生成首尾相连重复循环的视频,甚至连接两个截然不同的视频。 以下是一些 Sora 的案例提示词,如:“小土豆国王戴着雄伟的王冠,坐在王座上,监督着他们广阔的土豆王国,里面充满了土豆臣民和土豆城堡。”“咖啡馆的小地图立体模型,装饰着室内植物。木梁在上方纵横交错,冷萃咖啡站里摆满了小瓶子和玻璃杯。”“一张写有‘SORA’的写实云朵图像。”“一群萨摩耶小狗学习成为厨师的电影预告片‘cinematic trailer for a group of samoyed puppies learning to become chefs’”
2024-12-27
你和GPT4o、MJ、suno有什么区别呢
GPT4o 能快速返回答案,但可能存在错误且无法自动纠错。 o1 推理模型在给出最终结果前会反复推演和验证,耗时更长但结果更准确,o1 Pro 计算时间更长,推理能力更强,适合复杂问题。 MJ (Midjourney)是一款专注于生成图像的工具。 Suno 相关的特点未在提供的内容中有明确提及。 由于不清楚您提到的“Suno”的具体情况,无法给出更详细的对比。但总体来说,不同的工具在功能、性能、适用场景等方面存在差异。
2024-12-26
你和gpt4有什么区别
以下是关于我和 GPT4 的一些区别: 1. 在数学能力方面,GPT4 可能在比数学数据更多的代码上进行训练。相对于 ChatGPT,GPT4 在许多复杂数学问题中展示出更深入的理解,并能够应用适当的推理,而 ChatGPT 通常采用低级启发式方法,缺乏实际理解。 2. 在处理复杂约束及追问任务时,GPT4 不会像 GPT4o 那样首先主动询问用户的背景信息来判断提问意图。 3. 在局限性方面,GPT4 通常缺乏对 2021 年 9 月后发生事件的了解,不会从经验中学习,有时会犯简单推理错误,过于轻信用户虚假陈述,可能在预测中自信犯错且不注意复查工作。预训练模型高度校准,但后训练过程中校准度降低,其输出存在各种偏差。
2024-12-26
chatAI与chatGPT有区别吗
ChatAI 并非一个明确且被广泛认知的特定概念。而 ChatGPT 具有明确的定义和特点: 从 OpenAI 的官网可知,ChatGPT 在 2022 年宣发时被称为一种模型,但在官网的帮助页面中又被称为一种服务。目前我们所熟知的 ChatGPT 逐渐演变成了一种可以兼容多种 GPT 模型的聊天应用(服务)。 与更注重人格属性,试图满足社交、情感、陪伴等需求。 与 Pi 相比,Pi 优先考虑与人的对话,评价标准在于对话自不自然、情商够不够高,而 ChatGPT 在某些情况下给出的建议相对泛泛。在机制设置上,Pi 采取提问式结尾、不断主动追问的方式更有让人聊下去的欲望。
2024-12-25