Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

请帮我整理关于AI最新进展和应用的介绍内容

Answer

以下是关于 AI 最新进展和应用的介绍:

医疗领域

  • ChatGPT 和 Google Bard 等技术极大加速了医疗健康生物制药的研究。AI 在抗癌、抗衰老、早期疾病防治等方面发挥着重要作用。
    • 提前三年诊断胰腺癌。
    • 两名高中生与医疗技术公司合作发现与胶质母细胞瘤相关的新靶基因。
    • 帮助抗衰老,筛查超过 80 万种化合物发现高效药物候选物。
    • 用于寻找阿尔兹海默症的治疗方法。
    • 帮助早期诊断帕金森。

法律法规方面

  • AI 在许多领域已经取得重大进展和效率提升,如交通监控、银行账户欺诈检测、工业大规模安全关键实践等。
  • AI 具有巨大的潜力来改变社会和经济,可能产生与电力或互联网相当的影响。
  • 大型语言模型等技术进步带来了变革性的发展机会。

基础通识课方面

  • 流式训练方式提升了训练速度和质量,基于 Transformer 模型进行流匹配优于扩大模型。
  • 有多种 AI 生成工具,如能创作音乐的 so no 音频生成工具、创建个人 AI 智能体的豆包、生成播客的 Notebook LN。
  • 端侧大模型能部署在手机端等设备,通过压缩解决存储和性能问题。
  • AI 工程平台对模型和应用有要求,如 define 平台,coach 平台有新版本模板和众多插件工具,还有工作流。
  • 有魔搭社区等为大模型提供服务的平台。
  • 预告了 AI 建站,需安装基础软件帮助文科生和无基础人员建站。
Content generated by AI large model, please carefully verify (powered by aily)

References

医疗:健康生物制药的研究

chatgpt,google bard在日常工作生活中很有用,这些技术也极大加速了医疗健康生物制药的研究,ai已经在抗癌,抗衰老,早期疾病防治等的研究应用中起着重要作用。以下是一些最新的进展:1、ai提前三年诊断胰腺癌,如果当年有这个,也许乔布斯还在世:https://hms.harvard.edu/news/ai-predicts-future-pancreatic-cancerImage:Rasi Bhadramani/iStock/Getty Images Plus2、两名高中生与医疗技术公司Insilico Medicine及其人工智能平台PandaOmics合作,发现了与胶质母细胞瘤相关的三个新靶基因,这些基因对于有效对抗这种癌症至关重要:https://finance.yahoo.com/news/teenage-geniuses-ai-uncover-cancer-163541619.html3、ai帮助抗衰老;由Integrated Biosciences领导的一项最新研究通过使用人工智能筛查了超过800,000种化合物,专家们发现了三种高效的药物候选物,其药理学性质优于目前已知的抗衰老物质:https://www.earth.com/news/artificial-intelligence-identifies-new-anti-aging-compounds/4、使用ai寻找阿尔兹海默症的治疗方法;亚利桑那大学与哈佛大学共同利用人工智能对健康神经元在疾病进展过程中的分子变化研究,以识别阿尔茨海默病的原因和潜在药物靶点。https://medicalxpress.com/news/2023-05-scientists-ai-drug-alzheimer.html5 ai帮助早期诊断帕金森;悉尼新南威尔士大学的科学家与波士顿大学研究人员使用神经网络分析患者体液中的生物标志物,在帕金森病的第一个症状出现前几年就可以发现该疾病。

【法律法规】《促进创新的人工智能监管方法》.pdf

1.19.AI is already delivering major advances and efficiencies in many areas.AI quietly automates aspects of our everyday activities,from systems that monitor traffic to make our commutes smoother,17 to those that detect fraud in our bank accounts.18 AI has revolutionised large-scale safety-critical practices in industry,like controlling the process of nuclear fusion.19 And it has also been used to accelerate scientific advancements,such as the discovery of new medicine20 or the technologies we need to tackle climate change.212.20.But this is just the beginning.AI can be used in a huge variety of settings and has the extraordinary potential to transform our society and economy.22 It could have as much impact as electricity or the internet,and has been identified as one of five critical technologies in the UK Science and Technology Framework.23 As AI becomes more powerful,and as innovators explore new ways to use it,we will see more applications of AI emerge.As a result,AI has a huge potential to drive growth24 and create jobs.25 It will support people to carry out their existing jobs,by helping to improve workforce efficiency and workplace safety.26 To remain world leaders in AI,attract global talent and create high-skilled jobs in the UK,we must create a regulatory environment where such innovation can thrive.3.21.Technological advances like large language models(LLMs)are an indication of the transformative developments yet to come.27 LLMs provide substantial opportunities to transform the economy and society.For example,LLMs can automate the process of writing code and17 Transport apps like Google Maps,and CityMapper,use AI.18 Artificial Intelligence in Banking Industry:A Review on Fraud Detection,Credit Management,and Document Processing,ResearchBerg Review of Science and Technology,2018.19 Accelerating fusion science through learned plasma control,Deepmind,2022;Magnetic control of tokamak plasmas through deep reinforcement learning,Degrave et al.,2022.

02-基础通识课

[heading2]总结AI技术的发展与应用流式训练方式提升训练速度和质量:将孔明灯换成泡泡,通过流式训练方式提高了整体训练的过程速度和质量,基于Transformer模型进行流匹配,这种方式优于扩大模型。多种AI生成工具:如输入简单提示词就能创作音乐的so no音频生成工具,能创建个人AI智能体的豆包,输入文本可生成播客的Notebook LN。端侧大模型的特点:端侧大模型能部署在手机端等设备,参数量小,可利用手机自带芯片或处理器运算,主要通过压缩来解决存储和性能问题,如减少模型参数量和计算复杂度,知识蒸馏模型有教师模型和学生模型。AI工程平台:AI工程平台对模型和应用有要求,像define是典型的工程平台,涉及数据清洗管道、数据存储和检索、编辑生成平台、构建prompt技巧、智能体概念、插件调用、运维平台、模型层和缓存机制等,还能接入多家大模型。AI工程平台coach的应用:coach平台新版本有很多模板,如名画照相馆,有众多插件工具,包括必应搜索、链接读取、代码执行器等,还有工作流,可创建应用APP。AI相关工具与平台的介绍及应用coach平台的使用:介绍了coach平台的新手教程和文档,可创建智能体,通过工作流节点调用和prompt构建提示词,还能调用插件、图像流、知识库等,商城中有各种智能体和插件模板,知识库可添加多种格式内容。模型社区介绍:提到魔搭社区等几个为大模型提供数据、企业模型和算力服务的平台,有按任务划分的模型库、数据集和在线应用供体验。AI建站预告:为后续AI建站做预告,需要在今明两天安装vs code等基础软件,以简单步骤帮助文科生和无基础人员完成建站,获得正反馈。

Others are asking
如何使用AI审核文件格式
以下是关于如何使用 AI 审核文件格式以及如何利用 AI 写课题的相关信息: 如何使用 AI 审核文件格式: Midjourney 正在测试全新的“外部图像编辑器、图像重纹理化功能”以及下一代 AI 审核系统。 1. 图像编辑器:允许从计算机上传图像,然后扩展、裁剪、重绘、添加或修改场景中的元素。还推出了“图像重纹理化模式”,可通过文本提示和区域选择来控制所有图像编辑操作,且兼容多种功能。 2. AI 审核系统:这是一个更加智能、细致的 V2 审核系统,会从整体上检查提示、图像、绘制蒙版以及生成的输出图像。但仍处于早期测试阶段,MJ 正在尽力优化其遵循的规则。 3. 使用规则:由于这些功能很新,MJ 希望给社区和人工审核团队一个适应时间。在第一个发布阶段,这些功能开放给以下社区群体: 已生成至少 10,000 张图像的用户,年度会员可用。 过去 12 个月内一直是月度订阅用户的用户。 如何利用 AI 写课题: 1. 确定课题主题:明确研究兴趣和目标,选择有研究价值和创新性的主题。 2. 收集背景资料:使用学术搜索引擎和文献管理软件等 AI 工具搜集相关研究文献和资料。 3. 分析和总结信息:利用 AI 文本分析工具提取关键信息和主要观点。 4. 生成大纲:使用 AI 写作助手生成包括引言、文献综述、方法论、结果和讨论等部分的大纲。 5. 撰写文献综述:借助 AI 工具确保内容准确完整。 6. 构建方法论:根据研究需求,采用 AI 建议的方法和技术设计研究方法。 7. 数据分析:若涉及数据收集和分析,使用 AI 数据分析工具处理和解释数据。 8. 撰写和编辑:利用 AI 写作工具撰写各部分,并检查语法和风格。 9. 生成参考文献:使用 AI 文献管理工具生成正确格式的参考文献。 10. 审阅和修改:用 AI 审阅工具检查逻辑性和一致性,根据反馈修改。 11. 提交前的检查:使用 AI 抄袭检测工具确保原创性,并做最后的格式调整。 需要注意的是,AI 工具只是辅助,不能完全替代研究者的专业判断和创造性思维,使用时应保持批判性思维,确保研究质量和学术诚信。
2025-03-15
和物理教学相关的ai产品有哪些
以下是一些与物理教学相关的 AI 产品: 1. 目前虽没有专门针对物理教学的知名 AI 产品,但在教育领域,有一些通用的 AI 教育工具可能对物理教学有所帮助。例如,像 Speak(https://www.speak.com/)、Quazel(https://www.quazel.com/)和 Lingostar(https://www.lingostar.ai/)这类产品,它们在语言教学方面发挥作用,可能对物理教学中的概念阐述和交流有一定辅助。 2. 像 Photomath(https://photomath.com/en)和 Mathly(https://mathly.webflow.io/)这样的应用,主要指导学生解决数学问题,其解题思路和方法可能对物理中的数学计算部分有借鉴意义。 3. 工具如 Grammarly、Orchard(https://orchard.ink/)和 Lex(https://lex.page/~)能帮助学生克服写作难题、提升写作水平,这对物理学习中的实验报告和作业书写有帮助。 4. Tome(https://beta.tome.app/)和 Beautiful.ai(https://www.beautiful.ai/)协助创建演示文稿,可用于物理课程的展示和汇报。 需要注意的是,AI 技术在教育领域的应用仍在不断发展和创新,未来可能会有更多专门针对物理教学的优质 AI 产品出现。
2025-03-15
ai赚钱项目
以下为一些关于 AI 赚钱项目的信息: 1. 在杭州站的活动中,参与者们分成 6 个小组进行 AI 赚钱快闪活动,在短时间内产出 AI 体验产品并定价,如“五行和合的 AI 头像”、“AI 随心签”、“AI 祈福壁纸”等,其中“AI 祈福壁纸”项目得到场地老板立刻买单。 2. 对于 GPTs/GLMs 能否赚钱的问题,答案是能,但大多数人不能。文章将从“钱”的角度,以 AI 产品经理的角色复盘 2023 年的所见所闻所感来探讨 AI 赚钱(应用落地)这件事。 3. 刘小排非程序员出身,用 AI 打造多款赚钱产品,强调“洞察需求”与产品验证是核心竞争力,并分享了低成本创业方法。
2025-03-15
请问是否有AI赋能企业的相关内容推荐
以下是关于 AI 赋能企业的相关内容: 企业可以涉及具身智能、3D 眼镜、AI 绘本、AI 图书、学习机、飞书的多维表格、蚂蚁的智能体、Coze 的智能体、Zeabur 等云平台、0 编码平台、大模型(如通义、智谱、kimi、deepseek 等)、编程辅助、文生图(如可灵、即梦等)、推荐咖啡奶茶等 AI 调配(需相应资质)。 企业权益包括学校大屏幕广告(时长可为 1 周或 1 个月的 PA 屏)、开幕式露出、摊位本身的宣传、其他露出(如直播等)、工作坊场(可能是 500 人中的部分人报名,深度参与其中,尽量不是卖东西,应用实操,如 AI 辅助编程,每个人做一个专属自己的一站式工作台、工具箱,针对典型的教学教研过程做尝试)、圆桌会论坛之类、真实案例收集反馈等,让大模型厂家的诉求、半透明的 chatbot 会话,有二维码引流等。 法律法规方面,《促进创新的人工智能监管方法》提到要使创新者更容易适应监管环境,如建立多监管机构的 AI 沙盒等,并要开展教育和提高意识的活动,包括为企业提供指导、提高消费者和公众的意识等。 张翼然的相关研究中提到了 AI 赋能教学的一些内容,但未直接涉及 AI 赋能企业。
2025-03-15
有没有成熟的ai制作宣传海报的工作流
以下是一些成熟的 AI 制作宣传海报的工作流: 1. 确定需求场景:例如想在社交平台发布内容时,为了获得更多点赞,需要有吸引力的图片;网上图片质量差且易撞图,自己相册中的照片不合适等情况。 2. 大致流程: 主题与文案:确定海报主题,借助 ChatGPT 等文本类 AI 工具完成文案。 风格与布局:选择想要的风格意向,根据文案和风格灵活调整画面布局,背景不一定空白。 生成与筛选:使用无界 AI 输入关键词,生成并挑选满意的海报底图。 配文与排版:将上述素材进行合理排版,得到成品。排版可参考 AIGC 海报成果。 此外,还有一些相关案例: 1. 游戏 PV《追光者》:灵感来源于《艾尔登法环》、《黑神话悟空》等游戏开场片,加入佛教元素。结合 ChatGPT 进行故事框架创作,使用 MJ 绘图、SD 重绘,制作深度图以及视频、AI 抠图,Aive 尝试制作背景音乐,微软 AI 制作旁白。除撰写故事框架外,生图及后期配音约用 7 天完成。 2. Junie 首部 AI 长电影:在传统制作流程中融入 AI 工具,如在 Discord 平台创作,依据 Notion 里的制作安排和细分章节剧本推进。用到多种 AI 工具,包括 AI 图像生成(Stable Diffusion/Midjourney v5.2/DALL·E)、AI 动画(Pika/Runway/Deforum)、口型同步(DID)、AI 旁白(ElevenLabs)、剪辑(Premiere)、文字翻译(ChatGPT)等,也会结合 3D 技术、AE 以及实拍等传统手段。
2025-03-15
AI可以解决什么问题
AI 可以解决以下几类问题: 1. 教育培训方面: 可以作为数字教师,如让牛顿亲自授课《牛顿运动定律》,让白居易为您讲述《长恨歌》背后的故事。 能够与学生进行对话交流,知识的获取不再受时空限制。 提供定制化的学习计划和学习资源,实现因材施教,提高学习效率和成果。 作为数字陪伴,促进儿童成长,提高学习成绩。 2. 科学研究方面: 在不追踪整个可能性图的情况下,尝试找到为不同的可能状态或结果分配分数的方法,并仅追求分数最高的路径。 在自动定理证明中,“从初始命题向下”和“从最终定理向上”工作,试图找出路径在中间的交汇处。 训练语言模型人工智能来生成代表路径的标记序列或证明。 此外,AI 还在不断发展和拓展其应用领域,为人们的生活和工作带来更多的便利和创新。
2025-03-15
RAG最新进展
RAG(检索增强生成)是由 Lewis 等人于 2020 年中期提出的一种大语言模型领域的范式。 其发展经历了以下阶段: 1. 2017 年创始阶段,重点是通过预训练模型吸收额外知识以增强语言模型,主要集中在优化预训练方法。 2. 大型语言模型如 GPT 系列在自然语言处理方面取得显著成功,但在处理特定领域或高度专业化查询时存在局限性,易产生错误信息或“幻觉”,特别是在查询超出训练数据或需要最新信息时。 3. RAG 包括初始的检索步骤,查询外部数据源获取相关信息后再回答问题或生成文本,此过程为后续生成提供信息,确保回答基于检索证据,提高输出准确性和相关性。 4. 在推断阶段动态检索知识库信息能解决生成事实错误内容的问题,被迅速采用,成为完善聊天机器人能力和使大语言模型更适用于实际应用的关键技术。 RAG 在多个基准测试中表现出色,如在 Natural Questions、WebQuestions 和 CuratedTrec 等中表现抢眼。用 MSMARCO 和 Jeopardy 问题进行测试时,生成的答案更符合事实、具体和多样,FEVER 事实验证使用后也有更好结果。基于检索器的方法越来越流行,常与 ChatGPT 等流行大语言模型结合使用提高能力和事实一致性,在 LangChain 文档中有相关使用例子。 同时,对增强生成检索的兴趣增长促使了嵌入模型质量的提高,传统 RAG 解决方案中的问题也得到解决。
2025-02-20
国产AI大模型的最新进展
以下是国产 AI 大模型的最新进展: 通义千问的 Qwen 系列表现出色:Qwen 是国内唯一出现在 OpenAI 视野里、能参与国际竞争的国产大模型。Qwen 多次冲进相关榜单,得分不断提高,其开源模型累计下载量突破 1600 万,国内外有大量开发者基于 Qwen 开发模型和应用,尤其在企业级领域。通义大模型证明了开源开放的力量。 国内大模型落地情况:2024 年被称为国内大模型落地元年,1 至 11 月,大模型中标项目共 728 个,是 2023 年全年的 3.6 倍;中标金额 17.1 亿元,是 2023 年全年的 2.6 倍。中标项目数前五的行业分别是运营商、能源、教育、政务、金融。厂商方面,百度以 40 个中标项目数、2.74 亿元的中标金额排名所有厂商之首,科大讯飞居第二。 其他进展:智谱一年间推出了 4 代 GLM,一直是国内能力较好的模型之一。MiniMax 推出了 MoE 架构的新模型和“星野”这个目前国内较成功的 AI 陪聊 APP。月之暗面专注长 Token 能力,在记忆力和长 Token 能力上有一定优势。但硬件层上的卡脖子问题仍未缓解,国内目前仍无胜任大模型训练的芯片,在推理上虽有 Nvidia 的替代产品逐渐出现,但华为昇腾在单卡指标上距离不远,因稳定性不足和缺乏 Cuda 生态,仍需时间打磨。
2025-01-09
AI方面有什么最新进展
以下是 AI 方面的一些最新进展: 1. 2024 人工智能现状报告:由剑桥大学和 AI 风险投资公司 Air Street Capital 的相关人员共同发表,围绕人工智能领域的最新进展、政治动态、安全挑战及未来预测几大方面进行说明。 2. AI 绘画:从生成艺术作品到辅助艺术创作,逐渐改变传统艺术面貌。技术进步使创作质量和速度取得突破,为艺术家提供新工具和可能性,但也引发了关于艺术本质、创造性、版权和伦理的讨论,带来对从业者职业安全的焦虑和“侵权”嫌疑的反对之声。 3. 技术历史和发展方向: 发展历程:包括早期阶段的专家系统、博弈论、机器学习初步理论;知识驱动时期的专家系统、知识表示、自动推理;统计学习时期的机器学习算法;深度学习时期的深度神经网络等。 前沿技术点:大模型(如 GPT、PaLM 等)、多模态 AI(视觉语言模型、多模态融合)、自监督学习、小样本学习、可解释 AI、机器人学、量子 AI、AI 芯片和硬件加速。
2024-12-05
人工智能与AI诈骗最新进展
以下是关于人工智能与 AI 诈骗的最新进展: 在 2024 年,AI 领域有诸多进展。在图像和视频方面,超短视频的精细操控,如表情、细致动作、视频文字匹配等有所发展,有一定操控能力的生成式短视频中,风格化、动漫风最先成熟,真人稍晚。AI 音频能力长足进展,带感情的 AI 配音基本成熟。“全真 AI 颜值网红”出现,可稳定输出视频并直播带货。游戏 AI NPC 有里程碑式进展,出现新的游戏生产方式。AI 男/女朋友聊天基本成熟,在记忆上有明显突破,能较好模拟人的感情,产品加入视频音频,粘性提升并开始出圈。实时生成的内容开始在社交媒体内容、广告中出现。AI Agent 有明确进展,办公场景“AI 助手”开始有良好使用体验。AI 的商业模式开始有明确用例,如数据合成、工程平台、模型安全等。可穿戴全天候 AI 硬件层出不穷,虽然大多数不会成功。中国 AI 有望达到或超过 GPT4 水平,美国可能出现 GPT5,世界上开始出现“主权 AI”。华为昇腾生态开始形成,国内推理芯片开始国产替代(训练替代稍晚)。然而,AI 造成的 DeepFake、诈骗、网络攻击等开始进入公众视野,并引发担忧,AI 立法、伦理讨论仍大规模落后于技术进展。 在 3 月底的 23 个最新 AI 产品中,有室内装修自动渲染的 HomeByte,生成效果超赞的新视觉模型 Playground v1,“图生文”反向工具 Clip Interrogator 以及致力于解决电话诈骗的 GPTCHA 等。 在技术应用方面,LLMs 能自动化写代码等流程,交通应用如 Google Maps 和 CityMapper 也使用了 AI。AI 在银行业的欺诈检测、信用管理和文件处理等方面发挥作用。同时,AI 还在药物研发、解决气候危机等领域有重要应用。 总之,AI 技术在不断发展的同时,也带来了如诈骗等问题,需要关注和解决。
2024-12-02
AI加教育的最新进展
以下是 AI 加教育的最新进展: 案例方面: “AI 赋能教师全场景”,来自 MQ 老师的投稿贡献。 “未来教育的裂缝:如果教育跟不上 AI”,揭示了人工智能在教育领域从理论走向实际应用带来的颠覆性改变。 “化学:使用大型语言模型进行自主化学研究”。 “翻译:怎么把一份英文 PDF 完整地翻译成中文?”,介绍了 8 种方法。 对未来的预判: 个性化学习时代已到来,AI 将作为教育生态系统的一部分与人类教师协作,为孩子提供不同的学习体验,如混合式教学、定制学习路径等。 教育工作者将成为学习的引导者和伙伴,更多关注孩子的全人发展,如创造力和社交智慧。 未来 3 年,提升人机协作效率的领域,如 AI 作业批改、备课、定制教育规划、学前启蒙等,对教育从业者蕴藏着巨大机遇。 探索实践: 过去半年多,梳理教学和育儿工作流,每个环节与 AI 协作可大幅提升效率,但也加剧了知识获取的不平等。从家长的“育”、老师的“教”和学生的“学”进行了落地实践的拆解。
2024-11-05
Ai最新进展
AI 技术的发展历程如下: 1. 早期阶段(1950s 1960s):包括专家系统、博弈论、机器学习初步理论。 2. 知识驱动时期(1970s 1980s):有专家系统、知识表示、自动推理。 3. 统计学习时期(1990s 2000s):出现了机器学习算法,如决策树、支持向量机、贝叶斯方法等。 4. 深度学习时期(2010s 至今):深度神经网络、卷积神经网络、循环神经网络等得到广泛应用。 当前 AI 的前沿技术点包括: 1. 大模型,如 GPT、PaLM 等。 2. 多模态 AI,例如视觉 语言模型(CLIP、Stable Diffusion)、多模态融合。 3. 自监督学习,包含自监督预训练、对比学习、掩码语言模型等。 4. 小样本学习,如元学习、一次学习、提示学习等。 5. 可解释 AI,涉及模型可解释性、因果推理、符号推理等。 6. 机器人学,包括强化学习、运动规划、人机交互等。 7. 量子 AI,有量子机器学习、量子神经网络等。 8. AI 芯片和硬件加速。 此外,绿洲资本张津剑认为 AI 技术正在加速发展,并且没有看到任何减缓的迹象。尽管媒体报道可能有所减少,但 AI 的实际进展非常迅速。
2024-09-03
会议录音文本整理提示词
以下是关于会议录音文本整理提示词的相关内容: 单人发言版:基于李继刚老师的“通知消息整理助手”修改了一份“文字排版大师”的 Prompt,重点 Prompt 语句已标出。 多人发言版:将提示词和文字原文发送给 GPT,GPT 开始整理文字,等待输出完毕后复制粘贴到文本编辑器中,整理并删掉无关内容,使用替换法替换掉双星号。 Claude 官方提示词(中文版含 API Prompt): 会议记录员:将会议浓缩成简明摘要,包括讨论主题、重点内容、行动事项。 俗语解码员:解释常见俗语谚语的意思和来历。 代码优化师:优化 Python 代码性能的建议。 文本补全(Text completion): 提示词(Prompt)设计: 基础知识:模型可完成多种任务,创建提示需明确描述需求,遵循展示和告诉、提供高质量数据、检查设置三个基本准则。 故障排除:若 API 无法正常工作,可检查是否清楚生成的预期结果、是否提供足够示例、示例是否有错误、是否正确使用温度和 top_p。
2025-03-14
整理word格式的ai
很抱歉,您提供的内容中没有关于“整理 word 格式的 AI”的有效信息,无法为您提供准确的回答。您能否再详细描述一下您的需求,比如是要将 AI 相关的内容整理成 word 格式,还是对已有的 word 格式的 AI 文档进行某种处理?
2025-03-14
微信聊天记录整理助手
以下是关于微信群聊总结 AI 助手(JS and Electron ver)的详细介绍: 脚本版本运行: 会弹出二维码,使用微信扫码登录,登录成功后程序持续抓取群聊记录,保存在本地文件中,位置在 data/日期文件夹/群名.txt,不会上传到第三方。 手动运行总结程序,在每天结束时对某个群的内容进行总结,命令为:npm run summarize./data/20230823/xxx.txt 总结语音生成的配置。 项目介绍: 这是基于微信机器人的微信群聊总结助手,能自动收集群聊记录并用 AI 总结发送到指定群聊。 是较简单能实现完整功能的项目,用 JS 简单封装。 每次执行 summarize 命令会生成三个总结文件。 提示:使用本项目登录微信可能存在封号风险,请慎重使用并遵守相关平台规则。 下载与支持: 本项目由免费白嫖 GPT 的智囊 AI技术支持。 自己跑不起来但需要群聊总结的同学,可加机器人微信号:aoao_eth,把机器人拉进群里。 新版本:桌面应用: 可使用桌面版,一键监控、总结、发送,也可用脚本版手动运行监控和总结。 下载后直接打开配置 app key 即可运行监控和总结,一键总结,一键发送到群内。 如需要 windows 版本,可自己构建或者直接代码运行,代码在 app 文件夹中,欢迎构建成功的同学提供 windows 安装包。 截图展示的功能: 每日群聊监控和数据统计(界面实时更新) 一键总结,一键查看总结结果,一键发送到群聊 聊天记录实时查看,直接发送内容到群聊 随时更新的配置,可配置截取的文本长度和结尾词等 机器人状态监控,账号切换 正常运行界面,点击对话可看到实时对话和记录,同时可直接输入内容对话 微信登录界面
2025-03-12
我想学习Ai绘画,请帮我整理一个学习计划。
以下是为您整理的 AI 绘画学习计划: 一、基础学习阶段(12 个月) 1. 第一个月 了解 AI 绘画的基本原理和常用工具,如 StableDiffusion(SD)、Midjourney 等。 学习相关的理论知识,可参考《生成式 AI 导论 2024》李宏毅、Introduction to Image Generation Google AI 课程等。 2. 第二个月 深入学习所选工具的教程,掌握基本操作和功能。 尝试使用不同的提示词进行简单的绘画创作。 二、实践练习阶段(23 个月) 1. 第三个月 针对不同的主题,如人脸、画风、风景、景观、建筑等进行炼丹练习。 注意提高图片数据集的质量,以获得更好的效果。 2. 第四个月 与小伙伴探讨 AI 绘画的变现途径,尝试参与相关项目。 练习绘本风格的绘画。 3. 第五个月 即使在没有硬件支持的情况下,继续学习和巩固知识。 加入相关社群,如 Prompt battle 社群,学习新的技巧和经验。 三、巩固提升阶段(长期) 1. 不断优化提示词,提高绘画的质量和创意。 2. 定期评估学习成果,总结经验教训,调整学习方向。 需要注意的是,学习 AI 绘画需要耐心和持续的实践,祝您学习顺利!
2025-03-07
我想整理现在国内和国外的大语言模型产品并需要你整理差异还有时间轴
以下是对国内外大语言模型产品的整理及差异: 国内大语言模型: 通用模型:如文心一言、讯飞星火等,能够处理自然语言。 垂直模型:专注于特定领域,如小语种交流、临床医学、AI 蛋白质结构预测等。 具有代表性的项目:“悟道・天鹰”(北京智源人工智能研究院)是首个具备中英文双语知识、支持商用许可协议、国内数据合规需求的开源语言大模型;文心一言(百度)可用以文学创作、商业文案创作、数理逻辑推算、中文理解、多模态生成。 国外大语言模型: 具有代表性的项目:GPT4(OpenAI)是目前最先进的自然语言生成模型,可用于回答问题、撰写文章等;Gemini Ultra(Google)是多模态人工智能模型,采用神经网络架构,对标 GPT4,可用于回答问题、生成代码、处理文本等;Claude 3 Opus(Anthropic)是多模态模型,能处理超过 1 百万 token 的输入,具有实时聊天、数据处理、分析预测等功能,实现了接近完美的召回率。 时间轴方面: 国内:去年 7 月大模型百花齐放。 国外:相关模型也在不断发展和更新。 在工作原理上,大语言模型通常包括训练数据、算力、模型参数等要素。在训练数据一致的情况下,模型参数越大能力越强。Transformer 架构是大语言模型训练的常见架构,具备自我注意力机制能理解上下文和文本关联。同时,大模型可能存在幻觉,即因错误数据导致给出错误答案,优质数据集对其很重要。此外,Prompt 分为 system prompt、user prompt 和 assistant prompt,写好 Prompt 的法则包括清晰说明、指定角色、使用分隔符、提供样本等。还可以基于通用大模型进行 Fine tuning 微调,以适应特定领域的需求。
2025-03-07
整理国内 AI投融资信息
以下是为您整理的国内 AI 投融资信息: 2024 年,国内 AI 行业融资总金额增加,但事件数同比下降,反映出机构更加谨慎的理性态度,马太效应越发明显,资本更青睐热点赛道和高成熟度赛道。 在各细分赛道中,智能驾驶独占鳌头,投资事件数量和金额总数远超其他赛道,且多家企业成功 IPO 为市场注入了巨大信心与活力。AI+教育、AI+游戏、AI+医疗等赛道也迎来了投资总额的增长,机构对技术难度更高、壁垒更强、更晚达到 TPF(TechnologyProduct Fit)的赛道展现出更强兴趣。 在政策方面,政府对 AI 技术本身及其在各行业落地长期关注,积极推进 AI 原生行业发展,北京、上海、武汉等城市已出台一系列政策,吸引 AI 相关人才聚集与企业落地。同时,国家队频繁出手投资体现出政策的鼓励与支持。
2025-03-07
AI应用总汇
以下是 AI 的一些应用场景: 1. 辅助创作与学习: AI 智能写作助手帮助用户快速生成高质量文本。 AI 语言学习助手、诗歌创作助手、书法字体生成器、漫画生成器等为用户的学习和创作提供支持。 2. 推荐与规划: AI 图像识别商品推荐、美食推荐平台、旅游行程规划器、时尚穿搭建议平台、智能投资顾问等,根据用户的需求和偏好为其推荐合适的产品、服务或制定个性化的计划。 3. 监控与预警: AI 宠物健康监测设备、家居安全监控系统、天气预报预警系统、医疗诊断辅助系统等,实时监测各种情况并提供预警。 4. 优化与管理: 办公自动化工具、物流路径优化工具、家居清洁机器人调度系统、金融风险评估工具等,提高工作效率和管理水平。 5. 销售与交易: AI 艺术作品生成器、书法作品销售平台、摄影作品销售平台、汽车销售平台、房地产交易平台等,为各类产品和服务提供销售渠道。 在具体的行业应用中: 1. 医疗保健: 医学影像分析:AI 用于分析医学图像,辅助诊断疾病。 药物研发:加速药物研发过程,识别潜在药物候选物和设计新治疗方法。 个性化医疗:分析患者数据,提供个性化治疗方案。 机器人辅助手术:控制手术机器人,提高手术精度和安全性。 2. 金融服务: 风控和反欺诈:识别和阻止欺诈行为,降低金融机构风险。 信用评估:评估借款人信用风险,帮助做出贷款决策。 投资分析:分析市场数据,辅助投资决策。 客户服务:提供 24/7 服务,回答常见问题。 3. 零售和电子商务: 产品推荐:分析客户数据,推荐可能感兴趣的产品。 搜索和个性化:改善搜索结果,提供个性化购物体验。 动态定价:根据市场需求调整产品价格。 聊天机器人:回答客户问题并解决问题。 4. 制造业: 预测性维护:预测机器故障,避免停机。 质量控制:检测产品缺陷,提高产品质量。 供应链管理:优化供应链,提高效率和降低成本。 机器人自动化:控制工业机器人,提高生产效率。 5. 交通运输:(此处未提供具体应用内容)
2025-03-15
最好用的AI应用有哪些
以下是一些好用的 AI 应用: 1. AI 摄影参数调整助手:使用图像识别和数据分析技术,常见于摄影 APP 中,可根据场景自动调整摄影参数,市场规模达数亿美元。 2. AI 音乐情感分析平台:运用机器学习和音频处理技术,有音乐情感分析软件,能分析音乐的情感表达,市场规模达数亿美元。 3. AI 家居智能照明系统:基于物联网技术和机器学习,如小米智能照明系统,实现家居照明的智能化控制,市场规模达数十亿美元。 4. AI 金融风险预警平台:借助数据分析和机器学习,有金融风险预警软件,可提前预警金融风险,市场规模达数十亿美元。 5. AI 旅游路线优化平台:通过数据分析和自然语言处理,马蜂窝有路线优化功能,能根据用户需求优化旅游路线,市场规模达数亿美元。 6. AI 游戏道具推荐系统:利用数据分析和机器学习,常见于游戏内商城推荐功能,可根据玩家需求推荐游戏道具,市场规模达数亿美元。 7. AI 天气预报分时服务:采用数据分析和机器学习,如彩云天气分时预报,提供精准的分时天气预报,市场规模达数亿美元。 8. AI 医疗病历分析平台:依靠数据分析和自然语言处理,医渡云有病历分析系统,能分析医疗病历,辅助诊断,市场规模达数十亿美元。 9. AI 会议发言总结工具:使用自然语言处理和机器学习,讯飞听见有会议总结功能,可自动总结会议发言内容,市场规模达数亿美元。 10. AI 书法作品临摹辅助工具:借助图像识别和数据分析,有书法临摹软件,能帮助书法爱好者进行临摹,市场规模达数亿美元。 11. AI 菜谱口味调整工具:运用自然语言处理和数据分析,如下厨房口味调整功能,可根据用户反馈调整菜谱口味,市场规模达数亿美元。 12. AI 语言学习纠错平台:通过自然语言处理和机器学习,英语流利说有纠错功能,能帮助语言学习者纠正错误,市场规模达数十亿美元。 13. AI 电影剧情分析系统:利用数据分析和自然语言处理,豆瓣电影有剧情分析工具,能分析电影剧情,提供深度解读,市场规模达数亿美元。 14. AI 办公文件分类系统:凭借数据分析和机器学习,腾讯文档有分类功能,可自动分类办公文件,方便管理,市场规模达数亿美元。 15. AI 美容护肤方案定制平台:基于图像识别和数据分析,美丽修行有定制方案功能,能根据用户肤质定制护肤方案,市场规模达数亿美元。
2025-03-15
请列出目前最好用的AI应用提示词
以下是一些目前较好用的 AI 应用提示词: 1. 让 Claude 3.5 摆脱循环的提示技巧:在模型陷入重复或逻辑僵局时,使用提示词让其先进行多步、多角度思考,输出十段左右分析,再转化为代码实现。优势在于避免错误方向的持续生成,促使模型输出新的思考过程。注意如果模型输出内容已过于冗杂,建议修改原始提示词。参考链接: 2. AI 对程序员工作的影响分析:AI 可代替的部分包括代码生成、补全、分析问题和数据提取、辅助架构设计文档等;AI 无法代替的部分有需求分析、复杂项目拆分、线上问题排查、调试及安全性保障。建议专业程序员通过 AI 提升效率,但非专业人士难以依赖 AI 完成复杂任务,需注重自身技能提升和架构设计能力。参考链接: 3. AI 应用场景中的访谈内容真实性分析:从“自相矛盾”“时间线”“常识性冲突”角度,分析访谈内容的内部一致性,并结合常识推测可能存在夸大或不实之处。应用价值在于适合验证新闻、访谈或声明的真实性,发现潜在问题。参考链接: 此外,在 Apple Intelligence 中,如“有用的邮件助理”AI 机器人被指示如何根据邮件内容提出一系列问题,还包括“请将答案限制在 50 个单词以内。不要产生或编造虚假信息。”等提示。 在通往 AGI 之路知识库中,也有众多与提示词相关的内容,如之前社区测试中有关夫妻相的有趣提示词测试,还有 midjourney 提示词、股市卡片、解压缩等众多内容。此外有最佳实践、方法论、论文精读,提到刘海写伪提示词等技巧,吴文达老师讲 prompt 较好,还有 open i 官方提示,博主列出的 6 大策略吃透有助于写提示词。
2025-03-15
Ai写作有什么推荐的应用吗
以下是一些 AI 写作相关的应用推荐: 在论文写作领域: 文献管理和搜索:Zotero 结合 AI 技术,可自动提取文献信息,帮助管理和整理参考文献;Semantic Scholar 是由 AI 驱动的学术搜索引擎,能提供文献推荐和引用分析。 内容生成和辅助写作:Grammarly 通过 AI 技术提供文本校对、语法修正和写作风格建议;Quillbot 是基于 AI 的重写和摘要工具,可帮助精简和优化论文内容。 研究和数据分析:Google Colab 提供基于云的 Jupyter 笔记本环境,支持 AI 和机器学习研究,便于进行数据分析和可视化;Knitro 用于数学建模和优化,可进行复杂的数据分析和模型构建。 论文结构和格式:LaTeX 结合了自动化和模板,可高效处理论文格式和数学公式;Overleaf 是在线 LaTeX 编辑器,有丰富模板库和协作功能,简化论文编写过程。 研究伦理和抄袭检测:Turnitin 是广泛使用的抄袭检测工具,确保论文原创性;Crossref Similarity Check 通过与已发表作品比较,检测潜在抄袭问题。 通用写作领域: Grammarly、秘塔写作猫:AI 智能写作助手,利用自然语言处理技术辅助用户进行高质量写作。Grammarly 可检查语法、拼写错误并提供改进建议,秘塔写作猫能进行智能润色和内容创作辅助。 Muse:专门为小说创作训练的 AI 模型工具,可实现在线的小说续写修改,创意头脑风暴以及同时基于画布形式的故事创作,可免费试用。 使用这些工具时,要结合自己的写作风格和需求,选择最合适的辅助工具。
2025-03-15
AI应用开发平台哪个最牛?
目前在 AI 应用开发平台方面,百度智能云表现较为出色。 IDC 发布的报告显示,在战略领先、数据集成、模型调优、模型部署、加速计算能力、工程化能力、平台生态、用户体验 7 大评估项目中,百度智能云获得七项满分,位于所有大模型平台厂商第一名。 百度智能云在 IaaS 层,其百舸 AI 异构计算平台解决大模型应用中的算力问题,提供从集群创建到模型训练、推理的完整算力管理方案,显著提升算力管理能力和模型训练效率。在 Paas 层,千帆大模型平台解决大模型的调用、开发和应用开发问题,支持调用文心大模型全系列模型,还提供全面的工具链,支持定制化的模型开发。在 SaaS 层,提供丰富的常用应用供客户选择。 此外,像美团外卖配送系统、猎聘 APP、链家 APP 等也是在各自领域利用 AI 技术取得良好效果的应用。 在智能体开发平台方面,字节的扣子和腾讯的元器受到关注。扣子主要用于开发下一代 AI 聊天机器人,国内也有像 Dify.AI 等智能体开发平台。
2025-03-14
大模型如何在企业里应用
大模型在企业中的应用主要体现在以下几个方面: 1. 智能终端行业:中国超半数手机厂商如三星、荣耀、vivo、OPPO、小米等主流品牌,以及上汽大众、吉利汽车、蔚来汽车、长安汽车等十余家车企已接入百度文心大模型。 2. 百度表现:在主流大模型厂商中,百度表现突出,拿下最关键的中标项目数量、中标金额两项第一。其文心大模型日均调用量超过 15 亿次,千帆平台帮助客户精调了 3.3 万个模型、开发了 77 万个企业应用。百度智能云的增长主要由互联网、教育、金融等行业对模型训练和推理的高需求带动。 3. 落地所需能力:企业想要真正将大模型在自身场景落地,需要具备构建算力、数据治理、模型训练、场景落实、应用搭建、持续运营、安全合规等整套能力。这意味着大模型落地赋能企业智能化时,能力比拼从单项变为全能比拼。 然而,大模型在企业落地应用中面临一些问题和挑战: 1. 竞争格局:大模型是典型赢家通吃领域,胜出的大模型在中国和世界范围内都很难超过 2 个,巨头在资金、技术和数据方面具有优势,给创业公司的机会很少。 2. 落地难题:如何将大模型更快落地应用,将技术能力释放并与更多场景相结合,真正产生新一轮科技革命和产业变革,是当前紧要的关键问题。 3. 具体问题: 提高内容可信:需要通过商业交付去应用、反馈和评测,不断优化数据以解决实际应用问题,走向垂直化以提高内容精准度。 解决算力成本高、训练重复和资源紧缺:以 GPT3 模型为例,训练成本高昂,且目前仍无法用商业化的国产芯片进行大模型训练。 解决大模型落地问题,主要有以下三方面:提高内容可信;解决算力成本高、训练重复和资源紧缺的问题;降低大模型价格或使用垂直领域模型落地。
2025-03-14