Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

AI方面有什么最新进展

Answer

以下是 AI 方面的一些最新进展:

  1. 2024 人工智能现状报告:由剑桥大学和 AI 风险投资公司 Air Street Capital 的相关人员共同发表,围绕人工智能领域的最新进展、政治动态、安全挑战及未来预测几大方面进行说明。
  2. AI 绘画:从生成艺术作品到辅助艺术创作,逐渐改变传统艺术面貌。技术进步使创作质量和速度取得突破,为艺术家提供新工具和可能性,但也引发了关于艺术本质、创造性、版权和伦理的讨论,带来对从业者职业安全的焦虑和“侵权”嫌疑的反对之声。
  3. 技术历史和发展方向:
    • 发展历程:包括早期阶段的专家系统、博弈论、机器学习初步理论;知识驱动时期的专家系统、知识表示、自动推理;统计学习时期的机器学习算法;深度学习时期的深度神经网络等。
    • 前沿技术点:大模型(如 GPT、PaLM 等)、多模态 AI(视觉-语言模型、多模态融合)、自监督学习、小样本学习、可解释 AI、机器人学、量子 AI、AI 芯片和硬件加速。
Content generated by AI large model, please carefully verify (powered by aily)

References

2024人工智能报告|一文迅速了解今年的AI界都发生了什么?

近日,来自剑桥大学,AI风险投资公司Air Street Capital创始人兼CEO Nathan Benaich和来自牛津大学,Air Street Capital平台负责人Alex Chalmers共同发表《State of AI Report》2024人工智能现状报告,报告主要围绕人工智能(AI)领域的最新进展、政治动态、安全挑战及未来预测几大方面进行说明。

AI绘画:与艺术界的双向影响

从生成艺术作品到辅助艺术创作,AI绘画正逐渐改变着传统艺术的面貌,与此同时艺术界不断的反馈使AI在绘画方面有显著的进展。AI技术在艺术创作中的应用‘不仅改变了艺术作品的创作方式,还对艺术的审美观念和市场需求产生了影响。AI绘画的发展历程显示,从早期的机械臂机器人到当前的大语言模型,技术的进步使得AI绘画在创作质量和速度上取得了新的突破。这种技术进步不仅为艺术家提供了新的工具和可能性,也推动了传统艺术的数字化和普及化。然而,AI在艺术创作中的应用也引发了一系列讨论和争议。一方面,人们对于由AI驱动的机器人创作的艺术品和人类创作的艺术品的接受程度大致相同,但人们更不愿意将机器人视为艺术家。这表明,尽管AI可以生成具有吸引力的艺术作品,但它在表达情感和创造性意图方面仍然存在局限性。另一方面,艺术家对于AI生成艺术的态度复杂,既有对其创新潜力的期待,也有对版权、原创性和伦理问题的担忧。此外,AI绘画技术的发展也带来了对文化创意领域从业者职业安全的焦虑,以及对其“侵权”嫌疑的反对之声。这些争议反映了新技术发展带来的行业生态变化,以及对现有法律和伦理框架的挑战。尽管存在争议,AI在艺术领域的应用也为艺术创作提供了新的可能性。AI可以帮助艺术家探索新的创意表达方式,提高制作效率,降低制作成本。同时,AI技术的应用也在促进艺术与观众之间的互动,提供更加个性化和互动的艺术体验。AI绘画对艺术界的影响是复杂且双面的。它既提供了新的创作工具和可能性,也引发了关于艺术本质、创造性、版权和伦理的重要讨论。

问:AI的技术历史和发展方向,目前最前沿的技术点有哪些

AI技术的发展历程和前沿技术点可以概括如下:[heading2]AI技术发展历程[content]1.早期阶段(1950s-1960s):专家系统、博弈论、机器学习初步理论2.知识驱动时期(1970s-1980s):专家系统、知识表示、自动推理3.统计学习时期(1990s-2000s):机器学习算法(决策树、支持向量机、贝叶斯方法等)4.深度学习时期(2010s-至今):深度神经网络、卷积神经网络、循环神经网络等[heading2]当前AI前沿技术点[content]1.大模型(Large Language Models):GPT、PaLM等2.多模态AI:视觉-语言模型(CLIP、Stable Diffusion)、多模态融合3.自监督学习:自监督预训练、对比学习、掩码语言模型等4.小样本学习:元学习、一次学习、提示学习等5.可解释AI:模型可解释性、因果推理、符号推理等6.机器人学:强化学习、运动规划、人机交互等7.量子AI:量子机器学习、量子神经网络等8.AI芯片和硬件加速

Others are asking
AI生成PPT
以下是关于 AI 生成 PPT 的相关内容: 卓 sir 的制作流程:先让 GPT4 生成 PPT 大纲,然后将大纲导入 WPS 启用 WPS AI 一键生成 PPT,再让 chatPPT 添加动画,最后手动修改细节。其中,生成符合要求的大纲最费时间。 市面上大多数 AI 生成 PPT 的思路:AI 生成 PPT 大纲、手动优化大纲、导入工具生成 PPT、优化整体结构。 相关推荐:gamma、AIPPT、islide AI 等产品,其中 gamma 被认为在审美方面表现较好。 扩展阅读:《AI 生成 PPT 工具红黑榜,这三款千万别用》《AI+PPT 等效率工具的研报》 您可以根据自己的需求和喜好选择合适的方法和工具来生成 PPT。
2025-02-26
文生营销图AI
以下是关于文生营销图 AI 的相关教程: Liblibai 简易上手教程: 1. 定主题:确定您需要生成的图片的主题、风格和要表达的信息。 2. 选择 Checkpoint:根据主题选择内容贴近的 Checkpoint,如麦橘、墨幽的系列模型。 3. 选择 lora:寻找与生成内容重叠的 lora,以控制图片效果和质量。 4. 设置 VAE:选择 840000 那一串。 5. CLIP 跳过层:设为 2。 6. Prompt 提示词:用英文写需求,使用单词和短语组合,用英文半角逗号隔开,无需语法和长句。 7. 负向提示词 Negative Prompt:用英文写要避免的内容,同样是单词和短语组合,用英文半角逗号隔开。 8. 采样方法:一般选 DPM++2M Karras,也可参考模型作者推荐的采样器。 9. 迭代步数:选 DPM++2M Karras 时,在 30 40 之间,多了意义不大且慢,少了效果差。 10. 尺寸:根据喜好和需求选择。 11. 生成批次:默认 1 批。 Tusiart 简易上手教程: 1. 定主题:确定图片的主题、风格和要表达的信息。 2. 选择基础模型 Checkpoint:根据主题选择贴近的 Checkpoint,如麦橘、墨幽的系列模型。 3. 选择 lora:寻找与生成内容重叠的 lora,以控制图片效果和质量。 4. ControlNet:用于控制图片中特定的图像,如人物姿态等,属于高阶技能。 5. 局部重绘:下篇再教。 6. 设置 VAE:选择 840000 那一串。 7. Prompt 提示词:用英文写需求,使用单词和短语组合,用英文半角逗号隔开,无需语法和长句。 8. 负向提示词 Negative Prompt:用英文写要避免的内容,同样是单词和短语组合,用英文半角逗号隔开。 9. 采样算法:一般选 DPM++2M Karras,也可参考模型作者推荐的采样器。 10. 采样次数:选 DPM++2M Karras 时,在 30 40 之间,多了意义不大且慢,少了效果差。 11. 尺寸:根据喜好和需求选择。 关于【SD】文生图提示词: 1. 避免使用太大的数值,如 1920x1080,可能导致奇怪构图,可使用高清修复放大图像倍率,记住高宽比主要控制画面比例。 2. 调整好参数后生成图片,若质感不足,可添加标准化提示词,如:,绘图,画笔等,让画面更趋近于固定标准。
2025-02-26
AI LOGO工具
以下是一些生成 Logo 的 AI 产品: 1. Looka:这是一个在线 Logo 设计平台,使用 AI 理解用户的品牌信息和设计偏好,生成多个设计方案供选择和定制。 2. Tailor Brands:AI 驱动的品牌创建工具,通过用户回答问题生成 Logo 选项。 3. Designhill:其 Logo 制作器利用 AI 技术创建个性化设计,用户可选择元素和风格。 4. LogoMakr:提供简单易用的设计工具,用户能拖放设计,利用 AI 建议的元素和颜色方案。 5. Canva:广受欢迎的在线设计工具,提供 Logo 设计模板和元素,有 AI 辅助设计建议。 6. LogoAI by Tailor Brands:Tailor Brands 推出的 AI Logo 设计工具,根据输入快速生成方案。 7. 标小智:中文 AI Logo 设计工具,利用人工智能技术帮助创建个性化 Logo。 这些 AI 产品让无设计背景的用户也能轻松创建专业 Logo。使用时,用户可根据品牌理念和视觉偏好,通过简单交互获得系列方案,并进一步定制优化至满意。 此外,您还可以访问网站的 AI 生成 Logo 工具版块获取更多好用的工具:https://waytoagi.com/category/20 。 在第六期“一起做个 LOGO 吧”活动中,活动时间为 2024 年 6 月 9 日至 2024 年 6 月 16 日。活动目标包括探索制作 LOGO 方法、创造独特生成技巧、制作代表学习成果的作品。参与方式为使用 SD 等 AI 工具出图并将作品发送至 SD 学社微信群。会创建在线文档收集作品,6 月 16 日举行群内投票选出前三名,注意事项包括确保设计原创、允许作品公开展示以及在截止日期前提交。 在 AI 制作游戏 PV《追光者》中,故事背景创作阶段结合 chatGPT 发散制作游戏世界观,引导 ChatGPT 用分镜形式描述,使用 new bing 共创细致的故事分镜。生图阶段利用 ChatGPt 制作 midjourney 提示词工具,进入 midjourney 绘图包括制作 logo。还统一了 MJ 风格描述词,建立 AI 描述词模板,运用 midjourney 尝试制作不同风格 logo,最后用 PS 合成。
2025-02-26
我想知道ai学习路径
以下是为您提供的 AI 学习路径: 一、了解 AI 基本概念 建议阅读「」部分,熟悉 AI 的术语和基础概念,包括人工智能的定义、主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。同时,浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 二、开始 AI 学习之旅 在「」中,您可以找到为初学者设计的课程,特别推荐李宏毅老师的课程。您还可以通过在线教育平台(如 Coursera、edX、Udacity)按照自己的节奏学习,并争取获得证书。 三、选择感兴趣的模块深入学习 AI 领域广泛,涵盖图像、音乐、视频等。您可以根据自身兴趣选择特定模块深入学习,比如掌握提示词的技巧,这上手容易且实用。 四、实践和尝试 理论学习后,实践是巩固知识的关键。您可以尝试使用各种产品进行创作,知识库中也有很多实践后的作品和文章分享,欢迎您在实践后进行分享。 五、体验 AI 产品 与现有的 AI 产品互动,如 ChatGPT、Kimi Chat、智谱、文心一言等聊天机器人,了解其工作原理和交互方式,获得对 AI 实际应用表现的第一手体验。 六、技术研究方向 1. 数学基础:线性代数、概率论、优化理论等。 2. 机器学习基础:监督学习、无监督学习、强化学习等。 3. 深度学习:神经网络、卷积网络、递归网络、注意力机制等。 4. 自然语言处理:语言模型、文本分类、机器翻译等。 5. 计算机视觉:图像分类、目标检测、语义分割等。 6. 前沿领域:大模型、多模态 AI、自监督学习、小样本学习等。 7. 科研实践:论文阅读、模型实现、实验设计等。 七、应用方向 1. 编程基础:Python、C++等。 2. 机器学习基础:监督学习、无监督学习等。 3. 深度学习框架:TensorFlow、PyTorch 等。 4. 应用领域:自然语言处理、计算机视觉、推荐系统等。 5. 数据处理:数据采集、清洗、特征工程等。 6. 模型部署:模型优化、模型服务等。 7. 行业实践:项目实战、案例分析等。 无论是技术研究还是应用实践,数学和编程基础都是必不可少的。同时需要紧跟前沿技术发展动态,并结合实际问题进行实践锻炼。 希望以上内容对您有所帮助。
2025-02-26
AI 自动化和工作流编排有什么好的工具和方案
以下是一些关于 AI 自动化和工作流编排的工具和方案: 1. RPA 软件:很早就出现在工作流编排领域,目标是使基于桌面的业务流程和工作流程实现自动化,现在越来越多的 RPA 软件带上了 LLM。 2. ComfyUI:将开源绘画模型 Stable Diffusion 进行工作流化操作模式,用户在流程编辑器中配置 pipeline,通过不同节点和连线完成模型操作和图片生成,其 DSL 配置文件支持导出导入,提高了流程的可复用性,降低了时间成本。 3. Dify.AI:工作流设计语言与 ComfyUI 有相似之处,定义了一套标准化的 DSL 语言,方便使用导入导出功能进行工作流复用。 4. Large Action Model:采用“通过演示进行模仿”的技术,检查人们与界面的互动并模仿操作,从用户提供的示例中学习。 5. Auto GPT/Agent/Baby AGI:基于 GPT4 语言模型的开源应用程序,用户输入目标后可自主执行任务、递归地开发和调试代码。能用于自动化任务、创建自主的 AI 代理、完成各种任务等,访问地址为: 。 此外,在工作流编排中还涉及到一些概念和技术: 1. 短期记忆和长期记忆:短期记忆将所有的上下文学习看成是利用模型的短期记忆来学习;长期记忆通过外部的向量存储和快速检索来存储和召回信息。 2. 工具:学会调用外部不同类型 API 来获取模型缺少的额外信息、代码执行能力、访问专有信息源等。 3. 动作:大模型结合问句、上下文的规划、各类工具,最终决策出需要执行的动作。 4. Agentic Workflow 可以从提升效率、提高质量、节省时间的角度思考,通过将复杂任务分解成较小步骤,融入更多人类参与到流程中的规划与定义,减少对 Prompt Engineering 和模型推理能力的依赖,提高 LLM 应用面向复杂任务的性能。 但需要注意的是,Agentic Workflow 虽然美好,但使用的用户目前较少,可能是出现周期、工作流使用的上手难度等因素导致,并且在复杂流程上的开发并不是那么稳定可靠。
2025-02-26
AI教程
以下为为您提供的 AI 教程相关内容: 1. 五步学会用 AI 制作动画视频播客:五个步骤教您从零到一制作动画版视频播客,适合有一定技术基础的朋友,轻松上手创作动画视频!相关链接: 2. Poe AI 平台:这是一个支持与多个智能 AI 机器人(如 GPT4 等)进行实时在线交流的聊天网站。注册账号后可免费使用,部分功能需付费订阅。不同 AI 机器人有不同特点,可按需选择。官网地址是:https://poe.com/ ,可在官网帮助中心找到具体教程。
2025-02-26
RAG最新进展
RAG(检索增强生成)是由 Lewis 等人于 2020 年中期提出的一种大语言模型领域的范式。 其发展经历了以下阶段: 1. 2017 年创始阶段,重点是通过预训练模型吸收额外知识以增强语言模型,主要集中在优化预训练方法。 2. 大型语言模型如 GPT 系列在自然语言处理方面取得显著成功,但在处理特定领域或高度专业化查询时存在局限性,易产生错误信息或“幻觉”,特别是在查询超出训练数据或需要最新信息时。 3. RAG 包括初始的检索步骤,查询外部数据源获取相关信息后再回答问题或生成文本,此过程为后续生成提供信息,确保回答基于检索证据,提高输出准确性和相关性。 4. 在推断阶段动态检索知识库信息能解决生成事实错误内容的问题,被迅速采用,成为完善聊天机器人能力和使大语言模型更适用于实际应用的关键技术。 RAG 在多个基准测试中表现出色,如在 Natural Questions、WebQuestions 和 CuratedTrec 等中表现抢眼。用 MSMARCO 和 Jeopardy 问题进行测试时,生成的答案更符合事实、具体和多样,FEVER 事实验证使用后也有更好结果。基于检索器的方法越来越流行,常与 ChatGPT 等流行大语言模型结合使用提高能力和事实一致性,在 LangChain 文档中有相关使用例子。 同时,对增强生成检索的兴趣增长促使了嵌入模型质量的提高,传统 RAG 解决方案中的问题也得到解决。
2025-02-20
国产AI大模型的最新进展
以下是国产 AI 大模型的最新进展: 通义千问的 Qwen 系列表现出色:Qwen 是国内唯一出现在 OpenAI 视野里、能参与国际竞争的国产大模型。Qwen 多次冲进相关榜单,得分不断提高,其开源模型累计下载量突破 1600 万,国内外有大量开发者基于 Qwen 开发模型和应用,尤其在企业级领域。通义大模型证明了开源开放的力量。 国内大模型落地情况:2024 年被称为国内大模型落地元年,1 至 11 月,大模型中标项目共 728 个,是 2023 年全年的 3.6 倍;中标金额 17.1 亿元,是 2023 年全年的 2.6 倍。中标项目数前五的行业分别是运营商、能源、教育、政务、金融。厂商方面,百度以 40 个中标项目数、2.74 亿元的中标金额排名所有厂商之首,科大讯飞居第二。 其他进展:智谱一年间推出了 4 代 GLM,一直是国内能力较好的模型之一。MiniMax 推出了 MoE 架构的新模型和“星野”这个目前国内较成功的 AI 陪聊 APP。月之暗面专注长 Token 能力,在记忆力和长 Token 能力上有一定优势。但硬件层上的卡脖子问题仍未缓解,国内目前仍无胜任大模型训练的芯片,在推理上虽有 Nvidia 的替代产品逐渐出现,但华为昇腾在单卡指标上距离不远,因稳定性不足和缺乏 Cuda 生态,仍需时间打磨。
2025-01-09
人工智能与AI诈骗最新进展
以下是关于人工智能与 AI 诈骗的最新进展: 在 2024 年,AI 领域有诸多进展。在图像和视频方面,超短视频的精细操控,如表情、细致动作、视频文字匹配等有所发展,有一定操控能力的生成式短视频中,风格化、动漫风最先成熟,真人稍晚。AI 音频能力长足进展,带感情的 AI 配音基本成熟。“全真 AI 颜值网红”出现,可稳定输出视频并直播带货。游戏 AI NPC 有里程碑式进展,出现新的游戏生产方式。AI 男/女朋友聊天基本成熟,在记忆上有明显突破,能较好模拟人的感情,产品加入视频音频,粘性提升并开始出圈。实时生成的内容开始在社交媒体内容、广告中出现。AI Agent 有明确进展,办公场景“AI 助手”开始有良好使用体验。AI 的商业模式开始有明确用例,如数据合成、工程平台、模型安全等。可穿戴全天候 AI 硬件层出不穷,虽然大多数不会成功。中国 AI 有望达到或超过 GPT4 水平,美国可能出现 GPT5,世界上开始出现“主权 AI”。华为昇腾生态开始形成,国内推理芯片开始国产替代(训练替代稍晚)。然而,AI 造成的 DeepFake、诈骗、网络攻击等开始进入公众视野,并引发担忧,AI 立法、伦理讨论仍大规模落后于技术进展。 在 3 月底的 23 个最新 AI 产品中,有室内装修自动渲染的 HomeByte,生成效果超赞的新视觉模型 Playground v1,“图生文”反向工具 Clip Interrogator 以及致力于解决电话诈骗的 GPTCHA 等。 在技术应用方面,LLMs 能自动化写代码等流程,交通应用如 Google Maps 和 CityMapper 也使用了 AI。AI 在银行业的欺诈检测、信用管理和文件处理等方面发挥作用。同时,AI 还在药物研发、解决气候危机等领域有重要应用。 总之,AI 技术在不断发展的同时,也带来了如诈骗等问题,需要关注和解决。
2024-12-02
AI加教育的最新进展
以下是 AI 加教育的最新进展: 案例方面: “AI 赋能教师全场景”,来自 MQ 老师的投稿贡献。 “未来教育的裂缝:如果教育跟不上 AI”,揭示了人工智能在教育领域从理论走向实际应用带来的颠覆性改变。 “化学:使用大型语言模型进行自主化学研究”。 “翻译:怎么把一份英文 PDF 完整地翻译成中文?”,介绍了 8 种方法。 对未来的预判: 个性化学习时代已到来,AI 将作为教育生态系统的一部分与人类教师协作,为孩子提供不同的学习体验,如混合式教学、定制学习路径等。 教育工作者将成为学习的引导者和伙伴,更多关注孩子的全人发展,如创造力和社交智慧。 未来 3 年,提升人机协作效率的领域,如 AI 作业批改、备课、定制教育规划、学前启蒙等,对教育从业者蕴藏着巨大机遇。 探索实践: 过去半年多,梳理教学和育儿工作流,每个环节与 AI 协作可大幅提升效率,但也加剧了知识获取的不平等。从家长的“育”、老师的“教”和学生的“学”进行了落地实践的拆解。
2024-11-05
Ai最新进展
AI 技术的发展历程如下: 1. 早期阶段(1950s 1960s):包括专家系统、博弈论、机器学习初步理论。 2. 知识驱动时期(1970s 1980s):有专家系统、知识表示、自动推理。 3. 统计学习时期(1990s 2000s):出现了机器学习算法,如决策树、支持向量机、贝叶斯方法等。 4. 深度学习时期(2010s 至今):深度神经网络、卷积神经网络、循环神经网络等得到广泛应用。 当前 AI 的前沿技术点包括: 1. 大模型,如 GPT、PaLM 等。 2. 多模态 AI,例如视觉 语言模型(CLIP、Stable Diffusion)、多模态融合。 3. 自监督学习,包含自监督预训练、对比学习、掩码语言模型等。 4. 小样本学习,如元学习、一次学习、提示学习等。 5. 可解释 AI,涉及模型可解释性、因果推理、符号推理等。 6. 机器人学,包括强化学习、运动规划、人机交互等。 7. 量子 AI,有量子机器学习、量子神经网络等。 8. AI 芯片和硬件加速。 此外,绿洲资本张津剑认为 AI 技术正在加速发展,并且没有看到任何减缓的迹象。尽管媒体报道可能有所减少,但 AI 的实际进展非常迅速。
2024-09-03
LLM写ABAP代码的最新进展
大型语言模型(LLM)在编写ABAP代码方面的能力正在不断提升。ABAP(高级业务应用编程)是SAP系统的编程语言,专门用于开发企业资源规划(ERP)软件。以下是一些LLM编写ABAP代码的最新进展: 1. 代码生成:LLM可以基于自然语言描述生成ABAP代码片段,帮助开发者快速实现特定功能。 2. 代码补全:通过机器学习技术,LLM能够预测并补全ABAP代码,提高开发效率。 3. 代码审查:LLM可以分析ABAP代码,识别潜在的错误和不规范的编程实践。 4. 文档生成:LLM能够根据ABAP代码自动生成文档,包括函数描述、参数说明等。 5. 模式识别:LLM可以识别ABAP编程中的常见模式和最佳实践,并在代码生成时应用这些模式。 6. 交互式学习:一些LLM提供交互式学习环境,帮助开发者通过实例学习ABAP编程。 7. 集成开发环境(IDE)插件:LLM技术被集成到ABAP开发工具中,提供智能代码提示和错误检测。 8. 自动化测试:LLM可以生成测试用例,帮助自动化ABAP代码的测试过程。 9. 性能优化:LLM可以分析ABAP代码的性能瓶颈,并提出优化建议。 10. 跨语言能力:一些LLM能够理解多种编程语言的概念,并将其应用于ABAP代码的编写。 然而,尽管LLM在编写ABAP代码方面取得了进展,但它们仍然面临一些挑战,例如: 领域特定知识:ABAP是一种领域特定的语言,需要对SAP系统有深入的理解。 复杂逻辑处理:企业级应用的逻辑可能非常复杂,LLM需要能够处理这些复杂性。 代码维护性:自动生成的代码需要易于理解和维护。 随着技术的发展,LLM在ABAP编程领域的应用将越来越广泛,但它们可能仍然需要与人类开发者合作,以确保生成的代码既高效又可靠。
2024-08-05
当前DEEPSEEK发展壮大情况下,个人应具备AI方面什么能力避免被时代淘汰,如何提升这些能力,细化具体可执行的步奏
在 DEEPSEEK 发展壮大的情况下,个人为避免被时代淘汰,应具备以下 AI 方面的能力并通过以下具体可执行的步骤来提升: 1. 善用工具: 历史表明,使用工具的人通常表现更优,人类发展就是工具演化的过程。 不会用 AI 工具自动化重复性任务,可能面临被淘汰,应适应这种转变。 因自动化效率提升,可腾出时间进行高层次思考。 具体步骤:积极学习和掌握 AI 工具的使用方法,将重复性工作交给工具处理,培养利用工具提升效率的习惯。 2. 抽象与整合: “大语言模型”压缩了大量知识,可快速回放,无需直接学习所有知识细节,要在更高层次学习并抽象更多细节。 AI 能使人类更易学习技能或知识,技术进步使“整合”而非专业化成为可能,人们在更高层次工作,为 AI 提供方向并作选择。 具体步骤:锻炼高层次的思维能力,学会从复杂信息中提炼关键要点,不断提升整合能力,将精力集中于制定“策略”,把执行细节交给自动化系统。
2025-02-24
在教育方面怎么应用
以下是 AI 在教育方面的应用: 1. 定制和动态化教育材料:视频扩散模型可将文本描述或课程大纲转化为针对个别学习者的特定风格和兴趣量身定制的动态、引人入胜的视频内容,图像到视频编辑技术能将静态教育资产转换为互动视频,支持多种学习偏好,增加学生参与度,使复杂概念更易于理解和吸引人。 2. 个性化教学:个性化学习平台通过集成算法和大数据分析,实时跟踪学生学习进度,诊断学习难点,提供个性化学习建议和资源。 3. 自动评估:利用自然语言处理技术,机器可自动批改学生的作文和开放性答案题,减轻教师批改负担,提高评估效率和一致性。 4. 智能辅助教学:AI 教师能引导学生通过对话学习,解答疑问并提供即时反馈,创建定制的学习内容,提高学习动机,加深知识掌握。 5. 虚拟现实和增强现实教学:学生可通过 VR 头盔进入虚拟实验室进行实验操作,立即得到 AI 系统反馈,无需昂贵设备或专业环境。 6. 数字教师和数字陪伴:人工智能生成的角色可作为数字教师,如让历史人物授课,实现一对一辅导,提供定制化学习计划和资源,还可作为数字陪伴促进儿童成长。
2025-02-23
我是一个文科生,并且是AI方面的小白,请问如何在这学习AI
对于文科背景且是 AI 小白的您,以下是学习 AI 的建议: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括人工智能的定义、主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,您将找到一系列为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,您可以根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 此外,以下是一些关于 AI 技术原理和框架的通俗易懂的内容: 1. 视频一主要回答了什么是 AI 大模型,原理是什么。 生成式 AI 生成的内容,叫做 AIGC。 相关技术名词: AI 即人工智能。 机器学习包括监督学习、无监督学习、强化学习。监督学习是有标签的训练数据,算法学习输入和输出之间的映射关系,包括分类和回归。无监督学习是学习的数据没有标签,算法自主发现规律,经典任务包括聚类。强化学习是从反馈里学习,最大化奖励或最小化损失,类似训小狗。 深度学习是一种参照人脑有神经网络和神经元的方法。神经网络可以用于监督学习、无监督学习、强化学习。 生成式 AI 可以生成文本、图片、音频、视频等内容形式。 LLM 即大语言模型。对于生成式 AI,其中生成图像的扩散模型就不是大语言模型;对于大语言模型,生成只是其中一个处理任务,比如谷歌的 BERT 模型,可用于语义理解(不擅长文本生成),如上下文理解、情感分析、文本分类。 技术里程碑:2017 年 6 月,谷歌团队发表论文《Attention is All You Need》,首次提出了 Transformer 模型,它完全基于自注意力机制(SelfAttention)来处理序列数据,而不需要依赖于循环神经网络(RNN)或卷积神经网络(CNN)。
2025-02-22
你能回答关于AI以外的事情吗?有关于AI的方面你又知道多少。
以下是关于 AI 的相关知识: 1. 基础方面: 背景知识:包括人工智能、机器学习、深度学习的定义及其之间的关系。 历史发展:简要回顾 AI 的发展历程和重要里程碑。 数学基础: 统计学基础:熟悉均值、中位数、方差等统计概念。 线性代数:了解向量、矩阵等线性代数基本概念。 概率论:基础的概率论知识,如条件概率、贝叶斯定理。 2. 算法和模型: 监督学习:了解常用算法,如线性回归、决策树、支持向量机(SVM)。 无监督学习:熟悉聚类、降维等算法。 强化学习:简介强化学习的基本概念。 3. 评估和调优: 性能评估:了解如何评估模型性能,包括交叉验证、精确度、召回率等。 模型调优:学习如何使用网格搜索等技术优化模型参数。 4. 神经网络基础: 网络结构:理解神经网络的基本结构,包括前馈网络、卷积神经网络(CNN)、循环神经网络(RNN)。 激活函数:了解常用的激活函数,如 ReLU、Sigmoid、Tanh。 关于 WaytoAGI 网站,它提供以下功能: 1. 和 AI 知识库对话:您可以在这里问任何关于 AI 的问题。 2. AI 网站:集合了精选的 AI 网站,按需求找到适合您的工具。 3. AI 提示词:集合了精选的提示词,可以复制到 AI 对话网站来使用。 4. 知识库精选:将每天知识库的精华内容呈现给大家。 请注意,我只能为您提供与 AI 相关的知识和指导,对于其他非 AI 领域的内容,我的知识库中没有相关信息。
2025-02-16
AI 在生成单元测试代码方面有什么新的进展与方向?
AI 在生成单元测试代码方面有以下新的进展与方向: 1. 基于规则的测试生成: 测试用例生成工具:如 Randoop 可基于代码路径和规则为 Java 应用程序生成测试用例,Pex 是微软开发的能为.NET 应用自动生成高覆盖率单元测试的工具。 模式识别:Clang Static Analyzer 利用静态分析技术识别代码模式和潜在缺陷来生成测试用例,Infer 是 Facebook 开发的能自动生成测试用例以帮助发现和修复潜在错误的工具。 2. 基于机器学习的测试生成: 深度学习模型:DeepTest 利用深度学习模型为自动驾驶系统生成测试用例以模拟不同驾驶场景并评估系统性能,DiffTest 基于对抗生成网络(GAN)生成测试用例来检测系统的脆弱性。 强化学习:RLTest 利用强化学习生成测试用例,通过与环境交互学习最优测试策略以提高测试效率和覆盖率,A3C 是基于强化学习通过策略梯度方法生成高质量测试用例的工具。 3. 基于自然语言处理(NLP)的测试生成: 文档驱动测试生成:Testim 是 AI 驱动的测试平台,能通过分析文档和用户故事自动生成测试用例以减少人工编写时间,Test.ai 利用 NLP 技术从需求文档中提取测试用例以确保测试覆盖业务需求。 自动化测试脚本生成:Selenium IDE 结合 NLP 技术可从自然语言描述中生成自动化测试脚本,Cucumber 使用 Gherkin 语言编写的行为驱动开发(BDD)框架能通过解析自然语言描述生成测试用例。 此外,峰瑞资本投资的 AI Coding 创业公司 Babel 专注于 AI Agent 的研发,其核心产品 Test Gru 已在美国上线,能为客户自动生成单元测试,客户侧 PR 接受率约为 70%。还有如 Cursor 等工具,可借助其生成测试代码提升代码可靠性,但使用时也需注意方法,如使用 Git 管理代码版本、对 AI 代码进行 Review 等。
2025-02-14
如何基于你的模型对一台工业设备(钢板划线印字装备)进行故障诊断和预测性维护,从以下几个方面进行分析 1.技术栈:数据采集与通讯,数据库,算法,前端,微服务、应用等,并进行软件选型 2.硬件选型:工业设备、边缘计算设备,软件部署硬件,分别列出性能最优和国产化替代方案 3.算法创新性:要求可发表高水平论文和申请发明专利 4.算法通用性:考虑如何通过一个通用模型经过简单配置适应不同船舶建造工业设备的故障诊断和预测性维护 5.考虑前后合理性,若以此进行招标,如何描述招标内容
以下是为您整合的相关内容: Transformer 模型和 BERT 模型: 模型训练与评估:定义模型后,传递训练数据集和验证数据集及训练时期数,训练完成后评估性能,如达到 85%准确率。 模型性能可视化:绘制准确性和随时间的损失图。 保存与加载模型:使用 model.save 方法导出并保存模型到本地路径,保存后可加载进行预测。 预测示例:对不同情感的评论句子进行预测。 部署模型到 Vertex AI:检查模型签名,上传本地保存的模型到 Google Cloud 存储桶,在 Vertex 上部署模型并获得在线预测。 提示工程: 策略:将复杂任务分解为更简单的子任务。 技巧:使用意图分类识别用户查询中最相关的指令。例如在故障排除场景中,根据客户查询分类提供具体指令,如检查路由器连接线、询问路由器型号、根据型号提供重启建议等。模型会在对话状态变化时输出特定字符串,使系统成为状态机,更好控制用户体验。 OpenAI 官方指南: 战术:将复杂任务拆分为更简单的子任务。 策略:使用意图分类来识别与用户查询最相关的指令。例如在故障排除场景中,基于客户查询分类向 GPT 模型提供具体指令。已指示模型在对话状态变化时输出特殊字符串,将系统变成状态机,通过跟踪状态等为用户体验设置护栏。
2025-02-12