Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

AI方面有什么最新进展

Answer

以下是 AI 方面的一些最新进展:

  1. 2024 人工智能现状报告:由剑桥大学和 AI 风险投资公司 Air Street Capital 的相关人员共同发表,围绕人工智能领域的最新进展、政治动态、安全挑战及未来预测几大方面进行说明。
  2. AI 绘画:从生成艺术作品到辅助艺术创作,逐渐改变传统艺术面貌。技术进步使创作质量和速度取得突破,为艺术家提供新工具和可能性,但也引发了关于艺术本质、创造性、版权和伦理的讨论,带来对从业者职业安全的焦虑和“侵权”嫌疑的反对之声。
  3. 技术历史和发展方向:
    • 发展历程:包括早期阶段的专家系统、博弈论、机器学习初步理论;知识驱动时期的专家系统、知识表示、自动推理;统计学习时期的机器学习算法;深度学习时期的深度神经网络等。
    • 前沿技术点:大模型(如 GPT、PaLM 等)、多模态 AI(视觉-语言模型、多模态融合)、自监督学习、小样本学习、可解释 AI、机器人学、量子 AI、AI 芯片和硬件加速。
Content generated by AI large model, please carefully verify (powered by aily)

References

2024人工智能报告|一文迅速了解今年的AI界都发生了什么?

近日,来自剑桥大学,AI风险投资公司Air Street Capital创始人兼CEO Nathan Benaich和来自牛津大学,Air Street Capital平台负责人Alex Chalmers共同发表《State of AI Report》2024人工智能现状报告,报告主要围绕人工智能(AI)领域的最新进展、政治动态、安全挑战及未来预测几大方面进行说明。

AI绘画:与艺术界的双向影响

从生成艺术作品到辅助艺术创作,AI绘画正逐渐改变着传统艺术的面貌,与此同时艺术界不断的反馈使AI在绘画方面有显著的进展。AI技术在艺术创作中的应用‘不仅改变了艺术作品的创作方式,还对艺术的审美观念和市场需求产生了影响。AI绘画的发展历程显示,从早期的机械臂机器人到当前的大语言模型,技术的进步使得AI绘画在创作质量和速度上取得了新的突破。这种技术进步不仅为艺术家提供了新的工具和可能性,也推动了传统艺术的数字化和普及化。然而,AI在艺术创作中的应用也引发了一系列讨论和争议。一方面,人们对于由AI驱动的机器人创作的艺术品和人类创作的艺术品的接受程度大致相同,但人们更不愿意将机器人视为艺术家。这表明,尽管AI可以生成具有吸引力的艺术作品,但它在表达情感和创造性意图方面仍然存在局限性。另一方面,艺术家对于AI生成艺术的态度复杂,既有对其创新潜力的期待,也有对版权、原创性和伦理问题的担忧。此外,AI绘画技术的发展也带来了对文化创意领域从业者职业安全的焦虑,以及对其“侵权”嫌疑的反对之声。这些争议反映了新技术发展带来的行业生态变化,以及对现有法律和伦理框架的挑战。尽管存在争议,AI在艺术领域的应用也为艺术创作提供了新的可能性。AI可以帮助艺术家探索新的创意表达方式,提高制作效率,降低制作成本。同时,AI技术的应用也在促进艺术与观众之间的互动,提供更加个性化和互动的艺术体验。AI绘画对艺术界的影响是复杂且双面的。它既提供了新的创作工具和可能性,也引发了关于艺术本质、创造性、版权和伦理的重要讨论。

问:AI的技术历史和发展方向,目前最前沿的技术点有哪些

AI技术的发展历程和前沿技术点可以概括如下:[heading2]AI技术发展历程[content]1.早期阶段(1950s-1960s):专家系统、博弈论、机器学习初步理论2.知识驱动时期(1970s-1980s):专家系统、知识表示、自动推理3.统计学习时期(1990s-2000s):机器学习算法(决策树、支持向量机、贝叶斯方法等)4.深度学习时期(2010s-至今):深度神经网络、卷积神经网络、循环神经网络等[heading2]当前AI前沿技术点[content]1.大模型(Large Language Models):GPT、PaLM等2.多模态AI:视觉-语言模型(CLIP、Stable Diffusion)、多模态融合3.自监督学习:自监督预训练、对比学习、掩码语言模型等4.小样本学习:元学习、一次学习、提示学习等5.可解释AI:模型可解释性、因果推理、符号推理等6.机器人学:强化学习、运动规划、人机交互等7.量子AI:量子机器学习、量子神经网络等8.AI芯片和硬件加速

Others are asking
有哪些AI工具可以提取歌词
以下是一些可以提取歌词的 AI 工具: Suno:在做 hiphop 时存在咬字太清楚等问题,可通过替换拟音歌词和手动断句等方法解决部分问题。 AIMS:人工智能驱动的音乐相似性搜索和自动标记,适合以音乐发现为业务的人。 FeedForward:用于音频和声音目录的直观音频搜索引擎。 Aimi:发现将音乐从歌曲和播放列表束缚中解放出来的艺术家。 Utopia Music:每次播放公平报酬。 Musiio(被 SoundCloud 收购):使用人工智能帮助自动化工作流程。 niland(被 Spotify 收购):构建人工智能驱动的音乐应用程序。 cyanite:用于音乐标记和相似性搜索的人工智能。 musicube(被 SongTradr 收购):B2B AI 音乐元数据服务,例如自动标记、元数据丰富和语义搜索。 Musixmatch:基于歌词的音乐发现、推荐和搜索的算法和工具。 hoopr:人工智能驱动的引擎可帮助找到正确的配乐。 Pex:音乐识别和版权合规性,包括音频指纹、大规模翻唱识别。 SONOTELLER:AI 音乐分析,包括歌词摘要、主题提取和音乐特征。
2025-01-18
怎么学习AI
以下是关于新手学习 AI 的建议: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,可根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 6. 对于中学生学习 AI 的建议: 从编程语言入手学习,如 Python、JavaScript 等,学习编程语法、数据结构、算法等基础知识。 尝试使用 AI 工具和平台,如 ChatGPT、Midjourney 等,探索面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 学习 AI 基础知识,包括基本概念、发展历程、主要技术如机器学习、深度学习等,以及在教育、医疗、金融等领域的应用案例。 参与 AI 相关的实践项目,参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动,尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 关注 AI 发展的前沿动态,关注权威媒体和学者,思考 AI 技术对未来社会的影响,培养对 AI 的思考和判断能力。 记住,学习 AI 是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,您将逐渐建立起自己的 AI 知识体系,并能够在这一领域取得成就。完整的学习路径建议参考「通往 AGI 之路」的布鲁姆分类法,设计自己的学习路径。
2025-01-18
AI编程
以下是关于 AI 编程的相关内容: 1. 借助 AI 学习编程的关键: 打通学习与反馈循环,从“理解→实践→问题解决→加深理解”。 以 Hello World 为起点,验证环境、建立信心、理解基本概念。 建议使用流行语言和框架(如 React、Next.js、TailwindCSS)。 先运行再优化,小步迭代,一次解决一个小功能。 借助 AI 生成代码后请求注释或解释,帮助理解代码。 遇到问题三步走:复现、精确描述、回滚。 强调人工主导,掌握每次可运行的小成果以实现持续提升。 原文链接: 2. 麦橘 0 基础跨界 AI 编程共学活动: 麦橘是哲学专业模型师,跨界教大家用 AI 做小游戏编程。 活动从上星期开始策划未预告。 麦橘展示用 AI 做小游戏,认为机制对简单小游戏很重要,还分享了自己尝试做 horror game 等的想法。 麦橘使用 Poe 制作小游戏,因其性价比高且多种模型可用,支持写代码后的预览,还能教大家分享游戏。以小鸟过管道游戏为例,不懂代码也能让 AI 做游戏,通过告诉 AI 想要的效果让其调整,如降低难度等,最终做出游戏再搭排行榜成为洗脑小游戏。 麦橘介绍增量游戏的制作,包括主题选择、游戏机制(如点击、购买、升级等)和特点,还提到涅槃系统及其对收益的影响。接着讲述肉鸽游戏的特性,之后让 AI 做肉鸽游戏,过程中遇到问题并指出如何纠正 AI 的错误,最后着手做一个躲避 100 秒的新游戏。 3. 对于不会代码的人,20 分钟上手 Python + AI: 在 AI 帮助下可完成很多基础编程工作,但深入学习最好体系化了解编程及 AI,至少熟悉以下内容: Python 基础:包括基本语法(变量命名、缩进等)、数据类型(字符串、整数、浮点数、列表、元组、字典等)、控制流(条件语句、循环语句)。 函数:定义和调用函数、参数和返回值、作用域和命名空间。 模块和包:导入模块、使用包。 面向对象编程(OOP):类和对象、属性和方法、继承和多态。 异常处理:理解异常、异常处理。 文件操作:文件读写、文件与路径操作。
2025-01-18
免费的AI-配音软件
目前免费的 AI 配音软件有不少,例如剪映、讯飞快读等。剪映操作相对简单,提供多种音色选择;讯飞快读则具有较高的语音合成质量。您可以根据自己的需求进行选择和试用。
2025-01-18
ai可以帮助我写sql吗
AI 可以帮助您写 SQL。以下为您提供一些相关信息和示例: 在 COZE 工作流中,如果您不会写 SQL 代码,可以将需求发送给豆包,例如“学习这个文档 https://www.coze.cn/docs/guides/database,然后帮我撰写用于工作流的 sql”,并提供具体的需求,如要操作的数据表、要执行的操作以及相关条件等,豆包会为您生成相应的 SQL 语句,如“INSERT INTO user_question_answer”,您将其复制到数据库节点里面 SQL 的位置,试运行成功后即可发布工作流记录对应数据到数据库。 金融服务业中,生成式 AI 可以帮助编写 Excel、SQL 和 BI 工具中的公式和查询,实现分析的自动化,发现模式,为预测建议输入,还能帮助自动创建报告等内容。 以下是一些推荐的 text2sql 相关的 AI 工具及其链接: Text2SQL:将英文转换为 SQL 查询。链接:https://toolske.com/text2sql/?ref=theresanaiforthat ai2sql:高效且无错误的 SQL 构建器。链接:https://www.ai2sql.io/ EverSQL:从 SQL 查询翻译英文文本。链接:https://www.eversql.com/sqltotext/ SupaSQL:从 NLP 生成 SQL 查询。链接:https://supasql.com/ SQLgenius:使用自然语言的 SQL 查询生成器。链接:https://sqlgenius.app/ SQL Chat:与数据库进行自然语言聊天的 SQL 客户端。链接:https://www.sqlchat.ai/ SQL Ease:从自然语言输入生成 SQL 查询。链接:https://sqlease.buildnship.in/ Talktotables:翻译和查询数据库。链接:https://talktotables.com/ 此外,还有几个知名的 text2sql 项目,如 SQLNet(使用深度学习方法解决 text2sql 任务的项目)、Seq2SQL(将自然语言转换为 SQL 查询的序列到序列模型)、Spider(一个大规模的 text2sql 数据集及其相关的挑战)。
2025-01-18
好用的翻译AI工具
以下是一些好用的翻译 AI 工具: 1. DeepL(网站):点击页面「翻译文件」按钮,上传 PDF、Word 或 PowerPoint 文件即可。 2. 沉浸式翻译(浏览器插件):安装插件后,点击插件底部「更多」按钮,选择「制作双语 BPUB 电子书」、「翻译本地 PDF 文件」、「翻译 THML/TXT 文件」、「翻译本地字幕文件」。 3. Calibre(电子书管理应用):下载并安装 calibre,并安装翻译插件「Ebook Translator」。 4. 谷歌翻译(网页):使用工具把 PDF 转成 Word,再点击谷歌翻译「Document」按钮,上传 Word 文档。 5. 百度翻译(网页):点击导航栏「文件翻译」,上传 PDF、Word、Excel、PPT、TXT 等格式的文件,支持选择领域和导出格式(不过进阶功能基本都需要付费了)。 6. 彩云小译(App):下载后点击「文档翻译」,可以直接导入 PDF、DOC、DOCX、PPT、PPTX、TXT、epub、srt 等格式的文档并开始翻译(不过有免费次数限制且进阶功能需要付费)。 7. 微信读书(App):下载 App 后将 PDF 文档添加到书架,打开并点击页面上方「切换成电子书」,轻触屏幕唤出翻译按钮。 内容由 AI 大模型生成,请仔细甄别。
2025-01-18
国产AI大模型的最新进展
以下是国产 AI 大模型的最新进展: 通义千问的 Qwen 系列表现出色:Qwen 是国内唯一出现在 OpenAI 视野里、能参与国际竞争的国产大模型。Qwen 多次冲进相关榜单,得分不断提高,其开源模型累计下载量突破 1600 万,国内外有大量开发者基于 Qwen 开发模型和应用,尤其在企业级领域。通义大模型证明了开源开放的力量。 国内大模型落地情况:2024 年被称为国内大模型落地元年,1 至 11 月,大模型中标项目共 728 个,是 2023 年全年的 3.6 倍;中标金额 17.1 亿元,是 2023 年全年的 2.6 倍。中标项目数前五的行业分别是运营商、能源、教育、政务、金融。厂商方面,百度以 40 个中标项目数、2.74 亿元的中标金额排名所有厂商之首,科大讯飞居第二。 其他进展:智谱一年间推出了 4 代 GLM,一直是国内能力较好的模型之一。MiniMax 推出了 MoE 架构的新模型和“星野”这个目前国内较成功的 AI 陪聊 APP。月之暗面专注长 Token 能力,在记忆力和长 Token 能力上有一定优势。但硬件层上的卡脖子问题仍未缓解,国内目前仍无胜任大模型训练的芯片,在推理上虽有 Nvidia 的替代产品逐渐出现,但华为昇腾在单卡指标上距离不远,因稳定性不足和缺乏 Cuda 生态,仍需时间打磨。
2025-01-09
人工智能与AI诈骗最新进展
以下是关于人工智能与 AI 诈骗的最新进展: 在 2024 年,AI 领域有诸多进展。在图像和视频方面,超短视频的精细操控,如表情、细致动作、视频文字匹配等有所发展,有一定操控能力的生成式短视频中,风格化、动漫风最先成熟,真人稍晚。AI 音频能力长足进展,带感情的 AI 配音基本成熟。“全真 AI 颜值网红”出现,可稳定输出视频并直播带货。游戏 AI NPC 有里程碑式进展,出现新的游戏生产方式。AI 男/女朋友聊天基本成熟,在记忆上有明显突破,能较好模拟人的感情,产品加入视频音频,粘性提升并开始出圈。实时生成的内容开始在社交媒体内容、广告中出现。AI Agent 有明确进展,办公场景“AI 助手”开始有良好使用体验。AI 的商业模式开始有明确用例,如数据合成、工程平台、模型安全等。可穿戴全天候 AI 硬件层出不穷,虽然大多数不会成功。中国 AI 有望达到或超过 GPT4 水平,美国可能出现 GPT5,世界上开始出现“主权 AI”。华为昇腾生态开始形成,国内推理芯片开始国产替代(训练替代稍晚)。然而,AI 造成的 DeepFake、诈骗、网络攻击等开始进入公众视野,并引发担忧,AI 立法、伦理讨论仍大规模落后于技术进展。 在 3 月底的 23 个最新 AI 产品中,有室内装修自动渲染的 HomeByte,生成效果超赞的新视觉模型 Playground v1,“图生文”反向工具 Clip Interrogator 以及致力于解决电话诈骗的 GPTCHA 等。 在技术应用方面,LLMs 能自动化写代码等流程,交通应用如 Google Maps 和 CityMapper 也使用了 AI。AI 在银行业的欺诈检测、信用管理和文件处理等方面发挥作用。同时,AI 还在药物研发、解决气候危机等领域有重要应用。 总之,AI 技术在不断发展的同时,也带来了如诈骗等问题,需要关注和解决。
2024-12-02
AI加教育的最新进展
以下是 AI 加教育的最新进展: 案例方面: “AI 赋能教师全场景”,来自 MQ 老师的投稿贡献。 “未来教育的裂缝:如果教育跟不上 AI”,揭示了人工智能在教育领域从理论走向实际应用带来的颠覆性改变。 “化学:使用大型语言模型进行自主化学研究”。 “翻译:怎么把一份英文 PDF 完整地翻译成中文?”,介绍了 8 种方法。 对未来的预判: 个性化学习时代已到来,AI 将作为教育生态系统的一部分与人类教师协作,为孩子提供不同的学习体验,如混合式教学、定制学习路径等。 教育工作者将成为学习的引导者和伙伴,更多关注孩子的全人发展,如创造力和社交智慧。 未来 3 年,提升人机协作效率的领域,如 AI 作业批改、备课、定制教育规划、学前启蒙等,对教育从业者蕴藏着巨大机遇。 探索实践: 过去半年多,梳理教学和育儿工作流,每个环节与 AI 协作可大幅提升效率,但也加剧了知识获取的不平等。从家长的“育”、老师的“教”和学生的“学”进行了落地实践的拆解。
2024-11-05
Ai最新进展
AI 技术的发展历程如下: 1. 早期阶段(1950s 1960s):包括专家系统、博弈论、机器学习初步理论。 2. 知识驱动时期(1970s 1980s):有专家系统、知识表示、自动推理。 3. 统计学习时期(1990s 2000s):出现了机器学习算法,如决策树、支持向量机、贝叶斯方法等。 4. 深度学习时期(2010s 至今):深度神经网络、卷积神经网络、循环神经网络等得到广泛应用。 当前 AI 的前沿技术点包括: 1. 大模型,如 GPT、PaLM 等。 2. 多模态 AI,例如视觉 语言模型(CLIP、Stable Diffusion)、多模态融合。 3. 自监督学习,包含自监督预训练、对比学习、掩码语言模型等。 4. 小样本学习,如元学习、一次学习、提示学习等。 5. 可解释 AI,涉及模型可解释性、因果推理、符号推理等。 6. 机器人学,包括强化学习、运动规划、人机交互等。 7. 量子 AI,有量子机器学习、量子神经网络等。 8. AI 芯片和硬件加速。 此外,绿洲资本张津剑认为 AI 技术正在加速发展,并且没有看到任何减缓的迹象。尽管媒体报道可能有所减少,但 AI 的实际进展非常迅速。
2024-09-03
LLM写ABAP代码的最新进展
大型语言模型(LLM)在编写ABAP代码方面的能力正在不断提升。ABAP(高级业务应用编程)是SAP系统的编程语言,专门用于开发企业资源规划(ERP)软件。以下是一些LLM编写ABAP代码的最新进展: 1. 代码生成:LLM可以基于自然语言描述生成ABAP代码片段,帮助开发者快速实现特定功能。 2. 代码补全:通过机器学习技术,LLM能够预测并补全ABAP代码,提高开发效率。 3. 代码审查:LLM可以分析ABAP代码,识别潜在的错误和不规范的编程实践。 4. 文档生成:LLM能够根据ABAP代码自动生成文档,包括函数描述、参数说明等。 5. 模式识别:LLM可以识别ABAP编程中的常见模式和最佳实践,并在代码生成时应用这些模式。 6. 交互式学习:一些LLM提供交互式学习环境,帮助开发者通过实例学习ABAP编程。 7. 集成开发环境(IDE)插件:LLM技术被集成到ABAP开发工具中,提供智能代码提示和错误检测。 8. 自动化测试:LLM可以生成测试用例,帮助自动化ABAP代码的测试过程。 9. 性能优化:LLM可以分析ABAP代码的性能瓶颈,并提出优化建议。 10. 跨语言能力:一些LLM能够理解多种编程语言的概念,并将其应用于ABAP代码的编写。 然而,尽管LLM在编写ABAP代码方面取得了进展,但它们仍然面临一些挑战,例如: 领域特定知识:ABAP是一种领域特定的语言,需要对SAP系统有深入的理解。 复杂逻辑处理:企业级应用的逻辑可能非常复杂,LLM需要能够处理这些复杂性。 代码维护性:自动生成的代码需要易于理解和维护。 随着技术的发展,LLM在ABAP编程领域的应用将越来越广泛,但它们可能仍然需要与人类开发者合作,以确保生成的代码既高效又可靠。
2024-08-05
GPT4最新进展
GPT4是OpenAI开发的大型多模态语言模型,它能够接受图像和文本输入,并产生文本输出。以下是GPT4的一些最新进展: 1. GPT4 Turbo的发布:OpenAI推出了GPT4 Turbo的预览版,这是一个更强大的模型,它了解截至2023年4月的世界事件。GPT4 Turbo具有128K的上下文窗口,可以处理相当于300多页文本的输入。相比于GPT4,GPT4 Turbo在性能上进行了优化,提供了更低的价格,输入token价格降低了3倍,输出token价格降低了2倍。 2. 功能和性能提升:GPT4 Turbo支持多模态API调用,包括视觉功能和DALL·E 3 API。它还在指令跟随和JSON模式方面进行了改进,提供了更高的准确性和更有效的JSON格式输出。 3. 可重复输出和对数概率:GPT4 Turbo引入了新的seed参数,允许模型返回大部分时间一致的完成,这对于调试请求和编写单元测试非常有用。OpenAI还计划推出一个功能,返回最可能输出的令牌的对数概率,这将对构建搜索体验中的自动完成等功能非常有用。 4. GPT3.5 Turbo更新:除了GPT4 Turbo之外,OpenAI还发布了GPT3.5 Turbo的新版本,支持16K的上下文窗口,并改进了指令跟随、JSON模式和并行函数调用。 5. 助手API和新模态:OpenAI发布了助手API,允许开发者在自己的应用程序中构建Agent类体验。GPT4 Turbo可以通过Chat Completions API接受图像输入,实现生成标题、详细分析现实世界的图像以及阅读带有图表的文档等功能。 6. 技术报告:OpenAI发布了GPT4的技术报告,详细介绍了模型的开发、性能、能力和局限性。GPT4在多项专业和学术基准测试中展现出人类水平的表现,包括通过模拟律师资格考试并在SAT考试中取得高分。 7. 安全性和可靠性:尽管GPT4在性能上取得了显著进步,但它仍然存在一些局限性,例如可能产生不准确的信息(俗称“幻觉”)和有限的上下文窗口。OpenAI在模型开发过程中注重安全性,以减少潜在的风险。 8. 企业级服务:Azure OpenAI服务发布了企业级可用的GPT4国际预览版,允许企业构建自己的应用程序,并利用生成式AI技术提高效率。 9. 价格降低和速率限制提高:OpenAI降低了API价格,以将节省的费用传递给开发者,并提高了每分钟的令牌限制,以帮助开发者扩展应用程序。 10. 版权保护:OpenAI推出了版权保护措施,如果客户面临版权侵权的法律索赔,OpenAI将介入保护客户并支付相关费用。 这些进展显示了GPT4在多模态能力、性能优化、安全性和企业级应用方面的持续发展和创新。随着GPT4的不断改进和新功能的推出,它在自然语言处理领域的应用潜力将进一步扩大。
2024-04-22
如何忘AI这方面发展
如果您想在 AI 方面发展,可以参考以下几点: 1. 持续学习和跟进:AI 是一个快速发展的领域,新的研究成果和技术不断涌现。您需要关注 AI 领域的新闻、博客、论坛和社交媒体,保持对最新发展的了解。同时,考虑加入 AI 相关的社群和组织,参加研讨会、工作坊和会议,与其他 AI 爱好者和专业人士交流。 2. 对于创新者来说,在前沿工作并开发新技术时,应对监管制度可能具有挑战性。英国确认致力于推进帕特里克·瓦伦斯爵士提出的为 AI 建立监管沙盒的关键建议,这将使监管机构能够直接支持创新者,并帮助他们将产品推向市场。 3. 英国已退出欧盟,可以建立一种监管方法,使英国成为 AI 超级大国。这种方法将积极支持创新,同时解决风险和公众关注。英国拥有蓬勃发展的初创企业,监管框架将支持其扩大规模并参与国际竞争。这种支持创新的方法也将对海外的 AI 企业在英国设立业务产生强大的激励作用。 4. 英国在制定 AI 监管方法时依靠政府、监管机构和企业之间的协作。最初,不打算引入新的立法。过早匆忙立法可能会给企业带来不必要的负担。同时,在赋予监管机构领导权的同时,也在设定相关内容。
2025-01-18
制作短视频方面,AI 能帮我做些什么
在制作短视频方面,AI 能为您提供以下帮助: 1. 根据视频脚本生成短视频: ChatGPT + 剪映:ChatGPT 生成视频脚本,剪映根据脚本分析出所需场景、角色、镜头等要素并生成素材和文本框架,实现从文字到画面的快速转化。 PixVerse AI:在线 AI 视频生成工具,支持将多模态输入转化为视频。 Pictory:AI 视频生成器,用户提供文本描述即可生成相应视频内容。 VEED.IO:提供 AI 图像生成器和 AI 脚本生成器,帮助从图像制作视频并规划内容。 Runway:将文本转化为风格化视频内容,适用于多种场景。 艺映 AI:专注于人工智能视频领域,提供文生视频、图生视频、视频转漫等服务。 2. 故事创作与剧本写作: 故事来源:可以是原创,如自身或周围人的经历、做过的梦、想象的故事等;也可以是改编,如经典 IP、名著、新闻、二创等。 剧本写作:编剧有一定门槛,建议先写再看书,不断实践和总结经验。短片创作可从自身或朋友经历改编入手,或对短篇故事进行改编,多与他人讨论修改。 3. 视频制作相关工具: 动画工具:用于在视频中为人脸制作动画的 DiD,用于从文本创建视频的 Runway v2。 语音克隆:ElevenLabs。 需要注意的是,深度伪造是一个问题,这些系统需要合乎道德地使用。同时,以上内容由 AI 大模型生成,请仔细甄别。
2025-01-17
你现在是一个工作流方面的专家 我需要你用最简单的方法让我这个小白理解工作流是怎么工作的
工作流是一种通过可视化方式对插件、大语言模型、代码块等功能进行组合,以实现复杂、稳定业务流程编排的方法。 工作流由多个节点构成,节点是基本单元,包括大语言模型 LLM、自定义代码、判断逻辑等。默认包含 Start 节点(工作起始,可包含用户输入信息)和 End 节点(工作末尾,返回运行结果)。 不同节点可能需要不同输入参数,分为引用前面节点的参数值和自定义的参数值。扣子提供了基础节点,还可添加插件节点或其他工作流。 例如,在角色设计变体生成工作流中,在不改变角色某些特定样式的基础上仅改变设计,能防止提示词外流,还可使用图片引导特定部分的风格和样式。 在智能体“竖起耳朵听”的编排中,插件像工具箱,工作流像可视化拼图游戏,将各种功能组合,满足多步骤、高要求的任务。
2025-01-16
如何学习使用AI,提高工作效率,以及提高自身全方面能力
以下是关于如何学习使用 AI 来提高工作效率和自身全面能力的建议: 1. 工作方面: 让自己变成“懒人”,能动嘴的不要动手,用嘴说出想做的事。 能动手的尽量用 AI 替代,例如将工作单元切割开,建设属于自己的智能体,并根据结果反馈不断调整。 定期审视工作流程,看哪个部分可以更多地用上 AI,将所学应用于实践,不断优化工作流程。 2. 技术层面: 学习搭建专业的知识库、构建系统的知识体系,不仅用于工作,还可支持个人爱好和创作。 3. 个人素质方面: 提升学习能力,通过持续阅读和实践来吸收、消化和积累知识,培养好奇心和持续学习的习惯,广泛阅读,深入研究新领域,不断探索前沿知识。 提升创造能力,这是在时代保持竞争力的关键。 善用工具,使用 AI 工具自动化重复性任务,适应时代转变,腾出时间进行更高层次思考。 具备抽象与整合能力,在更高层次上学习,为 AI 提供方向并作出合适选择。 4. 编程和研究方面: 参考技术大佬 Nicholas Carlini 的博文「How I Use "AI"」,学习其使用 LLM 进行编程和研究的实例分享。 用 GPT4 构建完整的 Web 应用。 通过与模型的互动式对话学习新技术,如 Docker、Flexbox 和 React 等。 借助 AI 快速获取新项目或新论文所需的样板代码。 用 AI 简化复杂的大型代码库。 将单调且简单的任务交给 AI,如数据格式化等。 在 AI 帮助下提升用户专业度和效率。 通过 AI 获取特定工具或命令的使用信息。 利用 AI 进行搜索,其效果比传统搜索引擎好。 用 AI 解决一次性任务和常见任务,修复常见错误。
2025-01-16
最近Agent方面的场景案例
以下是一些关于 Agent 方面的场景案例: 1. 吴恩达最新演讲中提到的四种 Agent 设计范式: Reflection(反思):例如让用 Reflection 构建好的 AI 系统写代码,AI 会把代码加上检查正确性和修改的话术再返回给自己,通过反复操作完成自我迭代,虽不能保证修改后代码质量,但效果通常更好。 Tool Use(工具使用):大语言模型调用插件,极大拓展了 LLM 的边界能力。 Planning(规划):属于比较新颖且有前景的方式。 Multiagent(多智能体):也具有发展潜力。 2. Ranger 文章中的相关内容: Agent 被认为是大模型未来的主要发展方向。 中间的“智能体”通常是 LLM 或大模型,通过为其增加工具、记忆、行动、规划这四个能力来实现。 行业里主要用到的是 langchain 框架,它在 prompt 层和工具层完成主要的设计,将 LLM 与 LLM 以及 LLM 与工具进行串接。 3. 从词源和历史变迁来看: 在不同时期,“Agent”在商业、政府、情报、娱乐、体育等领域都有重要角色,涵盖贸易代理、公司代理商、情报特工、艺人经纪人等多种职业。 “Agent”一词具有行动和替身的含义,多数情况下指“拥有行动的替身,替代他人做某事”。
2025-01-07
有数据分析方面的AI应用么
以下是一些数据分析方面的 AI 应用: ChatGPT 助力数据分析:通过实际案例与相关技巧,实现了两种方式的多维数据分析,包括 SQL 分析和个性化分析。分析完成后可展示结果数据的图表和分析结论,图表支持折线图和柱状图切换。 AI 儿童安全座椅推荐系统:利用数据分析和机器学习,如宝宝树安全座椅推荐,为家长推荐合适的儿童安全座椅。 AI 汽车保养套餐推荐系统:结合数据分析和机器学习,如途虎养车保养推荐,根据车辆情况推荐保养套餐。 AI 物流快递柜管理系统:借助数据分析和物联网技术,如丰巢快递柜管理系统,优化快递柜使用效率。 AI 招聘面试模拟平台:运用自然语言处理和机器学习,如智联招聘面试模拟功能,帮助求职者进行面试模拟。 AI 房地产装修设计平台:使用图像生成和机器学习,如酷家乐装修设计软件,为用户提供装修设计方案。 AI 游戏道具推荐系统:基于数据分析和机器学习,在一些游戏的内商城推荐功能中,根据玩家需求推荐游戏道具。 AI 天气预报分时服务:利用数据分析和机器学习,如彩云天气分时预报,提供精准的分时天气预报。 AI 医疗病历分析平台:通过数据分析和自然语言处理,如医渡云病历分析系统,分析医疗病历,辅助诊断。 AI 会议发言总结工具:运用自然语言处理和机器学习,如讯飞听见会议总结功能,自动总结会议发言内容。 AI 书法作品临摹辅助工具:借助图像识别和数据分析,如书法临摹软件,帮助书法爱好者进行临摹。
2025-01-06