Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

小白学习 AI 的最优路径是什么

Answer

对于小白学习 AI,以下是一些建议的最优路径:

  1. 了解 AI 基本概念:
    • 阅读「从这里启程」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。
    • 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。
  2. 开始 AI 学习之旅:
    • 在「入门:AI 学习路径」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。
    • 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。
  3. 选择感兴趣的模块深入学习:
    • AI 领域广泛,比如图像、音乐、视频等,可根据自己的兴趣选择特定模块深入学习。
    • 掌握提示词的技巧,它上手容易且很有用。
  4. 实践和尝试:
    • 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出作品。
    • 在知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。
  5. 体验 AI 产品:
    • 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。

此外,还可以参考《雪梅 May 的 AI 学习日记》,其学习模式是输入→模仿→自发创造。对于纯小白,学习资源大多免费开源,可在有空的时候学习,根据自己的兴趣在 waytoAGI 社区发现并学习最新内容。

对于像开发应用这样的实践,以纯小白开发 Unity 程序为例,需要人类导师把任务拆解到足够小,针对性地设计学习路径,并密切关注随时从坑里捞人,同时通过能直接搞定的小项目先学明白背后的原理,在此基础上开发复杂项目。

Content generated by AI large model, please carefully verify (powered by aily)

References

问:新手如何学习 AI?

了解AI基本概念:首先,建议阅读「[从这里启程](https://waytoagi.feishu.cn/wiki/PFXnwBTsEiGwGGk2QQFcdTWrnlb?table=blkjooAlLFNtvKJ2)」部分,熟悉AI的术语和基础概念。了解什么是人工智能,它的主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。浏览入门文章,这些文章通常会介绍AI的历史、当前的应用和未来的发展趋势。开始AI学习之旅:在「[入门:AI学习路径](https://waytoagi.feishu.cn/wiki/ZYtkwJQSJiLa5rkMF5scEN4Onhd?table=tblWqPFOvA24Jv6X&view=veweFm2l9w)」中,你将找到一系列为初学者设计的课程。这些课程将引导你了解生成式AI等基础知识,特别推荐李宏毅老师的课程。通过在线教育平台(如Coursera、edX、Udacity)上的课程,你可以按照自己的节奏学习,并有机会获得证书。选择感兴趣的模块深入学习:AI领域广泛(比如图像、音乐、视频等),你可以根据自己的兴趣选择特定的模块进行深入学习。我建议你一定要掌握提示词的技巧,它上手容易且很有用。实践和尝试:理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出你的作品。在知识库提供了很多大家实践后的作品、文章分享,欢迎你实践后的分享。体验AI产品:与现有的AI产品进行互动是学习AI的另一种有效方式。尝试使用如ChatGPT、Kimi Chat、智谱、文心一言等AI聊天机器人,了解它们的工作原理和交互方式。通过与这些AI产品的对话,你可以获得对AI在实际应用中表现的第一手体验,并激发你对AI潜力的认识。

《雪梅 May 的 AI 学习日记》挑战 100 天和 AI 做朋友

说明:1.适合纯AI小白:如果你还在观望AI,不知道从何入手,可以参考我这个日记。你可以先看左边的目录,会发现我现在已经快到100天了,在这个时间跨度里,我从一开始的到处看看到现在觉得自己已经走在了一条学习AI的轨道上。2.学习模式是什么:我平时有记录笔记的习惯,所以积累了这份AI学习日记。我最近整理复盘了这将近100天记录的日记后,我发现我学习AI的模式是输入→模仿→自发创造。如果你没有自信一开始就用费曼学习法来接触AI,那你可以试试我这个实践出来的学习模式。3.学习内容:我日记里的学习内容你可以不用直接复用,因为AI的节奏太快了,很多学习的材料在半年后的现在可能已经不适用了。比如coze之前共学的那些课程,你会发现coze已经改版了,如果你按照老课程来模仿,产品功能不一样了,对你来说会有转换的门槛。你可以去waytoAGI社区发现你自己感兴趣的AI领域,去学习你自己想学的最新的内容。4.有时间学吗:在半年多的时间跨度中,其中有100天在学习AI,所以这里的DAY(天数)不是每天依次进行,而是有空的时候学习。目前我进行到了90天,希望自己能够坚持满100天,甚至更多时间。5.有费用吗:本日记中学习资源的内容都是免费开源的,真的很感谢这些把信息开源的人,这样会AI的人才会越来越多。我也是秉持这个理念,把我的学习日记开源了

超越贪吃蛇——技术纯小白如何用 AI 开发真正的应用

我之所以琢磨出上面的路径,是因为我的之前只玩过图形化编程的女儿,在暑假超脑AI黑客松期间,靠Claude和我的帮助,用Unity开发了一个RPG小游戏(C#,用到了coze的API)。起初我并不相信纯小白能通过AI搞定Unity程序,我甚至建议她找助教要一个更符合需求的脚手架、只要复制粘贴改一小段代码就能用的那种。但女儿不服气——什么都是助教搞定那也太没意思了——她决定做一个最简单的任务:让Claude教她做一个2D平面上用上下左右键控制走动的小人,碰到墙壁要能停下来。半小时,完成了这个任务,也明白了Unity里的基本概念。这是一个非常好的起点。后来的开发有些很顺利,但也时常有挫折。几乎每天她都奋战到凌晨再沮丧地睡去,第二天一早向我求助,我一看——啊,你又被AI带坑里了。被AI带坑里的原因很多——她问题描述不清楚,且不知道这种描述在程序员的世界里会被理解成另一种问题,于是,得到了错误的指引;AI给的方案太复杂,需要有很多前置知识才能搞明白;其实AI给的代码是对的,但别的配置错误,AI没想到要检查丫头也不知道,乱改了很久;……这些挫折,让我意识到小白需要通过AI能直接搞定的小项目,来先学明白背后的原理,在此基础上才能开发复杂项目。小小的任务,AI可以胜任、非常耐心地指导。因此最好是要有人类导师,一开始把任务拆解到足够小,针对性地设计学习路径,并密切关注随时从坑里捞人。学生-导师-AI助教三者协作的关系图如下:

Others are asking
AI的发展历史
AI 的发展历史可以追溯到二十世纪中叶,大致经历了以下几个阶段: 1. 早期阶段(1950s 1960s):专家系统、博弈论、机器学习初步理论出现。心理学家麦卡洛克和数学家皮特斯提出机器的神经元模型,为后续的神经网络奠定基础。计算机先驱图灵最早提出图灵测试,作为判别机器是否具备智能的标准。1956 年,在达特茅斯会议上,人工智能一词被正式提出,并作为一门学科确立下来。 2. 知识驱动时期(1970s 1980s):专家系统、知识表示、自动推理得到发展。但由于从专家那里提取知识并以计算机可读形式表现出来的任务复杂且成本高,20 世纪 70 年代出现“人工智能寒冬”。 3. 统计学习时期(1990s 2000s):机器学习算法如决策树、支持向量机、贝叶斯方法等兴起。 4. 深度学习时期(2010s 至今):深度神经网络、卷积神经网络、循环神经网络等技术发展迅速。当前的前沿技术点包括大模型(如 GPT、PaLM 等)、多模态 AI(视觉 语言模型、多模态融合)、自监督学习(自监督预训练、对比学习、掩码语言模型等)、小样本学习(元学习、一次学习、提示学习等)、可解释 AI(模型可解释性、因果推理、符号推理等)、机器人学(强化学习、运动规划、人机交互等)、量子 AI(量子机器学习、量子神经网络等)、AI 芯片和硬件加速。
2025-01-05
AI最好用的手机APP
以下是一些好用的 AI 手机 APP: 图片和视频内容编辑方面:美图秀秀(https://apps.apple.com/us/app/meituphotoeditoraiart/id416048305)排名第 9 位、SNOW(https://apps.apple.com/us/app/snowaiprofile/id1022267439)排名第 30 位、Adobe Express(https://apps.apple.com/us/app/adobeexpressaiphotovideo/id1051937863)排名第 35 位。 消费者助手方面:ChatGPT 第三次以巨大优势成为网络和移动端排名第一的产品。 人工智能搜索引擎方面:Perplexity(http://perplexity.ai/)目前在网络上排名第三,专注于提供简明、实时和准确的查询答案,并引用来源,还首次进入移动端前 50 名榜单。 办公文档翻译工具:WPS 文档翻译功能,可快速翻译办公文档,提高工作效率。 美容护肤产品推荐平台:美丽修行 APP,根据用户肤质推荐适合的美容护肤产品。 儿童安全监控系统:360 儿童手表,利用 AI 技术实现定位、通话、安全区域设置等功能。 汽车保养提醒系统:汽车之家 APP,根据用户的汽车型号、行驶里程等信息提醒车主进行定期保养。 金融方面:Composer(免费可用),用 AI 构建、回测和执行交易算法。 移动 APP 方面:Hevy 是最佳移动应用程序获奖者,在 App Store 和 Google Play 商店中获得了 4.9 的评分,共有 71,000 条评论。ChatGPT for iOS(免费)是 ChatGPT 的官方 iOS 应用程序。Rainbow AI(免费)是精准降水预报 APP。
2025-01-05
AI信息交流教程 主要用于论文写作 资料查找
很抱歉,目前知识库中没有关于“AI 信息交流教程用于论文写作和资料查找”的相关内容。但一般来说,在进行论文写作和资料查找时,您可以从以下几个方面入手: 1. 明确研究主题和问题:确定您想要探讨的 AI 领域的具体方向和关键问题。 2. 选择合适的数据库和搜索引擎:例如学术数据库(如 Web of Science、Scopus 等)、专业的 AI 研究网站等。 3. 制定有效的检索策略:使用准确的关键词、布尔运算符等提高检索的准确性。 4. 评估资料的可靠性和相关性:注意来源的权威性、出版日期等。 5. 学会引用和整理资料:遵循学术规范,正确引用和整理所找到的资料。 希望以上建议对您有所帮助。
2025-01-05
AI最好用的手机APP(主要用于体制内 各类公文写作)
以下是一些适用于体制内公文写作的 AI 手机 APP: 1. 文小言 APP 中的“学习强国公文助手”:具有文汇检索、AI 公文书写、AI 公文润色等功能。它有权威的“学习强国”数据库背书,能快速溯源文字材料,重点用横线标注,还能一键看原文,内容覆盖文汇、重要活动、重要会议、指示批示等。 2. 邮件写作方面的 AI 工具: Grammarly:提供语法检查、拼写纠正、风格建议和语气调整等功能,易于使用,支持多种平台,适用于多种语言。网站:https://www.grammarly.com/ Hemingway Editor:简化句子结构,提高可读性,标记复杂句和冗长句。界面简洁,重点突出,适用于改善写作风格和简洁性。网站:http://www.hemingwayapp.com/ ProWritingAid:全面的语法和风格检查,提供详细的写作报告和建议。功能强大,支持多种平台和集成,特别适合专业写作者。网站:https://prowritingaid.com/ Writesonic:基于 AI 生成各种类型的文本,包括电子邮件、博客文章、广告文案等。生成速度快,适合需要快速创作和灵感的用户。网站:https://writesonic.com/ Lavender:专注于邮件写作优化,提供个性化建议和模板,帮助用户提高邮件打开率和回复率。
2025-01-05
AI使用教程
以下是为您提供的 AI 使用教程: 1. 图像类: Midjourney 使用教程:https://qa3dhma45mc.feishu.cn/wiki/ThXDwXdyiiRJJEkeh2ycU0SRnce?from=from_copylink Stable Diffusion 使用教程:https://qa3dhma45mc.feishu.cn/wiki/IuoxwGB0midp16khzz2cKVlXnzd?from=from_copylink 无界 AI 使用教程:https://qa3dhma45mc.feishu.cn/wiki/LRdOw75tQiN3wAkU43ucwb5Ondd?from=from_copylink 无界 AI 是一款可以在线 AI 生成图片的网站(类似 SD Online 一键出图版),新用户扫码注册可领取积分。 2. 视频类: Runway 使用教程:https://qa3dhma45mc.feishu.cn/wiki/ASWjwgVVripuU0k4phgc28Ojnxe?from=from_copylink Pika 使用教程:https://qa3dhma45mc.feishu.cn/wiki/FerawmbZRiIjOEkwmbDclNPBnvc?from=from_copylink 3. 音频类: Azure 使用教程:https://qa3dhma45mc.feishu.cn/wiki/WlX3wFhILiby7FkBKwRccwoAnXf?from=from_copylink 4. 三维建模类: Meshy 使用教程:https://qa3dhma45mc.feishu.cn/wiki/JMZ6wQSDki4ug9kQ1bmcCs3fnRd?from=from_copylink 此外,还有 AI 线上绘画教程:如果您在工作中需要大量图片,AI 生图是高效的解决办法。主流的工具如 midjourney(MJ)付费成本较高,stable diffusion(SD)硬件门槛不低,但还有像这样的免费在线 SD 工具网站。本教程适用于入门玩家,计划让读者用半个小时就能自由上手创作绘图。如果半个小时不足以让您理解工具如何使用,可通过评论区、微信(designurlife1st,记得备注来意:ai 绘图交流)联系作者。教程内容会持续更新,欢迎关注和催更。
2025-01-05
如何编制适合业务的AI
以下是一些关于编制适合业务的 AI 的相关信息: 英国发布的“A proinnovation approach to AI regulation”中提到了一些与 AI 相关的监管原则和措施,例如在招聘领域使用 AI 系统可能存在的歧视问题,以及相关机构应如何合作提供联合指导。 有报告如《五步打造适合您业务的生成式 AI 白皮书》可供参考。 上海外国语大学图书馆发布的《[2024 数智时代的 AI 素养内涵、框架与实施路径研究报告》探讨了 AI 素养在数智时代的重要性和演变。 但这些内容可能不够全面和具体,您可以进一步明确您的业务类型和需求,以便为您提供更具针对性的帮助。
2025-01-05
小白如何快速系统学习 AI 应用
对于小白快速系统学习 AI 应用,以下是一些建议: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,如图像、音乐、视频等,可根据兴趣选择特定模块深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。 知识库中有很多实践后的作品、文章分享,欢迎实践后分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解其工作原理和交互方式。 6. 开发实践: 从一个最基础的小任务开始,让 AI 先帮您按照 best practice 写一个 say hello 的示例程序,并解释每个文件的作用及程序运行的逻辑,学会必备的调试技能。 通过和 AI 的对话,逐步明确项目需求,梳理出产品需求文档。 接下来就是真正的实践,按照项目规划,学习一个 POC,将其应用到大项目中。当遇到错误时,复制错误信息、相关代码扔给 AI 让其找错误并修复,也可找文档或去 stackoverflow 上找答案,然后把这些信息提供给 AI 让其基于此修复。如有可能,找一个老师傅随时提供支援。
2025-01-03
我是AI小白,我想学习AI工具的使用,能提供教程吗
以下为您提供一些学习 AI 工具使用的教程和相关信息: 1. 元子:小白 30min 快速体验 AI 工具 对于超出自己理解范围的事情,最简单的方法就是试一试。学习新东西,百闻不如一练。 在面向父母的“AI 布道”活动中,发现“AI 工具”虽强大但与普通人之间存在障碍。 尽可能简单地试用它,是让普通人在 AI 发展中受益的最好方式,不论何种人群。 若想交流,欢迎戳这里: 2. 如何使用 AI 来做事:一份带有观点的指南 由于技术快速发展,当前使用的可能是较差的 AI 工具,很快可能需要新的指南。 需记住两个关键点:AI 是工具,但不总是正确的,要考虑其是否适合应用目的;使用 AI 需了解道德问题,避免侵权、作弊等,使用者有责任以道德方式使用。 3. AI 线上绘画教程 若工作中需要大量图片,AI 生图是高效解决办法,但主流工具如 midjourney(MJ)付费成本高,stable diffusion(SD)硬件门槛不低。 可使用等免费在线 SD 工具网站。 本教程旨在让入门玩家半小时内自由上手创作绘图,适用于入门玩家,可应用到职场。若有疑问,可在评论区联系或加微信 designurlife1st 沟通(记得备注来意:ai 绘图交流),教程内容会持续更新。
2025-01-02
作为AI小白,如何从0开始学习AI
对于 AI 小白,从 0 开始学习 AI 可以参考以下步骤: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 参考「」,其中有一系列为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,可根据自身兴趣选择特定模块深入学习。 掌握提示词的技巧,其上手容易且很有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出自己的作品。 知识库中有很多大家实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解其工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 另外,《雪梅 May 的 AI 学习日记》也提供了一种适合纯小白的学习模式,即输入→模仿→自发创造。但其中的学习内容可能因 AI 发展较快而有所变化,建议去 waytoAGI 社区发现自己感兴趣的 AI 领域,学习最新内容。同时,该日记中的学习资源都是免费开源的。 记住,学习 AI 是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,您将逐渐建立起自己的 AI 知识体系,并能够在这一领域取得成就。完整的学习路径建议参考「通往 AGI 之路」的布鲁姆分类法,设计自己的学习路径。
2025-01-02
我想在waytoAGI学习,我是小白,我应该怎么做?
对于小白在 waytoAGI 学习,以下是一些建议: 1. 参与准备: 可以关注 waytoAGI 的“周周黑客松”活动,这是一个初级教程介绍较多的活动。 参加共学,比如 cursor 共学(十一之后),可以获得手把手的指导。 2. 环境准备: 参加 wayToAGI 共学或线下黑客松,会有小伙伴热情帮助搞定环境。 如果条件不允许,可自行准备。预计用时 5 10 分钟,基础需求是需要魔法。网址为 https://www.cursor.com ,下载安装软件后在页面中注册即可。 3. 学习心态和方法: 像彭青云学习 ComfyUI 一样,把大目标拆解成小目标,遇到困难时不断拆解,反复学习,单拎问题去搜索、提问,直到搞透知识点。 记录学习过程,分享遇到的问题及解决方法,先吃透老师讲的知识点,再逐步深入。
2025-01-02
coze中的工作流 智能体 应用 bot 分别有什么特点差异共同点,作为新手小白应该如何逐步上手
Coze 中的工作流、智能体、应用 Bot 具有以下特点、差异和共同点: 特点: 工作流:包括图像工作流,可进行图像流分类(如智能生成、智能编辑、基础编辑),按照构架配置工作流,调试效果等。 智能体:设定角色,对工作流有详细描述和调用规则,能实现从简单到复杂的不同流程自动化。 Bot:有不同的运作模式(单智能体模式和多智能体模式),可选择模型,配置技能(如插件、工作流、图像流和触发器等),还有知识区域和记忆区域。 差异: 工作流侧重于具体的任务流程配置和图像处理方面。 智能体更注重角色设定和工作流的调用规则。 Bot 则在运作模式、模型选择和技能配置上有独特之处。 共同点: 都与 Coze 平台相关,相互配合以实现各种功能。 对于新手小白逐步上手的建议: 先了解 Coze 平台的基本操作和界面。 从简单的图像工作流开始尝试,熟悉工作流的创建和配置流程。 逐步学习智能体的设定和工作流的调用规则。 再深入研究 Bot 的模式选择、模型选择和技能配置。 参考平台提供的示例和教程,多进行实践和调试。
2024-12-31
小白学习AI
以下是为小白学习 AI 提供的指导: 一、了解 AI 基本概念 建议阅读「」部分,熟悉 AI 的术语和基础概念,包括人工智能是什么,其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。同时,浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 二、开始 AI 学习之旅 在「」中,能找到为初学者设计的课程,特别推荐李宏毅老师的课程。还可以通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 三、选择感兴趣的模块深入学习 AI 领域广泛,涵盖图像、音乐、视频等,您可以根据自身兴趣选择特定模块深入学习。掌握提示词的技巧,因其上手容易且实用。 四、实践和尝试 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。知识库中有很多实践后的作品、文章分享,欢迎您实践后也进行分享。 五、体验 AI 产品 与现有的 AI 产品如 ChatGPT、Kimi Chat、智谱、文心一言等聊天机器人进行互动,了解其工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 此外,还可以参考《雪梅 May 的 AI 学习日记》,其适合纯 AI 小白。学习模式是输入→模仿→自发创造。学习资源免费开源,可在 waytoAGI 社区发现自己感兴趣的 AI 领域,学习最新内容。 在技术原理方面,通过【AI 学习笔记】小白可以了解以下内容: 1. 生成式 AI 生成的内容叫 AIGC。 2. 相关技术名词及关系:AI 即人工智能;机器学习包括监督学习、无监督学习、强化学习;监督学习有标签的训练数据;无监督学习学习的数据无标签;强化学习从反馈里学习;深度学习参照人脑有神经网络和神经元;生成式 AI 可生成多种内容形式;LLM 是大语言模型。 3. 技术里程碑:2017 年 6 月,谷歌团队发表论文《Attention is All You Need》,首次提出 Transformer 模型,它完全基于自注意力机制处理序列数据,比 RNN 更适合处理文本的长距离依赖性。
2024-12-31
目前最优秀的PPT制做AI应用有哪些?
目前较为优秀的 PPT 制作 AI 应用有以下几种: 1. 国内: 爱设计 PPT:在国内众多 PPT 类 AI 产品中表现出色。其背后有强大的团队,技术过硬且对市场需求有敏锐洞察力,成功把握住了 AI 与 PPT 结合的市场机遇,已确立市场领先地位。对于经常制作 PPT 的商务人士、教育工作者、学生等都是值得尝试的工具。 2. 国外及其他: Gamma:在线 PPT 制作网站,支持输入文本和想法提示快速生成幻灯片,可嵌入多媒体格式增强吸引力,网址:https://gamma.app/ 美图 AI PPT:由美图秀秀开发团队推出,通过输入简单文本描述生成专业 PPT 设计,包含丰富模板库和设计元素,适用于多种场合,网址:https://www.xdesign.com/ppt/ Mindshow:AI 驱动的 PPT 辅助工具,提供智能设计功能,如自动布局、图像选择和文本优化等,网址:https://www.mindshow.fun/ 讯飞智文:由科大讯飞推出的 AI 辅助文档编辑工具,利用语音识别和自然语言处理技术优势,提供智能文本生成、语音输入、文档格式化等功能,网址:https://zhiwen.xfyun.cn/ 目前市面上大多数 AI 生成 PPT 通常按照以下思路完成设计和制作: 1. AI 生成 PPT 大纲 2. 手动优化大纲 3. 导入工具生成 PPT 4. 优化整体结构 推荐 2 篇市场分析的文章供参考: 1. 《》 2. 《》 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2024-11-28
在线性规划优化时,如何设置几个参数选最优参数的优化条件
在线性规划优化中,设置最优参数的优化条件需要考虑以下几个方面: 1. 目标函数:首先需要明确线性规划问题的目标函数,即需要最大化或最小化的目标。根据目标函数的形式,可以选择不同的优化条件。 2. 约束条件:线性规划问题通常受到一系列约束条件的限制,这些约束条件可以是等式约束或不等式约束。在设置优化条件时,需要考虑这些约束条件,以确保解的可行性。 3. 决策变量:决策变量是线性规划问题中需要优化的参数。在设置优化条件时,需要确定决策变量的范围和取值,以确保解的可行性和最优性。 4. 参数选择:在设置优化条件时,需要考虑如何选择参数以获得最优解。这可以通过敏感性分析、参数扫描等方法来实现。 5. 算法和工具:最后,需要选择适当的算法和工具来求解线性规划问题。不同的算法和工具可能具有不同的优缺点,需要根据具体问题选择最适合的方法。 总之,设置最优参数的优化条件需要综合考虑目标函数、约束条件、决策变量、参数选择和算法工具等因素。通过合理选择优化条件,可以提高线性规划问题的求解效率和质量。
2024-05-07
我是一名一线教师,想要学习如何搭建智能体。请跟我一起制定合适的进阶路径和推荐资源链接。
以下是为您制定的学习搭建智能体的进阶路径和推荐资源链接: 进阶路径: 1. 注册智谱 Tokens 智谱 AI 开放平台:https://bigmodel.cn/ 新注册用户可获得 2000 万 Tokens。 可通过充值/购买多种模型的低价福利资源包,如直接充值现金,所有模型可适用:https://open.bigmodel.cn/finance/pay ;免费 GLM4Flash 语言模型/ 。所有资源包购买地址:https://bigmodel.cn/finance/resourcepack 。 共学营报名赠送资源包。 2. 先去【财务台】左侧的【资源包管理】查看自己的资源包,本次项目会使用到的有 GLM4、GLM4VPlus、CogVideoX、CogView3Plus 模型。 3. 进入智能体中心我的智能体,开始创建智能体。此流程会手把手进行编辑,完成一个简单智能体的搭建。 推荐资源链接: 1. 智谱 BigModel 共学营第二期:把您的微信变成超级 AI 助理 https://bigmodel.cn/ 2. 教师的 AI 减负指南 3. 提示词培训课——Part2 在搭建智能体的过程中,您需要像导演一样,编排具体流程,检查结果,修改流程,反复迭代。提示语的核心是逻辑,要将复杂的任务拆分成科学合理的步骤,并且让前一步的结果都成为后一步的基础。同时,不要害怕犯错,每一次尝试都是向成功迈进的一步。
2024-12-30
在L1级大模型基础上开发L2级大模型的通常路径是怎样的
目前知识库中没有关于在 L1 级大模型基础上开发 L2 级大模型通常路径的相关内容。但一般来说,开发 L2 级大模型可能需要以下步骤:首先,对 L1 级大模型的性能和局限性进行全面评估,明确需要改进和扩展的方向。然后,收集更多的高质量数据,以丰富模型的训练素材。接着,可能需要调整模型的架构,例如增加层数、扩大神经元数量等,以提升模型的表达能力。在训练过程中,优化训练算法和参数,提高训练效率和效果。同时,不断进行测试和验证,根据结果进行调整和优化,以确保 L2 级大模型能够达到预期的性能和功能。
2024-12-28
comfyui的学习路径
以下是一些 ComfyUI 的学习路径和资源: 1. 官方文档:提供使用手册和安装指南,适合初学者和有经验的用户。网址:https://www.comfyuidoc.com/zh/ 2. 优设网:有详细的入门教程,介绍了 ComfyUI 的特点、安装方法及生成图像等内容。网址:https://www.uisdc.com/comfyui3 3. 知乎:有用户分享的部署教程和使用说明,适合有一定基础并希望进一步了解的用户。网址:https://zhuanlan.zhihu.com/p/662041596 4. Bilibili:有一系列涵盖从新手入门到精通各个阶段的视频教程。网址:https://www.bilibili.com/video/BV14r4y1d7r8/ 此外,还有以下共学快闪相关的学习内容: 1. Stuart 风格迁移 2. 红泥小火炉基础课程 3. 大雨换背景图 4. Anna 娜娜°图生 3D 5. 柒小毓基础课程 6. Ting 基础课程 7. 郑个小目标针对某个插件的深入讲解 8. 波风若川报错解决 9. chen 工作流的研发 10. 朱敏🎈基础课程、工作流 11. 王卓圻基础课程 12. 南城基础课程 13. Zero one 工作流开发 14. 梓阳基础课程 15. 蓝牙耍手机工作流搭建思路 16. 皮皮 Peter 工作流的设计规划和调优逻辑 17. Jāy Līn 锦鲤工作流搭建逻辑和原理 18. K 如何本地部署基础生图参数选择工作流的基本应用 19. Adai 基础课程 20. 镜生视频 21. x 基础教程 22. 梦飞基础教程 23. 各个节点讲解和参数含义 24. 戴志伟基础课程 25. 雪娴_CC 基础课程,从安装开始 26. Joey 实时转绘工作流 27. 倪星宇 28. 22 换脸换背景实践落地 29. 早点睡觉 30. CT 优秀案例 31. 三思基础教程 32. 晓珍 33. Mr.大狐🏝报错解决 34. Duo 多吉~基础课程 35. 陈旭常用节点讲解和简单的节点制作 36. 长风归庭基础教程+工作流创建 推荐的学习路径: 1. 入门视频教程: 第 1 课:ComfyUI 入门教程,网址:https://www.bilibili.com/video/BV1D7421N7xN 第 2 课:ComfyUI 自定义节点的秘密,网址:https://www.bilibili.com/video/BV1pZ421b7t7 第 3 课:拆解 ComfyUI 工作流,网址:https://www.bilibili.com/video/BV1ab42187er/ 2. 理论宝典教程:学 ZHO 出品的免费理论视频课程 3. 文生图实操:学习完上面的视频课程,就可以使用下面的文生图工作流实际出图实操。工作流网址:https://openart.ai/workflows/lailai/textgeneratesimagesmvpworkflow/ChYNJiXHkZrjyvg1yL9f 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2024-12-27
AI的系统学习路径应该是如何规划的
以下是为您规划的 AI 系统学习路径: 1. 编程语言基础 可以从 Python、JavaScript 等编程语言开始学习,掌握编程语法、数据结构、算法等基础知识,为后续的 AI 学习筑牢根基。 2. 尝试使用 AI 工具和平台 体验如 ChatGPT、Midjourney 等 AI 生成工具,熟悉其应用场景。 探索面向中学生的 AI 教育平台,例如百度的“文心智能体平台”、Coze 智能体平台等。 3. 学习 AI 基础知识 了解 AI 的基本概念、发展历程。 掌握主要技术,如机器学习、深度学习等。 学习 AI 在教育、医疗、金融等领域的应用案例。 4. 参与实践项目 参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动。 尝试运用 AI 技术解决生活中的实际问题,锻炼动手能力。 5. 关注前沿动态 关注 AI 领域的权威媒体和学者,及时了解 AI 技术的最新进展。 思考 AI 技术对未来社会的影响,培养对 AI 的思考和判断能力。 总之,您可以从编程基础、工具体验、知识学习、实践项目等多个维度全面系统地学习 AI 知识和技能,为未来在 AI 领域的发展做好充分准备。
2024-12-27
有关AI的学习路径
以下是为您提供的 AI 学习路径: 新手学习路径: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 AI 与宠物结合的学习路径: 1. 掌握基础的机器学习、计算机视觉、自然语言处理等 AI 技术。 2. 了解宠物行为学、宠物医疗等相关领域知识。 3. 关注业内先进的 AI+宠物应用案例,学习其技术实现。 4. 尝试开发简单的 AI 宠物应用原型,并不断迭代优化。 偏向技术研究方向的学习路径: 1. 数学基础:线性代数、概率论、优化理论等。 2. 机器学习基础:监督学习、无监督学习、强化学习等。 3. 深度学习:神经网络、卷积网络、递归网络、注意力机制等。 4. 自然语言处理:语言模型、文本分类、机器翻译等。 5. 计算机视觉:图像分类、目标检测、语义分割等。 6. 前沿领域:大模型、多模态 AI、自监督学习、小样本学习等。 7. 科研实践:论文阅读、模型实现、实验设计等。 偏向应用方向的学习路径: 1. 编程基础:Python、C++等。 2. 机器学习基础:监督学习、无监督学习等。 3. 深度学习框架:TensorFlow、PyTorch 等。 4. 应用领域:自然语言处理、计算机视觉、推荐系统等。 5. 数据处理:数据采集、清洗、特征工程等。 6. 模型部署:模型优化、模型服务等。 7. 行业实践:项目实战、案例分析等。 无论是技术研究还是应用实践,数学和编程基础都是必不可少的。同时需要紧跟前沿技术发展动态,并结合实际问题进行实践锻炼。
2024-12-24
AI 学习路径
以下是为新手提供的 AI 学习路径: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,可根据自己的兴趣选择特定模块深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解其工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 另外,如果您偏向技术研究方向,学习路径包括: 1. 数学基础:线性代数、概率论、优化理论等。 2. 机器学习基础:监督学习、无监督学习、强化学习等。 3. 深度学习:神经网络、卷积网络、递归网络、注意力机制等。 4. 自然语言处理:语言模型、文本分类、机器翻译等。 5. 计算机视觉:图像分类、目标检测、语义分割等。 6. 前沿领域:大模型、多模态 AI、自监督学习、小样本学习等。 7. 科研实践:论文阅读、模型实现、实验设计等。 如果您偏向应用方向,学习路径包括: 1. 编程基础:Python、C++等。 2. 机器学习基础:监督学习、无监督学习等。 3. 深度学习框架:TensorFlow、PyTorch 等。 4. 应用领域:自然语言处理、计算机视觉、推荐系统等。 5. 数据处理:数据采集、清洗、特征工程等。 6. 模型部署:模型优化、模型服务等。 7. 行业实践:项目实战、案例分析等。 无论是技术研究还是应用实践,数学和编程基础都是必不可少的。同时需要紧跟前沿技术发展动态,并结合实际问题进行实践锻炼。 记住,学习 AI 是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,您将逐渐建立起自己的 AI 知识体系,并能够在这一领域取得自己的成就。完整的学习路径建议参考「通往 AGI 之路」的布鲁姆分类法,设计自己的学习路径。
2024-12-23