Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

deepseek与其他大模型有什么区别

Answer

DeepSeek 与其他大模型的区别主要体现在以下几个方面:

  1. 模型类型:DeepSeek 是推理型大模型,与指令型大模型不同,不需要用户提供详细步骤指令,而是通过理解用户真实需求和场景提供答案。
  2. 语言理解:能够理解用户用“人话”表达的需求,不需要用户学习和使用特定提示词模板。
  3. 思考深度:在回答问题时能够进行深度思考,而非简单罗列信息。
  4. 文风转换:可以模仿不同作家的文风进行写作,适用于多种文体和场景。
  5. 技术路线:DeepSeek R1 与 OpenAI 现在最先进的模型 o1、o3 同属于基于强化学习 RL 的推理模型,在回答用户问题前会先进行“自问自答”式的推理思考,提升最终回答质量。
  6. 发展路径:从一开始,DeepSeek 与国内诸多大模型新秀选择的不是同一个战场。它不拿融资,不抢座次,不比国内舆论声势,不搞产品投放投流,而是选择走全球开源社区,分享直接的模型、研究方法和成果,吸引反馈,再迭代优化。开源彻底,包括模型权重、数据集、预训练方法和高质量论文。
Content generated by AI large model, please carefully verify (powered by aily)

References

详解:DeepSeek深度推理+联网搜索 目前断档第一

先了解下优势和特点[heading2]DeepSeek的特点与优势[content]推理型大模型:DeepSeek的核心是推理型大模型,与指令型大模型不同,它不需要用户提供详细的步骤指令,而是通过理解用户的真实需求和场景来提供答案。更懂人话:DeepSeek能够理解用户用“人话”表达的需求,而不需要用户学习和使用特定的提示词模板。深度思考:DeepSeek在回答问题时能够进行深度思考,而不是简单地罗列信息。文风转换器:DeepSeek可以模仿不同作家的文风进行写作,适用于多种文体和场景。更多提示词技巧请查看[DeepSeek-R1提示词交互实践指南](https://waytoagi.feishu.cn/wiki/ISVZwe05Tio9hEkFSF5cIjZ7nVf)

非技术人 10 分钟读懂 Deepseek R1|天才模型养成与 AI 超越人类的破晓时刻

就我观察而言,大多数人讨论的DeepSeek,基本指的是它的深度思考版本——DeepSeek R1。DeepSeek R1不同于先前的普通模型(如ChatGPT-4、Claude 3.5 sonnet、豆包、通义等),它与OpenAI现在最先进的模型o1、o3一样,同属于一条技术路线:基于强化学习RL的推理(Reasoning)模型。其标志性表现就是,在回答用户问题前,R1会先进行“自问自答”式的推理思考,凭此提升最终回答的质量。这种“自问自答”,并非简单的自言自语,而是AI在模拟人类的深度思考。从用户初始问题“先有鸡还是先有蛋”出发,AI唤醒解决该问题所需的推理逻辑与知识,对问题进行多步推导,为最终回答提供更加完备的思考准备。这种能力,并非凭空而来。如果把AI比作人类,那么DeepSeek R1的“聪明”,源于其背后独特的“教育方式”。——在许多其他的AI模型还在接受“填鸭式教育”时,DeepSeek R1已经率先进入了“自学成才”的新阶段。

DeepSeek 的秘方是硅谷味儿的

2023年初,科技媒体The Information进行过一轮中国可能出现哪些人工智能明星创业公司的盘点。已经做出了一些成绩的智谱和Minimax在列,刚刚创建的百川智能、零一万物和光年之外也被提及,该文章还特别提及了当时正准备再度创业尚名不见经传的杨植麟。这里面没有Deepseek。至少一年半之前,没人真的把DeepSeek当成AI的圈内人。尽管当时业界开始流传DeepSeek的母公司——从事私募量化技术的幻方握有数量丰沛的英伟达高性能显卡,仍没太多人相信它自己下场做大模型会有水花。现在,人人都在谈论DeepSeek,而且走的又是“墙外开花墙内香”的老路。可以认为,从第一天开始,DeepSeek与国内的诸多大模型新秀,选择的就不是同一个战场。它不拿融资(至少一开始不用拿),不用争抢大模型四小龙六小虎的座次,不比国内的舆论声势(唯一接受暗涌的采访,目的大概是招聘那些最热血的聪明的科学家),不搞产品投放投流。它选择的是与研究机构的本质最匹配的路径——走全球开源社区,分享最直接的模型、研究方法和成果,吸引反馈,再迭代优化,自我进益。开源社区迄今仍是AI学术研究、分享和讨论最热烈、充分、自由和无国界的地方,也是AI领域最不“内卷”的地方。DeepSeek从第一天就开源,应该是深思熟虑的。开源就要真开源,开得彻底,从模型权重、到数据集,再到预训练方法,悉数公开,而高质量的论文也是开源的一部分。年轻聪明的研究人员在开源社区的亮相、分享和活跃具有高能见度。看见他们的人,并不乏一些全球AI领域最重要的推动者。

Others are asking
提供一些deepseek提示词
以下是一些关于 DeepSeek 的提示词相关信息: 1. 效果对比:用 Coze 做了小测试,可对比查看。访问 www.deepseek.com 点击“开始对话”,将装有提示词的代码发给 DeepSeek,认真阅读开场白后正式开始对话。 2. 设计思路:将 Agent 封装成 Prompt 并储存在文件,实现同时使用联网和深度思考功能,优化输出质量,设计阈值系统,用 XML 进行规范设定。 3. 完整提示词:v 1.3 ,特别鸣谢李继刚和 Thinking Claude 等。 4. 使用案例: 借助 AI 分析好文章,如找出喜欢的文章投喂给 deepseek R1,从写作和读者角度分析,询问文章缺点和提升空间,对作者进行侧写等。 让 AI 对自己写的文章点评,给出详细优缺点分析和指导建议。 根据文章内容对作者心理侧写。 5. 集合·DeepSeek 提示词方法论:可查看相关文章,如南瓜博士的相关内容,以及 DeepSeek 官方提示词等。最新文章观点学术报告及业界评论可参考特定链接。R1 模型也有一些使用建议。
2025-02-07
你比deepseek聪明吗
DeepSeek 具有以下优秀特点: 1. 在语气上能够还原特定角色的语气,如帝王的语气,相比其他模型输出更准确恰当,兼顾了古典文字和可读性。 2. 对历史细节非常熟悉,这可能与支持“深度探索”和“联网搜索”同时开启有关,能准确还原历史称谓。 3. 输出极其具体且充满惊人细节,行文的隐喻拿捏到位,高级感十足。 此外,DeepSeek R1 属于基于强化学习 RL 的推理模型,在回答用户问题前会先进行“自问自答”式的推理思考,提升回答质量,这种能力源于其独特的“教育方式”,在其他模型还在接受“填鸭式教育”时,它已进入“自学成才”新阶段。 至于我是否比 DeepSeek 聪明,这很难直接比较,因为我们在不同的方面和场景中可能各有优势。
2025-02-07
帮我找到deepseek的培训教程,我是一个技术小白
以下是关于 DeepSeek R1 的培训教程相关内容: DeepSeek R1 引入了纯强化学习(RL),不依赖大量人类标注数据,而是通过自我探索和试错来学习。在“冷启动”阶段,仅通过少量(数千条)人工精选的思维链数据进行初步引导,建立起符合人类阅读习惯的推理表达范式。随后主要依靠强化学习,在奖励系统的反馈下(只对结果准确率与回答格式进行奖励),自主探索推理策略,不断提升回答的准确性,实现自我进化。 准确率奖励用于评估 AI 提供的最终答案是否正确,格式奖励强制结构化输出,让模型把思考过程置于<think></think>标签之间,以便人类观察模型的推理过程。 更有趣的是,DeepSeek 还有一个更加聪明的 R1zero 实验版本,这个版本甚至没有进行任何的初始引导,而是采用了完全从零开始的强化学习。实验表明,无需任何人类的监督训练,R1zero 自然而然地学会了用更多的思考步骤来解决推理任务,还学会了在推理过程中反思先前的推理步骤,探索解决问题的替代方法。但因为没有微调,R1zero 的输出内容可读性差、语言混合,且风险不可控。所以我们见到的是经过符合人类阅读偏好的冷启动与微调过的 R1 版本,确保 AI 生成内容的稳定、安全、道德、无害。 附:DeepSeek R1 完整训练过程,因文章定位与行文节奏设计,上文仅对影响 R1 涌现关键智能的前两个训练步骤进行了讲解。更加完善的训练说明,可直接阅读官方论文:DeepSeekAI《DeepSeekR1:Incentivizing Reasoning Capability in LLMs via Reinforcement Learning》https://arxiv.org/html/2501.12948 参考文献: 1. 碎瓜波斯兔子《Deepseek R1 可能找到了超越人类的办法》https://mp.weixin.qq.com/s/YgRgDw8ndSHJwcPNMqWZNQ 2. 大聪明赛博禅心《DeepSeek R1 是怎么训练的?》https://mp.weixin.qq.com/s/Wuz0H9jmZYV1jM1YtwTlA 3. 老刘说 NLP《可视化角度具象化理解 DeepSeekR1 类推理大模型的习得进程》https://mp.weixin.qq.com/s/ytKTGTgU2T7jSNrBghX1cA 4. Tianzhe Chu et al.《SFT 记忆,RL 泛化:基础模型训练后的比较研究》https://arxiv.org/html/2501.17161 5. Metaso 长思考对话《RL 和 SFT 在后训练中的区别》https://metaso.cn/s/WGdOwPC
2025-02-07
deepseek
DeepSeek 是一家具有独特特点和影响力的公司: 1. 秘方特点:DeepSeek 不是“中国式创新”的产物,其秘方是硅谷味儿的。早在 2024 年 5 月 DeepSeekV2 发布时,就以多头潜在注意力机制(MLA)架构的创新在硅谷引发轰动。同时,它在国内舆论场被描摹成“大模型价格战的发起者”,形成了一种平行时空的感觉。 2. V3 时刻:如果 V3 是 DeepSeek 的 GPT3 时刻,接下来的发展充满未知,但 DeepSeek 作为中国最全球化的 AI 公司之一,赢得全球同行尊重的秘方也是硅谷味儿的。 3. 提示词提升:一个提示词“HiDeepSeek”能让 DeepSeek 的能力更上一层楼。通过 Coze 做了效果对比测试,使用方法包括搜索 www.deepseek.com 点击“开始对话”,将装有提示词的代码发给 DeepSeek 等步骤。其设计思路包括将 Agent 封装成 Prompt 并储存、实现联网和深度思考功能、优化输出质量等。完整提示词版本为 v1.3,特别鸣谢了李继刚和 Thinking Claude 等。
2025-02-07
本地 部署deepseek
DeepSeek 相关信息如下: DeepSeek 有多种含义,包括公司、网站、手机应用和大模型,尤其是具有推理功能的 DeepSeek R1 大模型,其权重文件开源,可本地部署。 模型方面,JanusPro 是一种新型自回归框架,将图像理解和生成统一在一个模型中,模型(7B):https://huggingface.co/deepseekai/JanusPro7B ,模型(1B):https://huggingface.co/deepseekai/JanusPro1B 。 联网版的实现方式:通过工作流+DeepSeek R1 大模型,需要拥有扣子专业版账号,开通 DeepSeek R1 大模型的访问地址为:https://console.volcengine.com/cozepro/overview?scenario=coze ,添加在线推理模型,添加后在扣子开发平台才能使用,还需创建智能体。 相关新闻: 《》提到 DeepSeek 最新模型 V3 与 R1 采用混合专家(MoE)架构,显著提升计算效率,挑战 OpenAI 的闭源模型。V3 引入多头潜注意力(MLA),将 KV 缓存压缩至新低,提升计算性能。R1 则通过强化学习激活推理能力,首次验证无需监督微调即可实现推理。 《》介绍了字节跳动推出的新技术 OmniHuman,利用单张图片和音频生成生动的视频,突破了传统技术的局限。 《》指出 DeepSeek 的出现标志着算力效率拐点显现,其通过优化算法架构,显著提升了算力利用效率,打破了算力至上的传统认知。同时,AI 基础大模型的参数量迎来拐点,2025 年发布的大模型呈现低参数量特征,为本地化部署到 AI 终端运行提供了可能。此外,报告强调 2025 年是算法变革的元年,DeepSeek 的推理模型开启了算法变革,其训练过程聚焦于强化学习,提升了模型的推理能力。
2025-02-07
deepseek的使用方法
以下是 DeepSeek 的使用方法: 1. 访问网址:搜索 www.deepseek.com,点击“开始对话”。 2. 操作步骤: 将装有提示词的代码发给 DeepSeek。 认真阅读开场白之后,正式开始对话。 3. 特点与优势: 核心是推理型大模型,不需要用户提供详细的步骤指令,而是通过理解用户的真实需求和场景来提供答案。 能够理解用户用“人话”表达的需求,不需要用户学习和使用特定的提示词模板。 在回答问题时能够进行深度思考,不是简单地罗列信息。 可以模仿不同作家的文风进行写作,适用于多种文体和场景。 4. 更多提示词技巧请查看
2025-02-07
本地大模型联网搜索
以下是关于本地大模型联网搜索的相关内容: 部署本地大语言模型: 1. 下载并安装 Ollama:根据电脑系统,从 https://ollama.com/download 下载,双击打开点击“Install”,安装完成后将下方地址复制进浏览器确认:http://127.0.0.1:11434/ 。 2. 下载 qwen2:0.5b 模型: Windows 电脑:点击 win+R,输入 cmd 点击回车。 Mac 电脑:按下 Command(⌘)+Space 键打开 Spotlight 搜索,输入“Terminal”或“终端”选择应用程序。 复制相关命令行粘贴回车,等待自动下载完成。 模型获取与分辨: 1. 模型下载网站:大多数模型可在 Civitai(C 站)https://civitai.com/ 下载。 科学上网(自行解决)。 点击右上角筛选按钮选择模型类型。 看照片找到感兴趣的点进去下载。 还可点击左上角“Images”查看他人做好的图片,点进去获取信息。 2. 模型保存地址: 大模型:SD 根目录即下载 SD 时存放的文件夹。 Lora、VAE 等。 3. 分辨模型类型:可使用秋叶的模型解析工具 https://spell.novelai.dev/,将模型拖动到空白处获取信息。 DeepSeek 联网版: 1. 核心路径:通过工作流+DeepSeek R1 大模型实现联网版。 2. 拥有扣子专业版账号:普通账号自行升级或注册专业号。 3. 开通 DeepSeek R1 大模型:访问地址 https://console.volcengine.com/cozepro/overview?scenario=coze ,在火山方舟中找到开通管理,开通服务并添加在线推理模型。 4. 创建智能体:点击创建完成智能体创建。
2025-02-07
垂直领域大模型训练指南
以下是一份垂直领域大模型训练指南: 一、大模型入门 通俗来讲,大模型就是输入大量语料,让计算机获得类似人类的“思考”能力,能够进行文本生成、推理问答、对话、文档摘要等工作。 大模型的训练和使用过程可以用“上学参加工作”来类比: 1. 找学校:训练大模型需要大量计算,GPU 更合适,只有购买得起大量 GPU 的才有资本训练自己的大模型。 2. 确定教材:大模型需要的数据量特别多,几千亿序列(Token)的输入基本是标配。 3. 找老师:即用合适的算法讲述“书本”中的内容,让大模型更好理解 Token 之间的关系。 4. 就业指导:为了让大模型更好胜任某一行业,需要进行微调(fine tuning)指导。 5. 搬砖:就业指导完成后,进行如翻译、问答等工作,在大模型里称之为推导(infer)。 在 LLM 中,Token 被视为模型处理和生成的文本单位,可以代表单个字符、单词、子单词等,具体取决于所使用的分词方法。在将输入进行分词时,会对其进行数字化,形成一个词汇表。 二、LLM 开源中文大语言模型及数据集集合 1. 医疗领域 XrayGLM:首个会看胸部 X 光片的中文多模态医学大模型。 地址: 简介:该项目发布了 XrayGLM 数据集及模型,在医学影像诊断和多轮交互对话上显示出非凡潜力。 MeChat:中文心理健康支持对话大模型。 地址: 简介:该项目开源的中文心理健康支持通用模型由 ChatGLM6B LoRA 16bit 指令微调得到,数据集通过调用 gpt3.5turbo API 扩展真实的心理互助 QA 为多轮的心理健康支持多轮对话,提高了通用语言大模型在心理健康支持领域的表现,更加符合在长程多轮对话的应用场景。 MedicalGPT 地址: 简介:训练医疗大模型,实现包括二次预训练、有监督微调、奖励建模、强化学习训练。发布中文医疗 LoRA 模型 shibing624/ziyallama13bmedicallora,基于 ZiyaLLaMA13Bv1 模型,SFT 微调了一版医疗模型,医疗问答效果有提升,发布微调后的 LoRA 权重。 三、100 基础训练大模型 步骤三·Lora 生图: 1. 点击预览模型中间的生图会自动跳转到相应页面。 2. 模型上的数字代表模型强度,可在 0.6 1.0 之间调节,默认为 0.8。 3. 可以自己添加 lora 文件,点击后会显示训练过的所有 lora 的所有轮次。 4. VAE 不需要替换。 5. 正向提示词输入所写的提示词,可以选择基于这个提示词一次性生成几张图。 6. 选择生成图片的尺寸,包括横板、竖版、正方形。 7. 采样器和调度器新手小白可以默认不换。 8. 迭代步数可以按照需求在 20 30 之间调整。 9. CFG 可以按照需求在 3.5 7.5 之间调整。 10. 随机种子 1 代表随机生成图。 11. 所有设置都完成后,点击开始生成,生成的图会显示在右侧。 12. 如果有某次生成结果不错,想要微调或者高分辨率修复,可以点开那张图,往下滑,划到随机种子,复制下来,粘贴到随机种子这里,下次生成的图就会和这次的结果近似。 13. 如果确认了一张很合适的种子和参数,想要高清放大,则点开高清修复,可以选择放大的倍数。新手小白可以默认算法,迭代步数建议在 20 30 之间,重回幅度根据需求在 0.3 0.7 之间调整。 今日作业:按照比赛要求,收集六个主题中一个主题的素材并且训练出 lora 模型后提交 lora 模型与案例图像。 提交链接:https://waytoagi.feishu.cn/share/base/form/shrcnpJAtTjID7cIcNsWB79XMEd
2025-02-07
请给我推荐一个能够阅读网页链接内部信息的AI模型
以下为您推荐能够阅读网页链接内部信息的 AI 模型相关内容: 有一款 AI 浏览器插件,在产品化开发阶段,需要考虑如何稳定获取网页内容、如何选择适合的 AI 大模型 API 服务以及如何构建生产级提示词等问题。 在获取网页内容方面,由于大模型对话产品的外链解析方式容易遭到平台反爬机制制裁,通过用户浏览器以浏览器插件形式本地提取网页内容是一种稳定、经济的解决方案。比如 AI Share Card 插件,可以获取网页元素清单。开发时,您可以拿着初版提示词,询问 AI 来设计获取相关元素的 js 代码。 对于大模型 API,需要利用插件预先获取的网页内容变量、提示词和 API 请求参数,拼搭出完整的 API 提示请求,精确引导 API 返回想要的生成结果。根据 BigModel 官网给出的请求示例,需要传递 Model 类型、系统提示词、用户提示词、top_p、temperature 等关键参数。如果缺少参数设定经验,可以先询问 AI 相关设定的合适值,再逐步调试效果。 同时需要注意,使用 AI 写东西时,它可能会“产生幻觉”生成错误内容,需要检查所有内容。而且 AI 不会真正解释自己,可能给出编造的答案,使用时要对其输出负责。
2025-02-07
有没有能够阅读网页链接内部信息的AI模型?
目前存在能够阅读网页链接内部信息的相关技术和工具。例如,有一些 AI 浏览器插件可以实现这一功能。 在实现过程中,需要考虑以下几个关键方面: 1. 稳定获取网页内容:在初版提示词实验中,获取网页内容依赖大模型对话产品的外链解析能力,但易受平台反爬机制制裁。转换思路,通过用户浏览器以插件形式本地提取网页内容是一种稳定且经济的解决方案。开发时需确定需要插件获取的网页元素,可拿着初版提示词询问 AI 来设计获取相关元素的 js 代码。 2. 选择适合的 AI 大模型 API 服务:需要综合考虑多种因素来选择合适的服务。 3. 构建生产级提示词:对于大模型 API,要利用插件预先获取的网页内容变量、提示词和 API 请求参数,拼搭出完整的 API 提示请求,精确引导 API 返回想要的生成结果。同时,要根据不同模型的特点和要求设置相关参数,也可先询问 AI 相关参数的设定经验再进行调试。 此外,在初版提示词的开发中,将设计要求拆分为“设计规范”和“内容结构”,再细分为独立模块,并结合“内容结构”进行要求提示,这种提示词组织方式具有模型通用性、提示简易性和生成稳定性等显著优势。
2025-02-07
2025年出的模型有哪些
以下是 2025 年可能出现的一些模型: DeepSeek 发布了最新模型 V3 与 R1,采用混合专家(MoE)架构,V3 引入多头潜注意力(MLA),R1 通过强化学习激活推理能力。 字节跳动推出新技术 OmniHuman,利用单张图片和音频生成生动的视频。 OpenAI 发布新模型 o1,基于思维链和强化学习的新训练和推理方法,展现出明显超出 GPT4 等传统模型的复杂推理能力。 苹果公司发布面向 iPhone、iPad 和 Mac 的个人智能化系统 Apple Intelligence,嵌入一个大约 30 亿参数的本地模型。 此外,2024 年的一些模型发展趋势也可能延续到 2025 年,如: 多模态能力的提升,包括视频生成模型的发展,如 OpenAI 的 Sora 引发业界轰动,带动一众模型公司追逐,到年底视频生成已成为各大模型公司的标配能力。 开源项目的发展,如 Meta 推出的 Llama 3.1 405B 版本,中国的开源项目 Qwen2、DeepSeek 等在全球范围内赢得众多用户。 随着“蒸馏”和“量化”等技术的发展,模型的小型化和端侧化逐渐形成趋势,多家公司推出 40 亿参数以下的专业或端侧小模型。
2025-02-07
大模型的基础知识
大模型的基础知识包括以下方面: 知识类型: 内置知识:又可细分为常识知识、专业知识和语言知识。常识知识涵盖日常生活中的事实和逻辑规则;专业知识涉及特定领域的详细信息;语言知识包含语法规则、句型结构、语境含义及文化背景等。 模型架构: encoderonly:适用于自然语言理解任务,如分类和情感分析,代表模型是 BERT。 encoderdecoder:同时结合 Transformer 架构的 encoder 和 decoder 来理解和生成内容,代表是 Google 的 T5。 decoderonly:更擅长自然语言生成任务,众多 AI 助手采用此架构。 大模型的特点: 预训练数据量大,往往来自互联网,包括论文、代码和公开网页等,通常用 TB 级别的数据进行预训练。 参数众多,如 Open 在 2020 年发布的 GPT3 就已达到 170B 的参数。 数字化与 embedding:为让计算机理解 Token 之间的联系,需将 Token 表示成稠密矩阵向量,即 embedding,常见算法有基于统计的 Word2Vec、GloVe,基于深度网络的 CNN、RNN/LSTM,基于神经网络的 BERT、Doc2Vec 等。以 Transform 为代表的大模型采用自注意力机制来学习不同 token 之间的依赖关系,生成高质量 embedding。大模型的“大”主要指用于表达 token 之间关系的参数多,如 GPT3 拥有 1750 亿参数。
2025-02-07
为什么要用智能体 提示词和提问题什么区别
智能体的使用具有重要意义,写好提示词是创建智能体的第一步。设计提示词有多种原则和模型,如 CRISPE 框架,其中包括能力与角色(CR)、洞察(I)、陈述(S)、个性(P)、实验(E)等方面,明确希望 AI 扮演的角色、具备的背景信息、要做的事、回答风格以及提供多个答案等。FewShot COT 模型通过加入示例能有更好效果,可提供 1 到多个样本;ZeroShot COT 模型则不增加示例样本。TOT 模型先分步骤,每个步骤产生多个结果并选择,再进行下一步。SelfConsistent COT 模型则注重一个问题的多种解法。 从使用角度看,提示词可分为任务型和拟人化型。任务型提示词高度专业化、流程清晰,遵循严格工作逻辑,专注完成特定任务或解决问题;拟人化提示词模拟人类交互方式,用于陪伴聊天等,需要更细致全面的设计以呈现丰富个性和背景。 在生成式人工智能模型中,提示词是用户输入用于引导模型产生期望输出的文本,可简单可复杂,包含指令、问题、输入数据和示例等,为得到期望回应,通常必须包含指令或问题,其他元素可选。在 LLM 中,基本提示词可直接提问或提供特定任务指令,高级提示词则有更复杂结构,如思维链提示词引导模型逻辑推理得出答案。 提示词和提问题的区别在于,提示词不仅包含问题,还可能包含指令、输入数据和示例等,以更全面地引导模型产生期望的输出。而提问题相对较为简单直接,侧重于获取答案。
2025-02-07
ai本地部署对比网页版区别在哪
AI 本地部署和网页版主要有以下区别: 1. 出图速度:网页版出图速度快,本地部署可能相对较慢。 2. 硬件配置要求:网页版不吃本地显卡配置,本地部署对电脑配置要求较高,配置不高可能出现生成半天后爆显存导致出图失败的情况。 3. 出图质量:本地部署出图质量通常高于网页版。 4. 功能扩展性:本地部署可以自己添加插件,网页版功能相对固定。 5. 算力限制:网页版为节约算力成本,通常只支持出最高 1024×1024 左右的图,制作横板、高清等图片受限;本地部署算力限制较小。 6. 电脑使用状态:本地部署使用期间电脑基本处于宕机状态,网页版则无此问题。 例如,在图像生成方面,线上的优势在于找参考、测试模型,线下则是主要的出图工具。一些在线体验平台如哩布哩布 AI 每天有一百次生成次数,集成了最新模型;Clipdrop 每天免费 400 张图片,需排队,出图约需二三十秒。
2025-02-05
豆包和coze有什么区别
Dify 和 Coze 都是大模型中间层产品,有以下主要异同点: 开源性: Dify 是开源的,允许开发者自由访问和修改代码以定制,由专业团队和社区共同打造。 Coze 由字节跳动推出,目前未明确是否开源,可能更侧重商业化服务和产品。 功能和定制能力: Dify 提供直观界面,结合多种功能,支持基于任何 LLM 部署 API 和服务。 Coze 有丰富插件能力和高效搭建效率,支持发布到多个平台作为 Bot 能力使用。 社区和支持: Dify 作为开源项目有活跃社区,开发者可参与共创共建。 Coze 可能更多依赖官方更新和支持,社区参与和开源协作程度可能不如 Dify。 豆包和 Coze 的区别在于: 豆包主要是大模型交互,功能相对默认。 Coze 不用魔法,上手简单,更新快,插件多。在模型选择方面,GLM 模型和 MoonShot 模型对结构化提示词理解良好,适合处理精确输入输出任务;豆包系列模型在角色扮演和工具调用方面有优势,能识别用户意图并选择合适工具或服务。将这三种模型结合在工作流或多 Agent 中可实现优势互补。
2025-01-25
精准率和召回率有什么区别
精准率和召回率是常见的评估指标,主要区别如下: 精准率(Precision):指返回的检索内容中有用信息的占比。也就是说,在所有被检索出来的内容中,真正有用的信息所占的比例。其计算公式为:精准率 = 真正例 / (真正例 + 假正例)。 召回率(Recall):指相关信息被正确预测出来的比例,即真正例在所有实际相关信息中的占比。其计算公式为:召回率 = 真正例 / (真正例 + 假反例)。 例如,在一个文档检索的场景中,精准率体现的是检索出的文档中有多少是真正有用的;召回率则体现的是相关的文档有多少被包含在返回的检索结果里。 总的来说,精准率关注的是检索结果的准确性,而召回率关注的是检索结果的完整性。
2025-01-23
深度学习跟机器学习有啥区别呀?能不能举个通俗易懂的例子
深度学习和机器学习的区别主要体现在以下几个方面: 1. 学习方式:机器学习通常需要人工选择和设计特征,而深度学习能够自动从数据中学习特征。 2. 模型结构:机器学习模型相对简单,深度学习则使用多层的神经网络,结构更复杂。 3. 数据处理能力:深度学习能够处理更大量和更复杂的数据模式。 例如,在图像识别任务中,如果使用机器学习,可能需要人工提取图像的颜色、形状等特征,然后基于这些特征进行分类。但在深度学习中,神经网络可以自动从大量的图像数据中学习到有效的特征表示,从而实现更准确的分类。 机器学习是人工智能的一个子领域,让计算机通过数据学习来提高性能,不是直接编程告诉计算机如何完成任务,而是提供数据让机器找出隐藏模式或规律,然后用这些规律预测新的未知数据。 深度学习是机器学习的一个子领域,模拟人脑工作方式,创建人工神经网络处理数据,包含多个处理层,能学习和表示大量复杂模式,在图像识别、语音识别和自然语言处理等任务中非常有效。 大语言模型是深度学习在自然语言处理领域的应用之一,目标是理解和生成人类语言,需要在大量文本数据上训练,如 ChatGPT、文心一言。同时,大语言模型具有生成式 AI 的特点,不仅能理解和分析数据,还能创造新的独特输出。
2025-01-21
深度学习跟机器学习有啥区别呀
深度学习和机器学习的区别主要体现在以下几个方面: 1. 范畴:机器学习是人工智能的一个子领域,深度学习则是机器学习的一个子集。 2. 工作方式:机器学习通过输入数据训练模型,让计算机在没有明确编程的情况下学习。深度学习模拟人脑工作方式,创建人工神经网络处理数据。 3. 处理模式:机器学习模型可以是监督的或无监督的,监督模型使用标记的数据学习并预测未来值,无监督模型专注于发现原始数据中的模式。深度学习使用人工神经网络,能处理更复杂的模式,神经网络可使用标记和未标记的数据,实现半监督学习。 4. 应用效果:深度学习在图像识别、语音识别和自然语言处理等任务中表现出色,因为其能学习和表示大量复杂的模式。 例如,大语言模型是深度学习在自然语言处理领域的应用,其不仅能理解和分析数据,还能创造新的独特输出,如 ChatGPT、文心一言等。
2025-01-21