Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

deepseek与其他大模型有什么区别

Answer

DeepSeek 与其他大模型的区别主要体现在以下几个方面:

  1. 模型类型:DeepSeek 是推理型大模型,与指令型大模型不同,不需要用户提供详细步骤指令,而是通过理解用户真实需求和场景提供答案。
  2. 语言理解:能够理解用户用“人话”表达的需求,不需要用户学习和使用特定提示词模板。
  3. 思考深度:在回答问题时能够进行深度思考,而非简单罗列信息。
  4. 文风转换:可以模仿不同作家的文风进行写作,适用于多种文体和场景。
  5. 技术路线:DeepSeek R1 与 OpenAI 现在最先进的模型 o1、o3 同属于基于强化学习 RL 的推理模型,在回答用户问题前会先进行“自问自答”式的推理思考,提升最终回答质量。
  6. 发展路径:从一开始,DeepSeek 与国内诸多大模型新秀选择的不是同一个战场。它不拿融资,不抢座次,不比国内舆论声势,不搞产品投放投流,而是选择走全球开源社区,分享直接的模型、研究方法和成果,吸引反馈,再迭代优化。开源彻底,包括模型权重、数据集、预训练方法和高质量论文。
Content generated by AI large model, please carefully verify (powered by aily)

References

详解:DeepSeek深度推理+联网搜索 目前断档第一

先了解下优势和特点[heading2]DeepSeek的特点与优势[content]推理型大模型:DeepSeek的核心是推理型大模型,与指令型大模型不同,它不需要用户提供详细的步骤指令,而是通过理解用户的真实需求和场景来提供答案。更懂人话:DeepSeek能够理解用户用“人话”表达的需求,而不需要用户学习和使用特定的提示词模板。深度思考:DeepSeek在回答问题时能够进行深度思考,而不是简单地罗列信息。文风转换器:DeepSeek可以模仿不同作家的文风进行写作,适用于多种文体和场景。更多提示词技巧请查看[DeepSeek-R1提示词交互实践指南](https://waytoagi.feishu.cn/wiki/ISVZwe05Tio9hEkFSF5cIjZ7nVf)

非技术人 10 分钟读懂 Deepseek R1|天才模型养成与 AI 超越人类的破晓时刻

就我观察而言,大多数人讨论的DeepSeek,基本指的是它的深度思考版本——DeepSeek R1。DeepSeek R1不同于先前的普通模型(如ChatGPT-4、Claude 3.5 sonnet、豆包、通义等),它与OpenAI现在最先进的模型o1、o3一样,同属于一条技术路线:基于强化学习RL的推理(Reasoning)模型。其标志性表现就是,在回答用户问题前,R1会先进行“自问自答”式的推理思考,凭此提升最终回答的质量。这种“自问自答”,并非简单的自言自语,而是AI在模拟人类的深度思考。从用户初始问题“先有鸡还是先有蛋”出发,AI唤醒解决该问题所需的推理逻辑与知识,对问题进行多步推导,为最终回答提供更加完备的思考准备。这种能力,并非凭空而来。如果把AI比作人类,那么DeepSeek R1的“聪明”,源于其背后独特的“教育方式”。——在许多其他的AI模型还在接受“填鸭式教育”时,DeepSeek R1已经率先进入了“自学成才”的新阶段。

DeepSeek 的秘方是硅谷味儿的

2023年初,科技媒体The Information进行过一轮中国可能出现哪些人工智能明星创业公司的盘点。已经做出了一些成绩的智谱和Minimax在列,刚刚创建的百川智能、零一万物和光年之外也被提及,该文章还特别提及了当时正准备再度创业尚名不见经传的杨植麟。这里面没有Deepseek。至少一年半之前,没人真的把DeepSeek当成AI的圈内人。尽管当时业界开始流传DeepSeek的母公司——从事私募量化技术的幻方握有数量丰沛的英伟达高性能显卡,仍没太多人相信它自己下场做大模型会有水花。现在,人人都在谈论DeepSeek,而且走的又是“墙外开花墙内香”的老路。可以认为,从第一天开始,DeepSeek与国内的诸多大模型新秀,选择的就不是同一个战场。它不拿融资(至少一开始不用拿),不用争抢大模型四小龙六小虎的座次,不比国内的舆论声势(唯一接受暗涌的采访,目的大概是招聘那些最热血的聪明的科学家),不搞产品投放投流。它选择的是与研究机构的本质最匹配的路径——走全球开源社区,分享最直接的模型、研究方法和成果,吸引反馈,再迭代优化,自我进益。开源社区迄今仍是AI学术研究、分享和讨论最热烈、充分、自由和无国界的地方,也是AI领域最不“内卷”的地方。DeepSeek从第一天就开源,应该是深思熟虑的。开源就要真开源,开得彻底,从模型权重、到数据集,再到预训练方法,悉数公开,而高质量的论文也是开源的一部分。年轻聪明的研究人员在开源社区的亮相、分享和活跃具有高能见度。看见他们的人,并不乏一些全球AI领域最重要的推动者。

Others are asking
为什么密塔要接入deepseek
密塔接入 DeepSeek 可能有以下原因: 1. 提升用户的 AI 学习体验:例如学而思接入 DeepSeek“深度思考模式”,预计将在 2 月内陆续于相关机型上线,以全面升级用户的 AI 学习体验。 2. 实现多任务统一:DeepSeek 的 JanusPro 模型将图像理解和生成统一在一个模型中,具有理解和生成两种本领,能够为相关应用提供更综合的能力支持。 3. 高效便捷:DeepSeek 编程工具接入速度较快,国内版本可直接用于编程,无需申请 API 即可使用。 4. 降低编程门槛:鼓励编程实践,降低了编程的门槛,使更多人能够参与其中。 以上信息仅供参考,具体原因可能还需根据密塔的具体需求和规划来确定。
2025-03-13
1、Puzzle 选择一个你(们)感兴趣的社会问题或者现象。 “赛博信仰”指在网络环境下衍生的一系列超现实、寄托心理期许的新兴文化现象。这种现象反映了人们在数字化时代中对精神寄托、心理安慰和未来预测的需求。赛博信仰不仅是一种文化现象,也反映了现代社会中人们对科技、信仰和现实之间关系的重新思考。 2、Facts 关于这个问题/现象,都有哪些基本事实? 比如有人购买电子形式的马克思、爱因斯坦的脑子,象征着对智慧的渴望;借助塔罗测试程序、deepseek算命等AI工具,尝试预知命运;夸赞鹿童、转发锦鲤
关于“赛博信仰”这一现象,目前所了解到的基本事实包括:有人购买电子形式的马克思、爱因斯坦的脑子以象征对智慧的渴望;借助塔罗测试程序、deepseek 算命等 AI 工具尝试预知命运;夸赞鹿童、转发锦鲤等。但目前掌握的相关事实相对有限,还需要进一步的研究和观察来更全面地了解这一现象。
2025-03-13
你是一名DEEPSEEK专家,请用大白话交给小白掌握deepseek的使用,举例说明
DeepSeek 的使用对于小白来说可能有点复杂,但我尽量用大白话给您解释清楚。 比如说,您想让 DeepSeek 帮您生成“玄武门之变结束的当天,李世民在深夜写下一段独白,你觉得他会写什么?”这样的内容。 DeepSeek 会这样来处理: 1. 先回顾玄武门之变的历史背景,比如这场政变发生在 626 年,李世民杀了兄弟,逼父亲退位等。 2. 思考李世民当晚的心理,可能有释然、愧疚、恐惧、自责等多种复杂情绪,还要考虑他是被迫还是早有预谋。 3. 要让生成的独白不仅符合历史事实,还要有文学性,体现人性的复杂。比如要平衡他的野心与自责,对未来的抱负与对过去的悔恨。 4. 考虑当时的文化背景,像儒家思想对孝悌的重视,李世民的行为违背了这些伦理,他可能会内心挣扎,还可能为自己的行为找正当理由。 5. 按照您的需求,给独白加上一些文学修辞,像比喻、对仗、意象等,增强画面感。 另外,DeepSeek 还有个很厉害的地方,就是它能在独白文本中“自作主张”地加入括号里的场景描述,让整个输出更有画面感。比如“(夜风掀动案头《韩非子》,停在‘夫妻者,非有骨肉之恩也’那页)”、“(墨迹在‘弑’字上晕开一团)”、“(忽然扔笔,抓起铜镜)”这些句子,很难相信是 AI 写的。 总之,使用 DeepSeek 时要考虑很多方面的因素,它能根据您的提示词和需求,生成很精彩的内容。
2025-03-13
defy对比deepseek有哪些区别和优势
Defy 与 DeepSeek 的区别和优势如下: DeepSeek 的优势: 1. 参数量大(685B),磁盘占用为 687.9 GB,采用混合专家模型(MoE),有 256 个专家,每个 token 使用 8 个专家。 2. 理解能力提升,能准确理解复杂和微妙的查询。 3. 知识更新至 2023 年,提供更及时、更相关的信息。 4. 多语言支持和个性化服务增强。 5. 数据安全和隐私保护加强。 6. 在 BigCodeBenchHard 排名第一。 7. 展示出媲美领先 AI 产品性能的模型,但成本仅为其一小部分,在全球主要市场的 App Store 登顶。 8. 文字能力突出,尤其在中文场景中高度符合日常、写作习惯。 9. 数学能力经过优化,表现不错。 关于 Defy 的相关信息未在提供的内容中提及,无法进行对比。
2025-03-13
deepseek与chatgpt有本质上的不同吗?是否引入了全新的ai技术和模型?
DeepSeek R1 与 ChatGPT 有本质上的不同。DeepSeek R1 与 OpenAI 现在最先进的模型 o1、o3 同属于基于强化学习 RL 的推理(Reasoning)模型,在回答用户问题前会先进行“自问自答”式的推理思考,以提升最终回答的质量,这种“自问自答”是模拟人类的深度思考。 而多数其他 AI 模型还在接受“填鸭式教育”时,DeepSeek R1 已率先进入“自学成才”的新阶段。 此外,DeepSeek R1 具备强大、便宜、开源、免费、联网和本土等六大优势,全面超过现有 AI 大模型。它在美国 App Store 夺冠,超越 OpenAI 的 ChatGPT,成为开源 AI 领域的领军者。其 R1 模型以仅 27 分之一的成本实现卓越表现,创新的 R1 Zero 模型显示出模型思考能力的自我涌现,或将引领 AGI 的新方向。
2025-03-13
deepseek 在飞书中的主要应用场景有哪些
DeepSeek 在飞书中的主要应用场景包括: 1. 自动翻译、改写、图片 OCR、AI 抓取等,关键流程为从 URL 抓取内容➝DeepSeek R1 翻译➝自动改写文章风格➝生成高质量文章,还包括文本翻译、图片翻译、AI 生成爆款标题。 2. 生成深度报告、信息检索、数据整理等。 3. 处理大规模代码,例如粘贴几千行代码并用 XML 包裹,或让 AI 编写代码、搜索相关代码库。 4. 与 Coze 智能体、飞书多维表格和字段捷径(Agent)组合,实现高效的数据抓取与批量 AI 处理,适用于社交媒体数据分析、AI 内容生成、情绪分析等。 5. 在专业场景提效、教育学术赋能、商业创新与生活服务等领域用途广泛,如辅助办公、教学设计、电商运营等。
2025-03-13
什么是大模型
大模型通俗来讲,是输入大量语料,让计算机获得类似人类的“思考”能力,从而能够理解自然语言,并进行文本生成、推理问答、对话、文档摘要等工作。 可以用“上学参加工作”这件事来类比大模型的训练和使用过程: 1. 找学校:训练大模型需要大量计算,GPU更合适,只有购买得起大量GPU的才有资本训练。 2. 确定教材:大模型需要的数据量特别多,几千亿序列(Token)的输入基本是标配。 3. 找老师:即采用合适的算法讲述“书本”中的内容,让大模型更好理解Token之间的关系。 4. 就业指导:学完知识后,为让大模型更好胜任某一行业,需要进行微调(fine tuning)指导。 5. 搬砖:就业指导完成后,正式干活,比如进行翻译、问答等,在大模型里称之为推导(infer)。 在大模型中,Token被视为模型处理和生成的文本单位,会被数字化形成词汇表,便于计算机处理。为让计算机理解Token之间的联系,还需把Token表示成稠密矩阵向量,这个过程称为embedding,常见算法有基于统计的Word2Vec、GloVe,基于深度网络的CNN、RNN/LSTM,基于神经网络的BERT、Doc2Vec等。以Transform为代表的大模型采用自注意力(Selfattention)机制来学习不同token之间的依赖关系,生成高质量embedding。 大模型的“大”指用于表达token之间关系的参数多,主要是模型中的权重(weight)与偏置(bias),例如GPT3拥有1750亿参数,而词汇表token数只有5万左右。 所谓的大模型,简而言之,就是拥有庞大参数数量的模型,通过处理和理解海量数据,能够胜任一系列复杂任务。大模型强大的原因在于庞大的参数数量和大量的数据训练。这些参数是模型在学习过程中不断调整的核心,帮助模型更深入地理解和生成数据。同时,大量的数据,无论是文本、图像还是音频数据,都是大模型学习的基础,使其能够掌握丰富的知识和技能。
2025-03-13
我想跟大概40岁左右的科研从业者科普人工智能和大模型的相关知识,挑选合适的内容作为提纲。
以下是为您挑选的向 40 岁左右科研从业者科普人工智能和大模型的提纲内容: 一、AI 大模型的基本概念 1. 生成式 AI 生成的内容称为 AIGC 2. 相关技术名词 AI:人工智能 机器学习:电脑找规律学习,包括监督学习、无监督学习、强化学习 监督学习:有标签的训练数据,学习输入和输出之间的映射关系,包括分类和回归 无监督学习:学习的数据没有标签,算法自主发现规律,经典任务如聚类 强化学习:从反馈里学习,最大化奖励或最小化损失,类似训小狗 深度学习:参照人脑有神经网络和神经元,因层数多称为深度,神经网络可用于多种学习方式 生成式 AI:可以生成文本、图片、音频、视频等内容形式 LLM:大语言模型,生成图像的扩散模型不是大语言模型,大语言模型的生成只是处理任务之一,如谷歌的 BERT 模型可用于语义理解 二、AI 大模型的技术里程碑 1. 2017 年 6 月,谷歌团队发表论文《Attention is All You Need》,首次提出 Transformer 模型,完全基于自注意力机制处理序列数据,不依赖循环神经网络或卷积神经网络 三、AI 模型及相关进展 1. 包括视频生成模型、相关论文,以及 AI 在诺奖和蛋白质研究领域的应用等 2. 人工智能发展历程:从图灵测试、早期的图灵机器人和 ELISA,到 IBM 的语音控制打印机、完全由人工智能创作的小说、微软的同声传译系统,再到 OpenAI 发布 ChatGPT 模型,经历了萌芽、积累沉淀到如今大模型和多模态模型百花齐放的阶段 3. 大模型的基石:由数据、算法、算力构成,算法有技术架构的迭代,如英伟达的显卡辅助模型训练,数据质量对生成理想的大模型至关重要 4. 针对弱智 8 的问题对大模型进行测试,开展让大模型回复问题并找出真人回复的活动,且国内大模型的回答能力有很大改进 5. 大语言模型的特点:早期回复缺乏情感,如今有所改进,后续将体验几个大模型的回复场景
2025-03-13
AI、AIGC、大模型这三者之间有什么关系
AI(人工智能)是一种让机器展现智慧的目标。AIGC(人工智能生成内容)是利用人工智能技术生成包括文本、图像、音频和视频等内容的新型生产方式。大模型如大语言模型(LLM)是具有大量参数的“深度学习”模型。 生成式 AI 是一种让机器产生复杂有结构内容的目标。机器学习是让机器自动从资料中找公式的手段,深度学习是更厉害的类神经网络且有大量参数的手段。 AIGC 技术可用于多种应用,如自动撰写新闻文章、生成艺术画作等。ChatGPT 是 AIGC 技术在文本生成领域的一个应用实例,它是基于大型语言模型(LLM)的对话机器人,能根据用户输入生成连贯且相关的文本回复。 2017 年 6 月,谷歌团队发表论文《Attention is All You Need》,首次提出了 Transformer 模型,它基于自注意力机制处理序列数据,不依赖循环神经网络(RNN)或卷积神经网络(CNN)。
2025-03-13
懂编程但是不了解大模型的工程师如何系统的学习深度学习?
对于懂编程但不了解大模型的工程师,系统学习深度学习可以参考以下路径: 1. 掌握深度学习和自然语言处理基础: 学习机器学习、深度学习、神经网络等基础理论。 掌握自然语言处理基础,如词向量、序列模型、注意力机制等。 相关课程推荐吴恩达的深度学习课程、斯坦福 cs224n 等。 2. 理解 Transformer 和 BERT 等模型原理: 熟悉 Transformer 模型架构及自注意力机制原理。 掌握 BERT 的预训练和微调方法。 阅读相关论文,如 Attention is All You Need、BERT 论文等。 3. 学习 LLM 模型训练和微调: 进行大规模文本语料预处理。 熟悉 LLM 预训练框架,如 PyTorch、TensorFlow 等。 学会微调 LLM 模型进行特定任务迁移。 参考相关资源,如 HuggingFace 课程、论文及开源仓库等。 4. LLM 模型优化和部署: 掌握模型压缩、蒸馏、并行等优化技术。 了解模型评估和可解释性。 熟悉模型服务化、在线推理、多语言支持等。 运用相关开源工具,如 ONNX、TVM、BentoML 等。 5. LLM 工程实践和案例学习: 结合行业场景,进行个性化的 LLM 训练。 分析和优化具体 LLM 工程案例。 研究 LLM 新模型、新方法的最新进展。 6. 持续跟踪前沿发展动态: 关注顶会最新论文、技术博客等资源。 此外,为了更好地理解相关技术原理和建立框架,还可以了解以下内容: 1. 概念:生成式 AI 生成的内容称为 AIGC。 2. 概念与关系: AI 即人工智能。 机器学习是电脑找规律学习,包括监督学习、无监督学习、强化学习。 监督学习使用有标签的训练数据,目标是学习输入和输出之间的映射关系,包括分类和回归。 无监督学习的数据没有标签,算法自主发现规律,经典任务包括聚类。 强化学习从反馈里学习,最大化奖励或最小化损失,类似训小狗。 深度学习是一种参照人脑有神经网络和神经元的方法(因有很多层所以叫深度),神经网络可用于监督学习、无监督学习、强化学习。 生成式 AI 可以生成文本、图片、音频、视频等内容形式。 LLM 是大语言模型,对于生成式 AI,生成图像的扩散模型不是大语言模型;对于大语言模型,生成只是其中一个处理任务,如谷歌的 BERT 模型,可用于语义理解(不擅长文本生成),如上下文理解、情感分析、文本分类。 3. 技术里程碑:2017 年 6 月,谷歌团队发表论文《Attention is All You Need》,首次提出了 Transformer 模型,它完全基于自注意力机制来处理序列数据,而不需要依赖于循环神经网络或卷积神经网络。
2025-03-13
市面上主流的大模型有什么区别
市面上主流的大模型主要有以下区别: 1. 架构类型: Encoderonly:适用于自然语言理解任务,如分类和情感分析,代表模型是 BERT。 Encoderdecoder:同时结合 Transformer 架构的 encoder 和 decoder 来理解和生成内容,用例包括翻译和摘要,代表是 Google 的 T5。 Decoderonly:更擅长自然语言生成任务,众多 AI 助手采用此结构,如 ChatGPT。 2. 处理信息类型: 大型语言模型:专注于处理和生成文本信息。 大型多模态模型:能够处理包括文本、图片、音频等多种类型的信息。 3. 应用场景: 大型语言模型:主要用于自然语言处理任务,如文本翻译、文本生成、情感分析等。 大型多模态模型:可应用于图像识别与描述、视频分析、语音识别与生成等更广泛的领域。 4. 数据需求: 大型语言模型:主要依赖大量的文本数据进行训练。 大型多模态模型:需要多种类型的数据进行训练,包括文本、图片、音频等。 5. 规模: 大模型的预训练数据非常大,往往来自互联网,包括论文、代码、公开网页等,一般用 TB 级别的数据进行预训练,参数也非常多,如 OpenAI 在 2020 年发布的 GPT3 就已达到 170B 的参数。 6. 优秀模型: GPT4(网页版)、GPT4(API)、智谱清言、通义千问 2.0、AndesGPT(OPPO)、文心一言 4.0(API)、MoonShot(KimiChat)、Claude2、360 智脑、Qwen72BChat、文心一言 4.0(网页版)等。 7. 性能表现:国内外大模型存在差距,如 GPT4 Turbo 总分 90.63 分遥遥领先,国内最好模型文心一言 4.0(API)总分 79.02 分,与 GPT4 Turbo 有一定差距。
2025-03-13
SD 反推模型
以下是关于 SD 反推模型的相关内容: Fooocus 模型: LoRA 模型默认放在:Fooocus_win64_1110\\Fooocus\\models\\loras 程序默认用到 3 个 SDXL 的模型,包括一个 base、一个 Refiner 和一个 LoRA。单独安装需下载三个模型: SDXL 基础模型:https://huggingface.co/stabilityai/stablediffusionxlbase1.0/resolve/main/sd_xl_base_1.0_0.9vae.safetensors refiner 模型:https://huggingface.co/stabilityai/stablediffusionxlrefiner1.0/resolve/main/sd_xl_refiner_1.0_0.9vae.safetensors LoRA 模型:https://huggingface.co/stabilityai/stablediffusionxlbase1.0/resolve/main/sd_xl_offset_examplelora_1.0.safetensors 若部署了 SD 秋叶包,可共用模型(大模型和 LoRA),通过修改 Fooocus_win64_1110\\Fooocus\\modules\\path.py 文件中的路径来配置,修改为秋叶包模型对应的路径,如: 大模型路径:sdwebui\\models\\Stablediffusion\\SDXL LoRA 模型路径:sdwebui\\models\\lora 配置好后点击 run.bat 文件启动。 Comfyui SD 学社做黏土头像的相关插件: 提示词反推 WD14Tagger:https://github.com/pythongosss/ComfyUlWD14Tagger,首次使用会自动下载模型(需要网络环境) 处理人物一致性: IPAdapter:https://github.com/cubiq/ComfyUI_IPAdapter_plus 也可以用 instantID,这里使用的是 IPadpter,后续很多地方也会用到,建议先使用起来。关于 IPAdapter 的使用,之前有文章介绍。 ControlNet: 预处理的插件:comfyui_controlnet_aux https://github.com/Fannovel16/comfyui_controlnet_aux ControlNet 模型: XLCN 模型下载:https://huggingface.co/lllyasviel/sd_control_collection/tree/main 1.5 理模型下载:https://huggingface.co/lllyasviel/ControlNetv11/tree/main ControlNet 的 tile 模型: 随着 ControlNet1.1 的更新,tile 模型横空出世,其强大的功能让之前的一些模型变得有点黯然失色。 可用于高清修复小图,比如将分辨率不高的食物图片拖进“WD 1.4 标签器”反推关键词,然后发送到图生图。使用大模型“dreamshaper”调整参数尺寸,放大为 2K,提示词引导系数官方推荐在 15 以上,重绘幅度在 0.5 以上。 可用于修复和增加细节,如处理一张细节不足且结构错误的小屋图。tile 的预处理器用来降低原图的分辨率,为新图添加像素和细节提供空间。若图片本身像素很低,可以不使用预处理器,直接使用 tile 模型。
2025-03-13
agent和agi的区别
Agent 和 AGI 的区别主要体现在以下几个方面: Agent(智能体): 是执行特定任务的 AI 实体。 拥有复杂的工作流程,可以自我对话,无需人类驱动每一部分的交互。 由大型语言模型、记忆、任务规划以及工具使用等部分组成。 例如在斯坦福 25 人小镇案例中有所应用。 AGI(人工通用智能): 强调的是具备像人类一样广泛和通用的智能能力。 追求能够在各种不同的任务和领域中表现出高度智能的水平。 总的来说,Agent 更侧重于特定任务的执行和特定功能的实现,而 AGI 则是一个更宏观和全面的概念,旨在实现广泛的通用智能。
2025-03-12
agent和workflow的区别
智能体(Agent)和工作流(Workflow)的区别主要体现在以下几个方面: 1. 定义和功能: 智能体是由 LLM 动态指导自身流程和工具使用的系统,能够自主控制任务完成方式。 工作流是通过预定义代码路径来编排 LLM 和工具的系统。 2. 运行方式: 智能体可以长期独立运行,是全自动的系统,能使用各种工具完成复杂任务。 工作流中的子任务是人为编排的,属于手动编排。 3. 组成和特点: 工作流中的每个组块可以看成是一个函数,包括传统函数、调用第三方服务的函数和基于 LLM 的函数。由这三类函数组合而成的工作流被称为超函数,它不同于传统函数,形式上是用自然语言编写的程序,功能上可以模拟人的高阶思维。 智能体在架构上与工作流有所区分,其更强调自主性和动态性。 在实际应用中,工作流的灵活性和可控性能够将智能体能力的天花板往上顶一大截,例如可以在流程中加入人类 Knowhow、进行专家测试试跑、引入图的概念灵活组织节点等。评价一个 Agent 平台好不好用,可以从基座模型的 function calling 能力、workflow 的灵活性以及平台创作者的 workflow 编写水平等方面考量。
2025-03-12
comfyUI和webUI的区别
ComfyUI 和 WebUI 的区别主要体现在以下几个方面: ComfyUI: 简介:是一个基于节点流程式的 stable diffusion AI 绘图工具 WebUI,将 stable diffusion 的流程拆分成节点,实现更精准的工作流定制和完善的可复现性。 优势: 对显存要求相对较低,启动速度快,出图速度快。 具有更高的生成自由度。 可以和 WebUI 共享环境和模型。 可以搭建自己的工作流程,可以导出流程并分享给别人,报错时能清晰发现错误所在步骤。 生成的图片拖进后会还原整个工作流程,模型也会选择好。 劣势: 操作门槛高,需要有清晰的逻辑。 生态没有 WebUI 多(常用的都有),但也有一些针对 ComfyUI 开发的有趣插件。 官方链接:从 github 上下载作者部署好环境和依赖的整合包,按照官方文档安装即可:https://github.com/comfyanonymous/ComfyUI 插件推荐: 插件安装管理器:https://github.com/ltdrdata/ComfyUIManager SDXL 风格样式:https://github.com/twri/sdxl_prompt_styler ComfyUI 界面汉化:https://github.com/AIGODLIKE/AIGODLIKECOMFYUITRANSLATION 中文提示词输入:https://github.com/AlekPet/ComfyUI_Custom_Nodes_AlekPet 蟒蛇八卦工具箱:https://github.com/pythongosssss/ComfyUICustomScripts 提示词权重调节器:https://github.com/BlenderNeko/ComfyUI_AD WebUI: 采样器与调度器:在 ComfyUI 中,采样器与调度器分开,而在 WebUI 中的采样方法是把两者合并在一起。ComfyUI 通过采样器+调度器组合的方式与 WebUI 中的一致,一般选择 karras 调度器效果较好。 在插件安装方面,WebUI 有较好的用户界面,安装插件后可直观看到并使用;而 ComfyUI 安装插件后可能看不到,需通过节点连接才能感受到其功能。
2025-03-12
编程插件和编程IDE的区别
编程插件和编程 IDE 主要有以下区别: 1. 代码补全方式:编程插件的补全通常局限于向后追加,而像 Trae 这样的 AI 原生 IDE 可以删除代码,进行多行全方位的自动补全。 2. 工作能力:AI 原生 IDE 如 Trae 具备 Agent 的能力,在无须人工干预的情况下,可以完成代码生成、调试、程序运行等一系列工作。而编程插件可能需要更多的人工参与。 3. 用户习惯改变难度:工程师往往有自己习惯使用的 IDE,新的编程 IDE 想迅速改变工程师的习惯较难,而插件的方式可以让工程师先低成本地用起来。 4. 功能集成度:编程 IDE 通常是一个完整的开发环境,提供了更全面的功能和优化,如 IntelliJ 为 Java 程序员做了很多细微的优化。而插件则是在原有 IDE 的基础上增加特定的功能。 例如,在 Coze IDE 中可以借助 AI 轻松创建插件,创建后需发布才能被 Bot 使用。在 Cursor 中,可通过官网下载安装,通过调起 AI 对话输入需求实现功能,在使用过程中不断追问完善需求,遇到问题可随时向其咨询。
2025-03-12