Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

AI 增量训练 Lora

Answer

以下是关于 AI 增量训练 Lora 的相关知识:

参数理解

  1. 学习步数:指 AI 对每张图片的学习次数。二次元图片的 repeat 一般在 10 - 15,写实人物图片的 repeat 一般在 30 - 50,真实世界的景观场景可能要达到 100。理论上讲,图片精细度越高,学习步数越高。
  2. 循环次数:AI 将所有图片按照学习步数学习一轮为一次循环,循环次数一般在 10 - 20 之间。次数并非越多越好,过多会导致过拟合,即画什么都和样图一样。
  3. 效率设置:主要控制电脑的训练速度。可保持默认值,也可根据电脑显存微调,但要避免显存过载。

总的训练步数为:图片张数×学习步数×循环次数。

此外,沃尔夫勒姆提到人工智能是基于机器学习(通常通过神经网络实现),根据给出的示例进行增量训练,且这些示例包括大量人类生成的科学文本等,或者关于世界上发生的事情的实际经验。

Content generated by AI large model, please carefully verify (powered by aily)

References

【Lora炼丹术】从零开始,炼制你的第一个LoRA(1)

我们点击“开启炼丹炉”,正式进入到丹炉内部。打开素材库可以看到5张tifa的图片图片,这是丹炉中自带的,我们先用这个来炼制第一炉丹吧。我们可以选择一个任意的基础模型,然后给我们想要炼制的lora取一个名字,即召唤词。正常来说,这个丹炉已经帮我们按照类型设定好了参数,所以你只需要点击“人物”选项卡就可以开始训练了。但是,我们这里最好还是要了解一下相关的参数,所以我们选择“自定义参数”。点击确定,我们就进入了一个参数设置的面板。接下来,我们就来了解一下,这些参数的具体含义。1首先是学习步数,指的是AI对我们每一张图片的学习次数。根据我们的训练内容,二次元图片的repeat一般在10-15,写实人物图片的repeat一般在30-50,真实世界的一些景观场景可能要达到100。repeat值越高,ai就能更好的读懂我们的图片,理论上讲图片的精细度越高,学习步数就要越高。

【Lora炼丹术】从零开始,炼制你的第一个LoRA(1)

循环次数:AI将我们的所有图片按照学习步数学习一轮就是一次循环,那循环次数就是将这个过程重复多少遍。一般数值在10-20之间,次数并不是越多越好,因为学多了就会知识固化,变成一个书呆子,画什么都和我们的样图一样,我们称之为过拟合。每一次循环我们都会得到一个炼丹结果,所以epoch为10的话,我们就训练完之后就会得到10个丹。我们总的训练步数,就是:图片张数*学习步数*循环次数=训练步数。即:5*50*10=2500步2效率设置,主要是控制我们电脑的一个训练速度。可以保持默认值,也可以根据我们电脑的显存进行微调,但是要避免显存过载。

沃尔夫勒姆:人工智能能解决科学问题吗?

So what do I actually even mean by “AI” here?In the past,anything seriously computational was often considered “AI”,in which case,for example,what we’ve done for so long with our Wolfram Language computational language would qualify—as would all my “ruliological” study of simple programs in the computational universe.But here for the most part I’m going to adopt a narrower definition—and say that AI is something based on machine learning(and usually implemented with neural networks),that’s been incrementally trained from examples it’s been given.Often I’ll add another piece as well:that those examples include either a large corpus of human-generated scientific text,etc.,or a corpus of actual experience about things that happen in the world—or,in other words,that in addition to being a “raw learning machine” the AI is something that’s already learned from lots of human-aligned knowledge.那么我在这里所说的“人工智能”到底是什么意思呢?在过去,任何认真计算的东西通常都被认为是“人工智能”,在这种情况下,例如,我们长期以来使用Wolfram语言计算语言所做的事情就符合资格——就像我对简单程序的所有“规则学”研究一样。计算宇宙。但在这里,我将在很大程度上采用更狭义的定义,并说人工智能是基于机器学习(通常通过神经网络实现)的东西,它是根据给出的示例进行增量训练的。

Others are asking
AI中常说的token是什么
Token 是大模型语言体系中的最小单元。 在人类语言中,不同语言都有最小的字词单元,如汉语的字/词、英语的字母/单词。而在大模型语言体系中,Token 就相当于这样的最小单元。 当我们向大模型发送文本时,大模型会先将文本转换为它自己的语言,并推理生成答案,然后再翻译为我们能看懂的语言输出。 不同厂商的大模型对中文文本的切分方法不同,通常情况下,1 个 Token 约等于 1 2 个汉字。 大模型的收费计算方法以及对输入输出长度的限制,都是以 Token 为单位计量的。 例如,在英文中,单词“hamburger”会被分解成“ham”“bur”和“ger”这样的 Token,而常见的短单词如“pear”则是一个 Token。对于英文文本,1 个 Token 大约相当于 4 个字符或 0.75 个单词。但要注意,在给定的 API 请求中,文本提示词和生成的补合起来不能超过模型的最大上下文长度(对于大多数模型,约为 2048 个 Token 或 1500 个单词)。
2025-01-08
Aigc国漫风格制作流程
以下是 AIGC 国漫风格的制作流程: 1. 主题与文案:确定国漫风格作品的主题,可借助 ChatGPT 等文本类 AI 工具协助完成文案。 2. 风格与布局:选择想要的国漫风格意向,背景可根据文案和风格灵活调整画面布局。 3. 生成与筛选:使用相关的 AIGC 绘图平台,输入关键词,生成并挑选出满意的底图。 4. 配文与排版:将上述素材进行合理排版,得到成品。排版同样可以参考 AIGC 相关的海报成果。 此外,还有一些相关的案例供您参考: 在制作海报方面,使用无界 AI 等软件,按照需求场景、大致流程进行操作。 在文旅视频制作中,如山西文旅宣传片,运用 Defense 及 SD 制作艺术字,通过 PS 处理和反复跑图提高画面完整度。 在游戏 PV 制作中,如《追光者》,结合多种 AI 工具,包括 chaGPT、MJ 绘图、SD 重绘等,进行前期脑暴拉片和风格参考情绪版的准备。
2025-01-08
Aigc国漫风格视频
以下是为您整理的相关内容: 关于 AIGC 国漫风格视频: 设计方面包括女执事、智能体、守护者等元素,有 3 种形态,平常翅膀呈隐藏状态,是人类的保护者和服务者。比如智小美,身材比 1:2,风格与智小鹿一脉相承但更智能,美貌与智慧并存,是智小鹿的妹妹。其设计灵感综合了导演、猫叔墨镜、影视元素等,猫叔在社区更新的万字编剧日记对创作 AIGC 有很大帮助。 关于 AIGC 小红书博主: 列举了多位小红书博主,如徐若木、笑笑(约稿)、吉吉如意令、发射井、惟玮、Sllanvivi、巧琢、上官文卿|ZHEN、AI 离谱社、布谷咕咕咕、果果(禾夭夭)、壹见空间川上扶蘇、Goooodlan🍅古德兰等,涵盖了商业插画师、约稿、头像、国风人物、创意设计、视频、动画设计教程、壁纸、景观设计等不同领域。 关于 AIGC Weekly88: 封面提示词为“abstract network out of glass made of holographic liquid crystal,dark background,blue light reflections,symmetrical composition,centered in the frame,highly detailed,hyperrealistic,cinematic lighting,in the style of Octane Rendear 16:9style rawpersonalizev 6.1”,可查看更多风格和提示词的链接为:https://catjourney.life/ 。这周训练了一个 FLUX Lora 模型,为褪色胶片风格,推荐权重 0.6 0.8,适合生成毛茸茸的动物玩偶,人像会偏向复古褪色的胶片风格,在玻璃制品产品展示摄影方面表现很好,整体景深模糊自然柔和,下载链接为:https://www.liblib.art/modelinfo/4510bb8cd80142168dc42103d7c20f82?from=personal_page
2025-01-08
AiGc动画案例分享
以下为一些 AIGC 动画的案例分享: 伊利 QQ 星 AI 动画项目: 项目前期:进行沟通报价、确定方向和内容并写脚本,脚本创作可借助 AI 但要有自己想法。 项目中期:根据脚本出图,采用 MJ、SD、GPT 出图,涉及产品融入、合成等操作,同时进行剪辑、配乐等工作,还提及配音等相关经验。 项目后期:做项目总结,复盘优缺点。 AIGC 商业广告: 制作前期:先定框架,包含定向、写脚本,确定内容呈现形式、调性、风格和人物设定等。 制作中期:根据脚本出图,同步剪辑,收集音效配音,如遇到跑图中带文字乱掉等问题可进行 AI 处理和产品跟踪。 制作后期:对现有视频进行优化,做字体包装和跟踪字体。 ANIME ROCK, PAPER, SCISSORS 动画: 这是一个通过绿幕动作捕捉,在虚幻中制作虚拟场景,然后通过 Stable Diffusion 生成的动漫。120 个视觉特效镜头由一个 3 人小组在一秒钟内完成。 制作过程中使用的主要工具为:Stable Diffusion 模型+DreamBooth 微调、虚幻引擎+资产存储 3D 模型、Img2Img+DeFlickering 效果、大量的老式的 VFX 合成。 视频的制作步骤包括:训练模型复制特定风格、训练一个 LoRA 模型来认识一个角色、通过 img2img 处理绿屏动捕的视频、使用 Deflicker 插件减少闪烁、在虚幻 5 中添加 3D 元素、在 Resolve 中进行最终 VFX 合成/编辑。为了最后的打磨,添加了大量老式视觉特效,如强调运动的速度线、模拟电影摄像机/单元格动画的发光体、虚幻中的动态元素(如蜡烛)、设置室内气氛的体积光射线、编辑和设计声音。 在配音方面,商业片子做好配音很重要,普通话不标准时花钱找人配音比 AI 配音效果好。在字体方面,字体包装在视频中很重要,很多人在这方面常犯错,如温馨画面加黑色描边字体。在 AI 动态的后期包装与剪辑技巧方面,后期包装思路可通过添加光效渲染氛围,对素材进行跟踪以替换产品,还可进行素材叠加。剪辑在 AI 动画中占比 45%,好的剪辑师能将素材处理得更好,不成熟的剪辑师可能会把好素材搞砸。镜头主接需注意景别丰富,如全景、中景、特写、近景等。在空间关系中存在轴线问题,如人物位置突然变化会导致视觉跳跃,还有关系轴线和运动轴线,越轴会让观众观感不适。AI 动画的调色流程方面,对色彩有特别要求可在达芬奇里完成剪辑调色流程,简单调色可在剪映中通过肉眼大致判断校正颜色,剪映中有色轮和曲线可用于调色。
2025-01-08
生成海报的AI工具有哪些
以下是一些生成海报的 AI 工具: 1. Canva(可画):https://www.canva.cn/ 这是一个非常受欢迎的在线设计工具,提供大量模板和设计元素,用户通过简单拖放操作创建海报,其 AI 功能可帮助选择合适颜色搭配和字体样式。 2. 稿定设计:https://www.gaoding.com/ 稿定智能设计工具采用先进人工智能技术,自动分析和生成设计方案,稍作调整即可完成完美设计。 3. VistaCreate:https://create.vista.com/ 这是一个简单易用的设计平台,提供大量设计模板和元素,用户可使用 AI 工具创建个性化海报,其智能建议功能可帮助快速找到合适设计元素。 4. Microsoft Designer:https://designer.microsoft.com/ 通过简单拖放界面,用户可快速创建演示文稿、社交媒体帖子等视觉内容,还集成丰富模板库和自动图像编辑功能,如智能布局和文字优化,简化设计流程。 如果您想使用 AI 快速做一张满意的海报,可以参考以下方法: 1. 需求场景:当您想在社交平台发布内容时,为了获得更多点赞,避免使用网上模糊、常见的图片,或者为了给特定的人定制节日祝福等,都可以考虑自己制作海报。 2. 大致流程: 主题与文案:确定海报主题后,可借助 ChatGPT 等文本类 AI 工具协助完成文案。 风格与布局:选择想要完成的风格意向,背景不一定是空白的,可根据文案和风格灵活调整画面布局。 生成与筛选:使用无界 AI,输入关键词,生成并挑选一张满意的海报底图。 配文与排版:将上述素材进行合理排版,得到成品。排版同样可以参考 AIGC 海报成果。 使用无界 AI 制作海报时的相关指引: 网址:https://www.wujieai.cc/ 其做图逻辑类似于 SD,优势在于国内网络即可稳定使用,有免费出图点数,支持中文关键词输入,无需额外下载风格模型,可直接取用。 模型:皮克斯卡通。本案例应用场景为朋友圈 po 图,因此画幅比例选择 1:1。 关键词类别:场景(如向日葵花田、面包店等)、氛围(如温馨、温暖等)、人物(如父亲和女儿、父亲和儿子)、造型(如发型、发色、服饰、配饰)、情绪(如笑得很开心、大笑、对视等)、道具(如童话书等)、构图(如半身、中景等)、画面(如色彩明艳)等。
2025-01-08
AI图片视频提示词怎么编辑
以下是关于 AI 图片视频提示词编辑的相关知识: 1. 提示词的定义:用于描绘您想生成的画面,星流通用大模型与基础模型 F.1、基础模型 XL 使用自然语言(如一个长头发的金发女孩),基础模型 1.5 使用单个词组(如女孩、金发、长头发),支持中英文输入。 2. 写好提示词的方法: 预设词组:小白用户可以点击提示词上方官方预设词组进行生图。 内容准确:包含人物主体、风格、场景特点、环境光照、画面构图、画质等,例如:一个女孩抱着小猫,背景是一面红墙,插画风格、孤独感,高质量。 调整负面提示词:点击提示框下方的齿轮按钮,弹出负面提示词框,负面提示词可以帮助 AI 理解不想生成的内容,如不好的质量、低像素、模糊、水印。 利用“加权重”功能:可在功能框增加提示词,并进行加权重调节,权重数值越大,越优先。还可对已有的提示词权重进行编辑。 辅助功能:包括翻译功能(一键将提示词翻译成英文)、删除所有提示词(清空提示词框)、会员加速(加速图像生图速度,提升效率)。 3. 提示词语法: 权重设置:,请注意,权重值最好不要超过 1.5。 Prompt Editing:通过 Prompt Editing 使得 AI 在不同的步数生成不一样的内容,比如在某阶段后,绘制的主体由男人变成女人。语法为:例如 alandscape 在一开始,读入的提示词为:the model will be drawing a fantasy landscape.在第 16 步之后,提示词将被替换为:a cyberpunk landscape,它将继续在之前的图像上计算。还可以轮转提示词,比如在第一步时,提示词为“cow in a field”;在第二步时,提示词为“horse in a field.”;在第三步时,提示词为“cow in a field”,以此类推。 4. 示例: “城市狂想”教程中提供了一些示例,如远景,三分法构图,俯视视角,数字绘画,云雾缭绕的山谷,群山连绵起伏,山谷间云雾缭绕,阳光透过云层洒在山间,形成光与影的对比,模拟观众的视线逐渐接近这片土地,新印象派风格特征,使用数字画笔和渐变工具ar 16:9v 6.1 等。同时,还为大家生成了 1 组共 12 段提示词,在使用时需注意,如果是其他平台的工具请复制后删除包含“”以后的部分。
2025-01-08
理解LoRA训练以及参数
LoRA 训练的参数主要包括以下方面: 1. 学习步数:指 AI 对每张图片的学习次数。二次元图片的 repeat 一般在 10 15,写实人物图片的 repeat 一般在 30 50,真实世界的景观场景可能要达到 100。repeat 值越高,AI 越能读懂图片,但图片精细度越高,学习步数也要越高。 2. 循环次数:AI 将所有图片按照学习步数学习一轮就是一次循环,循环次数就是将这个过程重复的遍数。一般数值在 10 20 之间,次数并非越多越好,过多会导致过拟合。总的训练步数 = 图片张数×学习步数×循环次数。 3. 效率设置:主要控制电脑的训练速度,可保持默认值,也可根据电脑显存微调,但要避免显存过载。 4. DIM:不同场景有不同的推荐值。如二次元一般为 32,人物常见为 32 128,实物、风景则≥128。DIM 为 64 时,输出文件一般为 70MB +;DIM 为 128 时,输出文件一般为 140MB + 。 5. 样图设置:主要控制训练过程中的样图显示,可实时观测训练效果。“sample every n steps”为 50 代表每 50 步生成一张样图,prompts 提示词可预设效果或自定义。 6. 并行数量:代表 AI 同一时间学习的图片数量。数值越大,训练速度越快,内存占用越大,收敛得慢;数值越小,训练速度越慢,内存占用越小,收敛得快。以 512×512 的图片为例,显存小于等于 6g,batch size 设为 1;显存为 12g 以上,batch size 可设为 4 或 6。增加并行数量时,通常也会增加循环次数。 7. 质量设置: 学习率:指 AI 学习图片的效率,过高会过拟合,过低会不拟合。1e 4 即 1 除以 10 的 4 次方,等于 0.0001;1e 5 即 1 除以 10 的 5 次方,等于 0.00001。一般保持默认,如需调整可点击数值旁的加减号。 网格维度:network dim 决定出图精细度,数值越高有助于 AI 学会更多细节,但数值越大学习越慢,训练时间越长,易过拟合。
2025-01-06
理解LoRA训练以及参数
LoRA 训练的参数主要包括以下方面: 1. 学习步数:指 AI 对每张图片的学习次数。二次元图片的 repeat 一般在 10 15,写实人物图片的 repeat 一般在 30 50,真实世界的景观场景可能要达到 100。repeat 值越高,AI 越能读懂图片,但图片精细度越高,学习步数也要越高。 2. 循环次数:AI 将所有图片按照学习步数学习一轮就是一次循环,循环次数就是将这个过程重复的遍数。一般数值在 10 20 之间,次数并非越多越好,过多会导致过拟合。总的训练步数 = 图片张数×学习步数×循环次数。 3. 效率设置:主要控制电脑的训练速度,可保持默认值,也可根据电脑显存微调,但要避免显存过载。 4. DIM:不同场景有不同的推荐值。如二次元一般为 32,人物常见为 32 128,实物、风景则≥128。DIM 为 64 时,输出文件一般为 70MB +;DIM 为 128 时,输出文件一般为 140MB + 。 5. 样图设置:主要控制训练过程中的样图显示,“sample every n steps”为 50 代表每 50 步生成一张样图。Prompts 提示词可预设效果或自定义。 6. 并行数量:代表 AI 同一时间学习的图片数量。数值越大,训练速度越快,内存占用越大,但收敛得慢;数值越小,训练速度越慢,内存占用越小,但收敛得快。显存小于等于 6g 时,batch size 设为 1;显存为 12g 以上时,batch size 可设为 4 或 6。 7. 质量设置: 学习率:指 AI 学习图片的效率,过高会过拟合,过低会不拟合。1e 4 实际为 1 除以 10 的 4 次方,即 0.0001;1e 5 为 1 除以 10 的 5 次方,即 0.00001。一般保持默认,如需调整可点击数值旁的加减号。 网格维度:network dim 决定出图精细度,数值越高有助于 AI 学会更多细节,但数值越大学习越慢,训练时间越长,易过拟合。
2025-01-06
高效微调技术-LoRA 全量微调与少量参数微调
以下是关于高效微调技术 LoRA 全量微调与少量参数微调的相关信息: LoRA 微调: 微调脚本: 脚本见: 具体实现代码见: 单机多卡的微调可以通过修改脚本中的include localhost:0来实现。 加载微调模型: 基于 LoRA 微调的模型参数见:基于 Llama2 的中文微调模型,LoRA 参数需要和基础模型参数结合使用。 通过加载预训练模型参数和微调模型参数,示例代码中,base_model_name_or_path 为预训练模型参数保存路径,finetune_model_path 为微调模型参数保存路径。 全量参数微调: 微调脚本: 脚本见: 具体实现代码见: 加载微调模型: 对于全量参数微调的模型,调用方式同模型调用代码示例,只需要修改其中的模型名称或者保存路径即可。 此外,关于微调还有以下补充信息: 微调模型意味着改变模型的权重,现在微调变得越来越容易,因为开发了许多技术并建立了代码库。 像 LoRA 这样的参数高效微调技术只训练模型的小部分稀疏片段,模型大部分保持基础模型状态,效果好且成本低。 微调技术上更为复杂,需要更多技术专业知识,包括人工数据合同承包商的数据集和复杂的合成数据流程,会减慢迭代周期。 SFT(有监督的微调)相对简单明了,RLHF(基于人类反馈的强化学习)则是非常研究性的领域,难度大,不适合初学者。 目前除了传统的全量训练和 freeze 冻结某些层方式,还发展出了很多种高效的微调方法,如 LoRA、Prefix Tuning、PTuning、Prompt Tuning、AdaLoRA、3、MultiTask Prompt Tuning 等。本篇主要采用 LoRA 方式,主要思路是训练一个参数量较小的分支,然后再与底模合并,从而在模型中注入新的知识。
2025-01-06
flux lora调参数,我训练出来的人物模型和数据集的人物图片不像,出现这种情况的原因都有哪些,应该调整哪些参数,我需要我的flux模型训练出来的模型是一致性还原性,和泛化性比较不错的,按照这个方向给我指导
以下是关于 flux lora 调参数以获得一致性、还原性和泛化性较好的人物模型的指导: 打标环节: 选择基础大模型,如“麦橘写实”,并为 lora 命名。 将照片导入,选择合适分辨率,可勾选“脸部加强训练”,然后进行预处理。手动裁剪图片比自动裁剪更可靠。 预处理后会出现脸部和整体文件夹,且每张照片自动打好 tag 标签。 可为整体添加统一标签,也可单独修改每张图片的标签。标签有助于 AI 理解图片,描述越详细,人物变化可能越多,泛化性可能越好。仔细检查每张图片的标签,其质量会影响人物 lora 的泛化性。 参数调整环节: 大部分参数是固定的,主要的几个按照人物参数配置一遍。后期根据生成结果再调整。 炼丹环节: 例如 18 张脸部图片,20 张整体图片,各训练 50 步,循环训练 10 次,并行步数为 1。训练总步数和时长会有所不同,loss 值可作为参考,但最终效果仍需通过测试判断。 此外,在 Lora 串联方面,多个 Lora 串联时左右顺序不影响结果,可复制并点对点连接。CLIP 层 1 和 2 的效果不同,加 Lora 时某些 Lora 可能更适合 2。Lora 可用于生成底模无法画出的内容。在运行中点击取消可打断正在渲染跑的图。图像放大可通过 up scale image using model 节点,选择放大模型,用 resize 节点调整尺寸,再用编码器和采样器处理。放大模型直接放大的图像效果不佳,需再次采样增加细节。添加飞桨缺失节点可通过拖入工作流查看标红节点,从管理器安装或从 GitHub 获取节点包放入文件管理系统。采样器和调度器参数设置建议参考模型作者推荐,并结合自己调试。Web UI 中 Lora 库有刷新按钮,将 Lora 丢到文件夹后多点几次刷新即可。
2025-01-04
flux lora训练指南
以下是关于 Flux 的 Lora 模型训练的指南: 准备工作: 需要下载以下模型: t5xxl_fp16.safetensors clip_l.safetensors ae.safetensors flux1dev.safetensors 注意事项: 1. 不使用的话,模型放置位置不限,但要清楚其“路径”,后续会引用到。 2. 训练建议使用 flux1dev.safetensors 版本的模型和 t5xxl_fp16.safetensors 版本的编码器。 下载脚本: 夸克网盘链接:https://pan.quark.cn/s/ddf85bb2ac59 百度网盘链接:https://pan.baidu.com/s/1pBHPYpQxgTCcbsKYgBi_MQ?pwd=pfsq 提取码:pfsq 修改脚本路径和参数: 如果显卡是 16G,右键 16G 的 train_flux_16GLora 文件;如果显卡是 24G 或更高,右键 24G 的 train_flux_24GLora 文件。(DB 全参微调对硬件要求高,内存 32G 可能不行。即使是 train_flux_24GLora 方式,也建议内存高于 32G 以避免意外。) 右键用代码编辑器打开文件,理论上只需修改红色部分:底模路径、VAE 路径、数据集路径,还有下面的 clip 路径和 T5xxl 路径。如果 4 件套在一个文件夹,路径填写更简单;若不在,需准确复制各模型的路径,注意检查格式,避免多双引号、漏双引号或路径错误。 数据集准备: 1. 进入厚德云 模型训练 数据集:https://portal.houdeyun.cn/sd/dataset 2. 创建数据集:在数据集一栏中,点击右上角创建数据集,输入数据集名称。zip 文件可以包含图片+标签 txt,也可以只有图片(之后可在 c 站使用自动打标功能),也可一张一张单独上传照片,但建议提前将图片和标签打包成 zip 上传。Zip 文件里图片名称与标签文件应当匹配,例如:图片名"1.png",对应的达标文件就叫"1.txt"。上传 zip 后等待一段时间,确认创建数据集,返回到上一个页面,等待上传成功后可点击详情检查,能预览到数据集的图片以及对应的标签。 Lora 训练: 点击 Flux,基础模型会默认是 FLUX 1.0D 版本。选择数据集,点击右侧箭头选择上传过的数据集。触发词可有可无,取决于数据集是否有触发词。模型效果预览提示词可随机抽取数据集中的一个标签填入。训练参数可调节重复次数与训练轮数,若不知如何设置,可默认 20 重复次数和 10 轮训练轮数。可按需求选择是否加速,点击开始训练,会显示所需消耗的算力,然后等待训练,会显示预览时间和进度条。训练完成会显示每一轮的预览图,鼠标悬浮到想要的轮次模型,中间会有生图,点击会自动跳转到使用此 lora 生图的界面,点击下方的下载按钮则会自动下载到本地。
2025-01-04
为什么有的大模型不能和lora一起用
大模型不能和 Lora 一起用可能有以下原因: 1. 不配套:一般情况下,只有配套的大模型和 Lora 一起使用才能达到 Lora 的最佳效果。不同的大模型和 Lora 可能在特征、参数等方面不匹配。 2. 触发条件:除了加载 Lora 外,还需要加入一些特定的触发词才能保证其正常使用,如果没有满足触发条件,可能无法协同工作。 同时,模型的类型和安装位置也很重要: 1. 大模型(Ckpt)应放入 models\\Stablediffusion 目录。 2. Lora/LoHA/LoCon 模型应放入 extensions\\sdwebuiadditionalnetworks\\models\\lora 或 models/Lora 目录。 使用 Lora 时要注意作者使用的大模型,也不排除一些 Lora 和其他大模型会产生奇妙的效果。此外,文件后缀名相似,难以通过后缀名区分文件类型,可通过特定网站检测。
2025-01-02
微调和增量训练的区别
微调和增量训练是在人工智能领域中用于改进模型性能的两种不同方法,它们有以下区别: 微调: 参数调整范围:分为全量微调(FFT)和参数高效微调(PEFT)。全量微调对全量的模型参数进行全量训练,PEFT 则只对部分模型参数进行训练。 数据使用:在较小的、特定领域的数据集上继续大语言模型(LLM)的训练过程,通过调整模型本身的参数来提高在特定任务中的性能。 效果和优势: 能大幅提高模型在特定任务中的性能,因为可以输入更多示例。 提高模型效率,可通过专门化模型使用更小的模型,且由于只对输入输出对进行训练,能舍弃示例或指令,进一步改善延迟和降低成本。 但经过微调的模型可能会失去一些通用性。 增量训练:文中未明确提及增量训练的相关内容。 总的来说,微调是一种针对特定任务和数据集对模型参数进行调整的有效方法,而增量训练的具体特点和与微调的详细对比在提供的内容中未充分阐述。
2025-01-07
AI 增量训练和模型微调的区别
AI 增量训练和模型微调存在以下区别: 目的:增量训练通常是为了持续更新模型以适应新的数据和任务,而模型微调主要是为了使模型在特定的小领域数据集上针对特定任务达到更好的性能。 范围:增量训练可能涉及对模型的较大范围的更新,而微调往往集中在较小范围的参数调整。 方式:增量训练可能会对全量的模型参数进行训练,而微调存在全量微调(FFT)和参数高效微调(PEFT)两种技术路线,PEFT 只对部分模型参数进行训练,且目前在业界较为流行。 成本和效果:从成本和效果综合考虑,PEFT 是较好的微调方案。微调可以大幅提高模型在特定任务中的性能,但可能会使模型失去一些通用性。 数据使用:增量训练可能需要更多新的数据,而微调是在较小的、特定领域的数据集上进行。 如需了解更多关于微调的内容,可参考 OpenAI 官方微调教程:https://github.com/openai/openaicookbook/blob/main/examples/How_to_finetune_chat_models.ipynb
2024-09-13
用于训练销售助手类型业务的私有模型
以下是关于训练销售助手类型业务私有模型的相关信息: 1. 提示词方面:设计了一套模拟江南皮革厂销售的拟人化提示词模板,并将其应用于国内的豆包角色扮演模型,生成吸引人的广告词。若与语音技术结合用于宣传,能创造出有趣且有效的销售助手,吸引顾客注意。拟人化提示词母体可通过关注作者微信领取。 2. 增加私有知识方面:通过前面步骤拥有可与客户对话的 AI 助手后,若想让其像公司员工一样精准专业回答商品相关问题,需为大模型应用配置知识库。例如在售卖智能手机的公司,网站上有很多相关信息,不同机型的详细配置清单可参考相关文档。
2025-01-07
训练以及部署微调模型
以下是关于训练以及部署微调模型的相关信息: 创建微调模型: 假设您已准备好训练数据。使用 OpenAI CLI 开始微调工作,需指定从哪个 BASE_MODEL(如 ada、babbage、curie 或 davinci)开始,可使用后缀参数自定义微调模型的名称。运行命令后会进行以下操作: 1. 使用文件 API 上传文件(或使用已上传的文件)。 2. 创建微调作业。 3. 流式传输事件直到作业完成,这通常需要几分钟,但如果队列中有很多作业或数据集很大,可能需要数小时。 每个微调工作都从默认为 curie 的基本模型开始,模型的选择会影响性能和成本。您的模型可以是 ada、babbage、curie 或 davinci,可访问定价页面了解微调费率的详细信息。 开始微调作业后,可能需要一些时间才能完成。工作可能排在其他工作之后,训练模型可能需要几分钟或几小时,具体取决于模型和数据集的大小。若事件流中断,可通过运行特定命令恢复。工作完成后,会显示微调模型的名称。此外,还可以列出现有作业、检索作业状态或取消作业。 GPT 助手的训练: 在有监督的微调阶段,收集少量但高质量的数据集,要求人工承包商收集提示和理想响应的数据,通常是几万个或类似数量。然后对这些数据进行语言建模,算法不变,只是训练集从互联网文档变为问答提示响应类型的数据。训练后得到有监督的微调模型(SFT 模型),可实际部署。 大型语言模型的微调: 一旦有了基础模型,进入计算成本相对较低的微调阶段。编写标签说明,明确助手的表现期望,雇佣人员创建文档,如收集 100,000 个高质量的理想问答对来微调基础模型,此过程可能只需一天。然后进行大量评估,部署模型并监控表现,收集不当行为实例并纠正,将正确答案加入训练数据,重复此过程。由于微调成本较低,可每周或每天进行迭代。 例如 Llama2 系列,Meta 发布时包括基础模型和助手模型。基础模型不能直接使用,助手模型可直接用于回答问题。若想自己微调,Meta 完成的昂贵的第一阶段结果可提供很大自由。
2025-01-06
微调训练框架的选择
以下是关于微调训练框架选择的相关内容: 在 Stable Diffusion 中: 首先,config 文件夹中有两个配置文件 config_file.toml 和 sample_prompt.toml,分别存储着训练超参数与训练中的验证 prompt。 config_file.toml 文件主要包含了 model_arguments、optimizer_arguments、dataset_arguments、training_arguments、sample_prompt_arguments 以及 saving_arguments 六个维度的参数信息。 v2 和 v_parameterization:两者同时设置为 true 时,开启 Stable Diffusion V2 版本的训练。 pretrained_model_name_or_path:读取本地 Stable Diffusion 预训练模型用于微调训练。 optimizer_type:有七种优化器可以选择。不进行选择时默认启动 AdamW 优化器;显存不太充足时,可选择 AdamW8bit 优化器,但会有轻微性能损失;Lion 优化器是较新的版本,性能优异,但学习率需设置较小,比如为 AdamW 优化器下的 1/3。 learning_rate:单卡推荐设置 2e6,多卡推荐设置 1e7。 除了上述的训练环境参数传入,还需将配置好的 config_file.toml 和 sample_prompt.txt 参数传入训练脚本中。 当设置 1024 分辨率+FP16 精度+xformers 加速时,SD 模型进行 Batch Size=1 的微调训练需要约 17.1G 的显存,进行 Batch Size=4 的微调训练需要约 26.7G 的显存,所以最好配置一个 24G 以上的显卡。 微调训练完成后,模型权重会保存在之前设置的 output_dir 路径下。可以使用 Stable Diffusion WebUI 作为框架加载模型进行 AI 绘画,需将训练好的模型放入/models/Stablediffusion 文件夹下。 在 OpenAI 中: 使用 OpenAI CLI 开始微调工作,需指定从哪个 BASE_MODEL 开始(ada、babbage、curie 或 davinci),还可使用后缀参数自定义微调模型的名称。 运行命令后会上传文件、创建微调作业并流式传输事件直到作业完成。 每个微调工作都从一个默认为 curie 的基本模型开始,模型的选择会影响性能和成本。 开始微调作业后,可能需要几分钟或几小时才能完成,工作完成后会显示微调模型的名称。此外,还可以列出现有作业、检索作业状态或取消作业。
2025-01-06
训练以及部署微调模型
以下是关于训练以及部署微调模型的相关知识: 创建微调模型: 假设您已准备好训练数据,使用 OpenAI CLI 开始微调工作。需指定从哪个 BASE_MODEL 开始,如 ada、babbage、curie 或 davinci,还可使用后缀参数自定义微调模型的名称。运行命令后会进行以下操作: 1. 使用文件 API 上传文件(或使用已上传的文件)。 2. 创建微调作业。 3. 流式传输事件直到作业完成,这通常需要几分钟,但如果队列中有很多作业或数据集很大,则可能需要数小时。每个微调工作都从默认为 curie 的基本模型开始,模型的选择会影响性能和成本,您可访问定价页面了解微调费率的详细信息。开始微调作业后,可能需要一些时间才能完成,若事件流中断,可通过运行特定命令恢复。工作完成后,会显示微调模型的名称。此外,还可以列出现有作业、检索作业状态或取消作业。 GPT 助手的训练: 在有监督的微调阶段,收集少量但高质量的数据集,要求人工承包商收集提示和理想响应的数据,通常是几万个或类似数量。然后对这些数据进行语言建模,算法不变,只是训练集从互联网文档变为问答提示响应类型的数据。训练后得到有监督的微调模型(SFT 模型),可实际部署,它们在某种程度上是有用的。 大型语言模型的微调: 一旦有了基础模型,就进入计算成本相对较低的微调阶段。在这个阶段,编写标签说明明确助手的表现期望,雇佣人员创建文档,例如收集 100,000 个高质量的理想问答对来微调基础模型,这个过程可能只需一天。然后进行大量评估,部署模型并监控表现,收集不当行为实例并纠正,将正确答案加入训练数据,由于微调成本较低,可每周或每天进行迭代。例如 Llama2 系列,Meta 发布时包括基础模型和助手模型,基础模型不能直接使用,助手模型可直接用于回答问题。
2025-01-06