沃尔夫勒姆在探讨人工智能能否解决科学问题时提到了以下观点:
In what we’ve discussed so far,we’ve mostly been concerned with seeing whether AI can help us“jump ahead”and shortcut some computational process or another.But there are also lots of situations where what’s of interest is instead to shortcut what one can call a multicomputational process,in which there are many possible outcomes at each step,and the goal is for example to find a path to some final outcome.在我们到目前为止所讨论的内容中,我们主要关心的是人工智能是否可以帮助我们“跳跃式前进”并简化某些计算过程或其他过程。但也有很多情况下,我们感兴趣的是缩短所谓的多重计算过程,其中每一步都有许多可能的结果,例如,目标是找到通向某些最终结果的路径。As a simple example of a multicomputational process,let’s consider a multiway system operating on strings,where at each step we apply the rules{A→BBB,BB→A}in all possible ways:作为多计算过程的一个简单示例,让我们考虑一个对字符串进行操作的多路系统,其中每一步我们都应用规则{A→BBB,BB→A}方法:Given this setup we can ask a question like:what’s the shortest path from A to BABA?And in the case shown here it’s easy to compute the answer,say by explicitly running a pathfinding algorithm on the graph:有了这个设置,我们可以问这样的问题:从A到BABA的最短路径是什么?在此处所示的情况下,很容易计算答案,例如通过在图上显式运行寻路算法:{A,BBB,AB,BBBB,ABB,AA,ABBB,ABA,BBBBA,BABA}
在上面这个非常简单的例子中,我们很容易能够显式地生成整个多路图。但在大多数实际示例中,该图会太大。因此,挑战通常是在不追踪整个可能性图的情况下弄清楚要采取什么行动。一种常见的方法是尝试找到一种方法来为不同的可能状态或结果分配分数,并仅追求分数最高的路径。在自动定理证明中,“从初始命题向下”和“从最终定理向上”工作也很常见,试图找出路径在中间的交汇处。还有另一个重要的想法:如果建立了“引理”,即存在从X到Y的路径,则可以将X→Y添加为规则集合中的新规则。So how might AI help?As a first approach,we could consider taking something like our string multiway system above,and training what amounts to a language-model AI to generate sequences of tokens that represent paths(or what in a mathematical setting would be proofs).The idea is to feed the AI a collection of valid sequences,and then to present it with the beginning and end of a new sequence,and ask it to fill in the middle.那么人工智能可以提供什么帮助呢?作为第一种方法,我们可以考虑采用类似于上面的字符串多路系统的东西,并训练相当于语言模型人工智能的东西来生成代表路径的标记序列(或者在数学设置中将是证明)。这个想法是向人工智能提供一组有效的序列,然后向它呈现一个新序列的开头和结尾,并要求它填充中间部分。We’ll use a fairly basic transformer network:我们将使用一个相当基本的变压器网络:Then we train it by giving lots of sequences of tokens corresponding to valid paths(with E being the“end token”)然后我们通过提供大量与有效路径相对应的标记序列来训练它(E是“结束标记”)A,BABA:BBB,AB,BBBB,ABB,AA,ABBB,ABA,BBBBAE
Can AI Predict What Will Happen?It’s not the only role of science—and in the sections that follow we’ll explore others.But historically what’s often been viewed as a defining feature of successful science is:can it predict what will happen?So now we can ask:does AI give us a dramatically better way to do this?这并不是科学的唯一作用,在接下来的部分中我们将探索其他作用。但从历史上看,通常被视为成功科学的一个决定性特征是:它能预测将会发生什么吗?所以现在我们可以问:人工智能是否为我们提供了一种更好的方法来做到这一点?In the simplest case we basically want to use AI to do inductive inference.We feed in the results of a bunch of measurements,then ask the AI to predict the results of measurements we haven’t yet done.At this level,we’re treating the AI as a black box;it doesn’t matter what’s happening inside;all we care about is whether the AI gives us the right answer.We might think that somehow we can set up the AI up so that it“isn’t making any assumptions”—and is just“following the data”.But it’s inevitable that there’ll be some underlying structure in the AI,that makes it ultimately assume some kind of model for the data.在最简单的情况下,我们基本上想用人工智能来做归纳推理。我们输入一系列测量结果,然后要求人工智能预测我们尚未完成的测量结果。在这个层面上,我们将人工智能视为一个黑匣子;里面发生什么并不重要;我们关心的只是人工智能是否给出了正确的答案。我们可能会认为,我们可以通过某种方式设置人工智能,使其“不做出任何假设”,而只是“遵循数据”。但人工智能中不可避免地会存在一些底层结构,这使得它最终假设某种数据模型。