Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

学完以上课程 熟练上手实操,需要多长时间,请回答需要多长时间而不是回答课程数量

Answer

学习不同的 AI 课程并熟练上手实操所需时间因人而异,但大致估计如下:

  • 《雪梅 May 的 AI 学习日记》中制作微信机器人的共学课程,包含 6 个分享,每个分享 2 - 3 小时,需要有大块完整时间,可能需要数天甚至更长时间才能学完。
  • 入门强化学习,如果没有基础,学习概率论和线性代数相关课程大约需要周末一天时间;吴恩达和李宏毅的课程约 25 小时;《动手学深度学习》前五章约 10 小时;王树森课程的前几节约 5 小时;《动手学强化学习》看到 DQN 部分约十几小时。
  • 微软 AI 初学者入门课程为期 12 周、共 24 课时。

需要注意的是,这只是一个大致的估计,实际所需时间会受到个人学习能力、投入程度等因素的影响。

Content generated by AI large model, please carefully verify (powered by aily)

References

《雪梅 May 的 AI 学习日记》挑战 100 天和 AI 做朋友

May:体验AI微信机器人第一课[Agent搭建共学快闪0619](https://waytoagi.feishu.cn/wiki/XSJlwkJHXik40Uk2L7ocjky9nHb)[【共学最全版本】微信机器人共学教程](https://waytoagi.feishu.cn/wiki/NB3nwtUC0iDLYxkIkSYc0WRznGg)1.从零到一,搭建微信机器人2.Coze接入、构建你的智能微信助手[heading2]DAY31 2024.7.7共学快闪-制作自己的第一个微信机器人2[content]3.微信机器人插件拓展教学4.虚拟女友“李洛云”开发者自述[heading2]DAY32 2024.7.13共学快闪-制作自己的第一个微信机器人3[content]5.皮皮:你的微信虚拟女友-李洛云6.FastGPT:“本地版coze”部署教学7.Hook机制的机器人使用和部署教学共学课程:一共有6个分享,每个分享都有2-3个小时,要花一段时间才能跟下来学习时间:这是waytoAGI搞的第三期agent共学快闪活动,都是每天晚上才开始直播。我只能周末补录屏了。这次共学花了好几天时间才学完。也是需要有大块完整时间。感受:这一次在我电脑里安装了一大堆神奇的东西。微信机器人是个灰色地带,很容易会被封号,要谨慎使用。我也就是跟学搭了一个微信机器人,算是一个练习体验。过了一段时间再回来的时候,我的服务器到期了,微信机器儿也打不开了。

入门指南:强化学习

1.如果和我一样一点基础也没有,并且概率论和线性代数的知识差不多都忘完了,那么可以去看一下相关课程学习一下,如果不关注公式啥的,这一步可以先忽略,大约周末一天时间就可以搞定;2.然后如果对机器学习也一点基础都没有的话,可以先看吴恩达的课程,有个大致的理解,然后去看李宏毅的课程作为补充,如果单纯的想入门学习强化学习,那么只需要看前几节讲完神经网络那里就差不多了,这个视频课程估计要看25小时左右;3.学完之后可以跟着《动手学深度学习https://hrl.boyuai.com/》一起动手学习一下我们上面学到的概念,写写代码,如果只是入门的话看前五章就好了,本篇文章的很多资料也是整理自这本书,大约10小时左右;4.接下来可以看看B站王树森的深度学习的课程,可以先看前几节学习一下强化学习的基础知识点,大约5小时左右;5.到这个阶段估计还是懵的,需要去上手做点项目,那么可以看《动手学强化学习》这本书,已经开源了https://hrl.boyuai.com/,只看到DQN的部分,大约十几小时。

微软AI初学者入门课程

译者:Miranda,课程原网址https://microsoft.github.io/AI-For-Beginners/通过微软为期12周、共24课时的课程,一起来探索人工智能(AI)的世界!在本课程中,你将深入学习符号人工智能(Symbolic AI)、神经网络(Neural Networks)、计算机视觉(Computer Vision)、自然语言处理(Natural Language Processing)等内容。如果想提升学习效果,可以亲身实践课程内容、做随堂小测试或根据课程内容开展实验。这套课程是由专家设计的人工智能综合指南,它非常适合初学者,覆盖了TensorFlow、PyTorch及人工智能伦理原则。今天就开始你的人工智能之旅吧!在本课程中,你将学到:实现人工智能的不同方法,包括使用了知识表示和推理的符号人工智能,它是一种“有效的老式人工智能”([GOFAI](https://en.wikipedia.org/wiki/Symbolic_artificial_intelligence))。神经网络和深度学习,它们是现代人工智能的核心,我们将使用两个最流行的框架([TensorFlow](https://www.tensorflow.org/)和[PyTorch](https://pytorch.org/))中的代码来说明这两个主题背后的重要概念。处理图像和文本的神经架构,我们将介绍最新的模型,但在最前沿的信息上可能会有所欠缺。不太流行的人工智能方法,如遗传算法(Genetic Algorithms)和多智能体系统(Multi-Agent Systems)。本课程不包括以下内容:

Others are asking
国内AI发展,需要多长时间可以与chatGPT不相上下?
目前国内最领先的模型水平大概在准 ChatGPT3.5 的水平,和 GPT4 还有不小差距,甚至还不如临时拼凑的 Mistral 团队的水平。尽管国内大模型的发展水平表面看已经接近 GPT3.5 了,但实际上跟 GPT4 比还有一年半的差距。而且 OpenAI 可能还持有一些未公开的技术优势,中国跟美国在 AI 方面的差距可能还在加大。2023 年,中美在 AGI 技术的差距并没有缩小。至于国内 AI 发展到与 ChatGPT 不相上下所需的时间,难以准确预测,因为这受到多种因素的影响,包括技术创新、人才培养、资金投入、政策支持等。
2025-03-21
我是不懂编码的文科生,我学习扣子Coze的应用,难度大吗?大概需要多长时间?
对于不懂编码的文科生来说,学习扣子 Coze 的应用是具有一定挑战性的,但并非不可逾越。 根据相关资料,扣子 Coze 应用于 11 月底推出,其低代码或零代码的工作流等场景做得较好。在学习过程中,您需要熟悉操作界面、业务逻辑和用户界面,包括布局、搭建工作流、用户界面及调试发布,重点熟悉桌面网页版的用户界面。 课程安排方面,第一天会熟悉扣子应用、认识界面、搭建证件照简单应用,解决表单使用等卡点。 不过,社区中很多不懂代码的设计师和产品经理在搭建时也感到吃力。对于学习所需的时间,难以给出确切的时长,这取决于您的学习能力和投入程度。但如果您能认真参与课程学习,逐步掌握相关知识和技能,相信会在一段时间内取得一定的成果。
2025-02-18
sora现在能生成多长时间视频
Sora 是由 OpenAI 开发的文生视频模型,能够根据文字指令创造出逼真且充满想象力的场景,并生成长达 1 分钟的高质量视频,且具有一镜到底的特点,视频中的人物和背景能保持惊人的一致性和稳定性。与之前的视频生成模型相比,Sora 在生成时长和视频质量上有显著进步。同时,还有其他一些文字生成视频的 AI 产品,如 Pika 擅长动画制作且支持视频编辑,SVD 是基于 Stable Diffusion 的插件,Runway 是老牌的收费 AI 视频生成工具且提供实时涂抹修改视频功能,Kaiber 是视频转视频 AI,能将原视频转换成各种风格的视频。更多相关网站可查看:https://www.waytoagi.com/category/38 。
2025-01-15
零基础学习ai 多长时间达到专家的水平
成为 AI 领域的专家并非一蹴而就,需要经历一个长期的过程。就像在医疗保健领域,成为顶尖人才通常从多年的密集信息输入开始,通过正规学校教育,再进行学徒实践,从该领域最出色的实践者那里学习,这个过程往往需要数年时间。 对于零基础学习 AI 而言,目前没有一个确切的时间能保证达到专家水平。这取决于多种因素,如个人的学习能力、投入的时间和精力、学习方法的有效性等。 而且,AI 技术发展迅速,需要不断学习和更新知识。按照当前的发展速度,5 年时间行业就可能发生巨大变化。如果不能持续跟进,很容易被更强大的 AI 技术所淘汰。 总之,要达到 AI 专家水平需要长期的积累和不断的学习,十几年内行业的变化可能会对学习者提出更高的要求。
2024-10-17
我是一名电商设计师,现在想学习SD AI绘图,有一点基础,但学习课程资源有限,请你帮我制定一份详细的学习计划,并提供一些学习资源。
以下是为您制定的学习 SD AI 绘图的详细计划及相关学习资源: 学习计划: 1. 首先,深入学习 Stable Diffusion 的核心基础原理,包括模型工作流程、核心基础原理、训练全过程以及其他主流生成式模型介绍。 2. 接着,掌握 Stable Diffusion 的核心网络结构,如 SD 模型整体架构、VAE 模型、UNet 模型、CLIP Text Encoder 模型等。 3. 学习从 0 到 1 搭建使用 Stable Diffusion 模型进行 AI 绘画的不同方式,如使用 ComfyUI、SD.Next、Stable Diffusion WebUI、diffusers 搭建推理流程,并查看生成示例。 4. 了解 Stable Diffusion 的经典应用场景,如文本生成图像、图片生成图片、图像 inpainting、使用 controlnet 辅助生成图片、超分辨率重建等。 5. 最后,尝试从 0 到 1 上手使用 Stable Diffusion 训练自己的 AI 绘画模型,包括配置训练环境与训练文件,以及基于 Stable Diffusion 训练 LoRA 模型。 学习资源: 1. 教程:深入浅出完整解析 Stable Diffusion(SD)核心基础知识 知乎。 目录涵盖了 Stable Diffusion 系列的各个方面,包括核心基础知识、网络结构解析、搭建推理流程、应用场景和模型训练等。 2. SD 模型权重百度云网盘: 关注 Rocky 的公众号 WeThinkIn,后台回复:SD 模型,即可获得资源链接,包含多种模型权重。 3. SD 保姆级训练资源百度云网盘: 关注 Rocky 的公众号 WeThinkIn,后台回复:SDTrain,即可获得资源链接,包含数据处理、模型微调训练以及基于 SD 的 LoRA 模型训练代码全套资源。 4. Stable Diffusion 中 VAE,UNet 和 CLIP 三大模型的可视化网络结构图下载: 关注 Rocky 的公众号 WeThinkIn,后台回复:SD 网络结构,即可获得网络结构图资源链接。
2025-03-28
吴恩达最近推出了哪些课程?
吴恩达最近推出的课程包括: 1. 与 OpenAI 合作推出的免费的 Prompt Engineering(提示工程师)课程。 主要内容是教书写 AI 提示词,并利用 GPT 开发一个 AI 聊天机器人。 原版网址:https://www.deeplearning.ai/shortcourses/chatgptpromptengineeringfordevelopers/ B 站版本:【合集·AI Course哔哩哔哩】https://b23.tv/ATc4lX0 、https://b23.tv/lKSnMbB 翻译版本: 推荐直接使用 Jupyter 版本学习,效率更高:https://github.com/datawhalechina/promptengineeringfordevelopers/ 视频下载地址:https://pan.quark.cn/s/77669b9a89d7 OpenAI 开源了教程:https://islinxu.github.io/promptengineeringnote/Introduction/index.html 纯文字版本 2. 2023 年 8 月 24 日上线的最新短课程: 《》,课程内容包括了解何时对 LLM 应用微调、准备数据以进行微调、根据自己的数据训练和评估 LLM。 《》,深入浅出地介绍了基于大语言模型的 AI Agents,从记忆检索到决策推理,再到行动顺序的选择,真实展现了 Agent 的智能化进程。
2025-03-27
目前的AI设计软件,能直接生成课程海报吗
目前的 AI 设计软件能够直接生成课程海报。例如 Claude 这款工具,其 Artifact 功能强大,无需专业设计技能和代码编写,也无需使用 PS 等软件,仅通过输入提示词和对话交流,就能生成课程海报,还能根据需求进行修改,如合并课程、添加日历、调整色彩等。 此外,还有一些其他的 AI 海报生成工具: 1. Canva(可画):https://www.canva.cn/ ,提供大量模板和设计元素,AI 功能可协助选择颜色搭配和字体样式。 2. 稿定设计:https://www.gaoding.com/ ,智能设计工具采用先进人工智能技术,自动分析和生成设计方案。 3. VistaCreate:https://create.vista.com/ ,提供大量设计模板和元素,用户可使用 AI 工具创建个性化海报,智能建议功能可帮助快速找到合适设计元素。 4. Microsoft Designer:https://designer.microsoft.com/ ,通过简单拖放界面创建演示文稿、社交媒体帖子等视觉内容,集成丰富模板库和自动图像编辑功能。 另外,还有一个海报设计的案例分享——东阿阿胶。其步骤包括得到需求、提取元素、绘制线稿、用 controlnet 转绘上色、ps 优化、定稿。具体为:确定需求并提取元素,如风格要潮流插画、有唐代元素和国潮等;绘制线稿,根据需求调整元素,如将驴子换成琵琶等;拆分元素线稿,绘制单个元素使其更精致,方便后期替换;利用拼接好的线稿跑图抽卡,选出合适的进行 ps 优化;最后根据客户需求进行元素替换得到定稿。上色运用的大模型为 GhostMix 鬼混_V2.0,lora 模型为“盒子系列——平面国潮插画_v1.0:182ba9e2f576”,controlnet 模型为“Module:lineart_coarse,Model:contr”。
2025-03-26
我是一名ai小白,我想学习这门课程,请你帮我规划一下
以下是为您规划的 AI 学习路径: 预习周课程: AI 绘画电脑配置要求 高效 AIGC 创意者的数字人工具包 SD 插件安装方法 画静为动的 AIGC 视频制作讲解 基础操作课: AI 绘画通识课 AI 摄影虚拟的真实 AI 电影 穿越的大门 核心范式课程: 词汇的纸牌屋 核心范式应用 控制随机性 SD WebUi 体系课程: SD 基础部署 SD 文生图 图生图 局部重绘 ChatGPT 体系课程: ChatGPT 基础 核心 文风、格式、思维模型 ComfyUI 与 AI 动画课程: 部署和基本概念 基础工作流搭建 动画工作流搭建 应对 SORA 的视听语言课程: 通识 欢迎参加电影的葬礼 影像赏析 基础戏剧影视文学 学习建议: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,了解人工智能的主要分支及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前应用和未来发展趋势。 2. 开始 AI 学习之旅: 在「」中找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: 根据自身兴趣选择特定的 AI 模块(如图像、音乐、视频等)进行深入学习。 掌握提示词的技巧。 4. 实践和尝试: 理论学习后进行实践,尝试使用各种产品做出作品。 在知识库分享实践后的作品和文章。 5. 体验 AI 产品: 与 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人互动,了解其工作原理和交互方式。 开始方式选择: 1. 本地部署: 如果您的电脑是 M 芯片的 Mac 电脑(Intel 芯片出图速度慢,不建议)或者 2060Ti 及以上显卡的 Windows 电脑,可以选择本地部署。强烈建议在配有 N 卡的 Windows 电脑上进行。 2. 在线平台: 对于电脑不符合要求的小伙伴可以直接使用在线工具,在线工具分为在线出图和云电脑两种,前者功能可能会受限、后者需要自己手动部署,大家根据实际情况选择即可。 3. 配台电脑: 非常不建议一上来就配主机,因为大概率会变成游戏机或者吃灰(土豪请随意)。玩几个月后还对 AI 有兴趣的话再考虑配个主机。主机硬盘要大,显卡预算之内买最好,其他的随意。 先验经验: 需要熟练使用文生图、图生图;需要有一定的逻辑思考能力以及推理能力;适合炼丹新人、小白。 课程安排: 课程大约 70 80%是理论和方法论的内容,大部分练习会在课外跟大家沟通、练习。只有少部分必要内容会在课上演示。 您还可以通过参与 video battle 争取免费课程的机会。每期的 video battle 的评委野菩萨老师都非常严格,需要寓意深度审美并存。冠军奖励 4980 课程一份,亚军奖励 3980 课程一份,季军奖励 1980 课程一份,入围奖励 598 野神殿门票一张。 您可以扫码添加菩萨老师助理,了解更多课程信息。让我们一起在“通往 AGI 之路”社区学习成长,探索 AI 的无限可能!
2025-03-23
哪里可以找到免费且可以系统学习机器学习的课程
以下是一些可以免费系统学习机器学习的课程资源和学习路径: 1. 对于大型语言模型(LLM)开发的学习: 掌握深度学习和自然语言处理基础,包括机器学习、深度学习、神经网络等基础理论,以及自然语言处理基础,如词向量、序列模型、注意力机制等。相关课程有吴恩达的深度学习课程、斯坦福 cs224n 等。 理解 Transformer 和 BERT 等模型原理,包括 Transformer 模型架构及自注意力机制原理,BERT 的预训练和微调方法,掌握相关论文,如 Attention is All You Need、BERT 论文等。 学习 LLM 模型训练和微调,包括大规模文本语料预处理,LLM 预训练框架,如 PyTorch、TensorFlow 等,微调 LLM 模型进行特定任务迁移。相关资源有 HuggingFace 课程、论文及开源仓库等。 LLM 模型优化和部署,包括模型压缩、蒸馏、并行等优化技术,模型评估和可解释性,模型服务化、在线推理、多语言支持等。相关资源有 ONNX、TVM、BentoML 等开源工具。 LLM 工程实践和案例学习,结合行业场景,进行个性化的 LLM 训练,分析和优化具体 LLM 工程案例,研究 LLM 新模型、新方法的最新进展。 持续跟踪前沿发展动态,关注顶会最新论文、技术博客等资源。 2. 神经网络架构方面: 神经网络是机器学习文献中的一类模型,在完成吴恩达的 Coursera 机器学习课程后,可以寻找 Geoffrey Hinton 的机器学习神经网络课程。 一般神经网络架构可分为三类:前馈神经网络,这是实际应用中最常见的神经网络类型;循环网络,在他们的连接图中定向了循环,更具有生物真实性。 3. 强化学习的入门学习: 如果基础薄弱,可先学习概率论和线性代数相关课程。 对机器学习无基础的话,先看吴恩达的课程,再以李宏毅的课程作为补充,只看前几节讲完神经网络的部分。 学完后跟着《动手学深度学习 https://hrl.boyuai.com/》动手学习,只看前五章。 接着看 B 站王树森的深度学习课程的前几节学习强化学习基础知识点。 最后可以看《动手学强化学习》,看到 DQN 的部分。
2025-03-22
请你帮我找到AI编程与炼金术 build on trae的课程文档
以下是关于“AI 编程与炼金术 Build on Trae”的课程文档相关内容: 课程活动:包括制作图片字幕生成器、开发网页金句卡片生成器、制作一档专属自己的 AI 博客、制作中文名字生成器、构建一个优质文章推荐网站、制作表情包生成器、开发 Life Coach 应用、构建浏览器智能插件、开发个人网页/小程序,并进行优化部署等。 知识图谱: 章节: 三.使用 DeepSeek R1 给老外起中文名 八.做一档你自己的 AI 播客 九.柴犬表情包生成器实战(Coze bot+API) 十.做一个微信小程序 一.Trae 的介绍/安装/疑难杂症 二.图片字幕生成器 四.DeepSeek R1 驱动的 Life Coach 五.DeepSeek 驱动的网页金句卡片生成 六.做一个你专属的好文推荐网站(DeepSeek R1+飞书多维表格) 七.做一个你专属的好文推荐网站(DeepSeek R1+飞书多维表格)(下) 知识点: Node.JS 安装 Python 安装 相关链接: 其他各章节对应的具体链接 您可以根据上述内容,通过相应的链接获取更详细的课程文档信息。
2025-03-21
coze工作流的相关教程。要求从入门到实操的最新资料
以下是关于 Coze 工作流从入门到实操的相关资料: 一、一泽 Eze 的教程 Step 1:制定任务的关键方法 1. 设计每个子任务的执行方法 阅读理解小作业:基于英文原文,精心策划 3 道符合 CET4 难度的阅读理解题目。每道题均提供 A、B、C、D 四个选项,正确答案所在选项顺序随机,题目和选项均以英文呈现。题目的参考格式如下: 1) A. B. C. D. 参考答案:针对 3 道题目,生成题目答案。预期格式如下: 1) 答案: 2) 答案: 3) 答案: 英文音频:根据原文,利用 TTS 技术朗读全文 全文对照精读:根据原文,按照以下格式,分段完成全文精读结果的输出: 音标: 中文释义: 英文例句: 例句翻译: 二、大圣的教程 二、Coze 使用教程 1. 工作流AI Agent 的内功心法 节点:工作流是由多个节点构成,节点是组成工作流的基本单元。节点的本质就是一个包含输入和输出的函数。 Coze 平台支持的节点类型: LLM(大语言模型):使用输入参数和提示词生成处理结果。 Code(代码):通过 IDE 编写代码处理输入参数,并返回输出值。 Knowledage(知识库):根据输入参数从关联知识库中召回数据,并返回。 Condition(条件判断):ifelse 逻辑节点,用于设计工作流内的分支流程,根据设置条件运行相应的分支。 Variable(获取变量):从 Bot 中获取变量作为参数在工作流中使用。 Database(数据库):在工作流中使用提前配置在 Bot 数据库中的数据。 2. 创建和使用工作流 这一块官方有现成的教程参考: 海外参考文档:https://www.coze.com/docs/zh_cn/use_workflow.html 国内参考文档:https://www.coze.cn/docs/guides/use_workflow 国内版本还提供了一些示例,学习工作流强烈建议大家跟着实操一遍: 搜索新闻:https://www.coze.cn/docs/guides/workflow_search_news 使用 LLM 处理问题:https://www.coze.cn/docs/guides/workflow_use_llm 生成随机数:https://www.coze.cn/docs/guides/workflow_use_code 搜索并获取第一个链接的内容:https://www.coze.cn/docs/guides/workflow_get_content 识别用户意图:https://www.coze.cn/docs/guides/workflow_user_intent 三、蓝衣剑客的教程 三、Coze 简介 1. 工作流 在典型应用场景中,入门级场景可能仅添加一个节点来构建简单工作流。例如,使用获取新闻插件构建一个获取新闻列表的工作流;使用大模型节点接收并处理用户问题等。 更进阶的场景则通过多个节点组合构建逻辑较复杂的工作流。例如,在搜索并获取指定信息详情的场景中,先通过插件能力进行关键词搜索、然后通过代码节点过滤指定信息、最后通过插件能力获取信息详情;或者在通过条件判断识别用户意图的场景中,通过大模型节点处理用户消息,并将消息分类后通过条件节点分别处理不同类型的消息。这些详细配置教程提供了实际操作指南以帮助理解和应用各种功能。
2025-03-12
AI视频实操
以下是关于 AI 视频实操的相关内容: 如果您想制作 AI 换脸、AI 数字人视频,可按以下步骤进行: 1. 准备内容:先准备一段视频中播放的内容文字,比如产品介绍、课程讲解、游戏攻略等,也可利用 AI 生成这段文字。 2. 制作视频:使用剪映 App 进行简单处理。在电脑端打开剪映 App,点击“开始创作”,选择顶部工具栏中的“文本”,点击默认文本右下角的“+”号,添加文字内容轨道,然后将准备好的文字内容替换默认文本内容,为数字人提供语音播放内容及生成相应口型。 如果您想用 AI 把小说做成视频,通常包括以下步骤: 1. 小说内容分析:使用 AI 工具(如 ChatGPT)分析小说内容,提取关键场景、角色和情节。 2. 生成角色与场景描述:根据小说内容,使用工具(如 Stable Diffusion 或 Midjourney)生成角色和场景的视觉描述。 3. 图像生成:使用 AI 图像生成工具根据描述创建角色和场景的图像。 4. 视频脚本制作:将提取的关键点和生成的图像组合成视频脚本。 5. 音频制作:利用 AI 配音工具(如 Adobe Firefly)将小说文本转换为语音,添加背景音乐和音效。 6. 视频编辑与合成:使用视频编辑软件(如 Clipfly 或 VEED.IO)将图像、音频和文字合成为视频。 7. 后期处理:对生成的视频进行剪辑、添加特效和转场,以提高视频质量。 8. 审阅与调整:观看生成的视频,根据需要进行调整,比如重新编辑某些场景或调整音频。 9. 输出与分享:完成所有编辑后,输出最终视频,并在所需平台上分享。 以下是一些可利用的工具及网址: 1. Stable Diffusion(SD):一种 AI 图像生成模型,可以基于文本描述生成图像。网址: 2. Midjourney(MJ):另一个 AI 图像生成工具,适用于创建小说中的场景和角色图像。网址: 3. Adobe Firefly:Adobe 的 AI 创意工具,可以生成图像和设计模板。网址: 4. Pika AI:文本生成视频的 AI 工具,适合动画制作。网址: 5. Clipfly:一站式 AI 视频生成和剪辑平台。网址: 6. VEED.IO:在线视频编辑工具,具有 AI 视频生成器功能。网址: 7. 极虎漫剪:结合 Stable Diffusion 技术的小说推文视频创作提效工具。网址: 8. 故事 AI 绘图:小说转视频的 AI 工具。网址: 请注意,具体的操作步骤和所需工具可能会根据项目的具体需求和个人偏好有所不同。此外,AI 工具的可用性和功能也可能会随时间而变化,建议直接访问上述提供的工具网址获取最新信息和使用指南。
2025-03-12
智能体实操
以下是关于智能体实操的详细步骤: 创建智能体: 1. 使用单 Agent 对话流模式。 2. 编排对话流: 点击创建新的对话流并与智能体关联。 对于获取笔记详情节点和笔记评论节点,配置 cookie,note_link 使用开始节点的 USER_INPUT。 使用代码节点对两个插件获取的结果进行数据处理,注意代码节点输出的配置格式。 工作流的结束节点选择使用代码的返回数据。 测试: 1. 找到一篇小红书笔记。 2. 试运行对话流,在对话窗口输入地址,看到数据即为成功。 3. 回到智能体的编排页面,以同样方式测试,确保对话流执行成功。 发布: 1. 点击发布,选择多维表格,然后点击配置。 2. 打开配置页面,注意以下几点: 输出类型选择文本。 输入类型选择字段选择器。 完善上架信息,填写表格,选择发布范围时可选择仅自己可用以加快审核。 3. 提交上架信息后,返回配置界面显示已完成,即可完成最终提交。 另外,在搭建智能体时,创建智能体后输入人设等信息,并放上创建的工作流。但注意工作流 2 中【所有视频片段拼接】节点使用的插件 api_token 填的是您的 token,其他人调用会消耗您的费用,所以不能直接发布。您可以将 api_token 作为工作流 2 最开始的输入,让用户自己购买后输入 api_token 再使用,然后发布。
2025-03-04
开一个AI数据标注公司的落地和具体实操应当如何
开设一家 AI 数据标注公司需要以下落地和具体实操步骤: 1. 市场调研 了解当前 AI 数据标注市场的需求和趋势。 分析竞争对手的优势和不足。 2. 团队组建 招聘具备数据标注技能和经验的人员,包括标注员、质检员等。 对团队进行培训,确保他们熟悉标注规范和流程。 3. 制定标注规范 明确不同类型数据的标注标准和要求。 建立质量控制流程和标准。 4. 技术和工具准备 选择适合的数据标注工具和软件。 搭建稳定的 IT 基础设施,保障数据安全和存储。 5. 寻找客户和项目 与 AI 企业、科研机构等建立联系,争取合作机会。 展示公司的标注能力和优势。 6. 项目管理 合理安排标注任务,确保按时交付。 及时处理项目中的问题和变更。 7. 质量监控 定期对标注结果进行抽检和评估。 依据质量反馈对标注流程和人员进行调整和优化。 8. 合规与法律事务 确保公司的运营符合相关法律法规。 处理好数据隐私和知识产权等问题。 9. 财务管理 制定合理的预算和成本控制策略。 确保公司的资金流稳定。 10. 持续改进 关注行业动态,不断改进标注技术和流程。 提升公司的竞争力和服务质量。
2025-02-17
我想学习AI,但是不知道如何入门,希望你可以帮我梳理出AI的各个应用方向,要求要有具体的实操方法和必坑指南,能应用于生活和工作中,适合新手学习
以下是为您梳理的适合新手学习 AI 的应用方向、实操方法和避坑指南: 一、了解 AI 基本概念 1. 阅读「」部分,熟悉 AI 的术语和基础概念,包括人工智能的定义、主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 2. 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 二、开始 AI 学习之旅 1. 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 2. 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 三、选择感兴趣的模块深入学习 1. AI 领域广泛,比如图像、音乐、视频等,您可以根据自己的兴趣选择特定的模块进行深入学习。 2. 掌握提示词的技巧,它上手容易且很有用。 四、实践和尝试 1. 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。 2. 在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 五、体验 AI 产品 1. 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 六、如果希望继续精进 1. AI 背景知识 基础理论:了解人工智能、机器学习、深度学习的定义及其之间的关系。 历史发展:简要回顾 AI 的发展历程和重要里程碑。 2. 数学基础 统计学基础:熟悉均值、中位数、方差等统计概念。 线性代数:了解向量、矩阵等线性代数基本概念。 概率论:基础的概率论知识,如条件概率、贝叶斯定理。 3. 算法和模型 监督学习:了解常用算法,如线性回归、决策树、支持向量机(SVM)。 无监督学习:熟悉聚类、降维等算法。 强化学习:简介强化学习的基本概念。 4. 评估和调优 性能评估:了解如何评估模型性能,包括交叉验证、精确度、召回率等。 模型调优:学习如何使用网格搜索等技术优化模型参数。 5. 神经网络基础 网络结构:理解神经网络的基本结构,包括前馈网络、卷积神经网络(CNN)、循环神经网络(RNN)。 激活函数:了解常用的激活函数,如 ReLU、Sigmoid、Tanh。 避坑指南: 1. 不要急于求成,AI 学习需要逐步积累。 2. 注重理论与实践结合,避免只学习理论而不进行实际操作。 3. 对于复杂的概念和算法,要多花时间理解,不要一知半解。 4. 在选择学习资源时,要注意其质量和适用性。 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2025-02-06
rga实操
RAG(Retrieval Augmented Generation,检索增强生成)是一种利用大模型能力搭建知识库的技术。其应用过程可抽象为以下 5 个步骤: 1. 文档加载:从多种不同来源加载文档,如 PDF 等非结构化数据、SQL 等结构化数据以及 Python、Java 等代码,LangChain 提供了 100 多种不同的文档加载器。 2. 文本分割:文本分割器把 Documents 切分为指定大小的块,称为“文档块”或“文档片”。 3. 存储:包括将切分好的文档块进行嵌入转换成向量的形式,以及将 Embedding 后的向量数据存储到向量数据库。 4. 检索:通过某种检索算法从向量数据库中找到与输入问题相似的嵌入片。 5. 输出:把问题以及检索出来的嵌入片一起提交给 LLM,LLM 会通过问题和检索出来的提示生成更合理的答案。 在本地部署 RAG 时,需要加载所需的库和模块,如 feedparse 用于解析 RSS 订阅源,ollama 用于在 python 程序中跑大模型。从订阅源获取内容,通过专门的文本拆分器将长文本拆分成较小的块,并附带相关元数据。为文档内容生成向量,可使用文本向量模型 bgem3。基于用户的问题,从向量数据库中检索相关段落,并根据设定的阈值进行过滤,最后让模型参考上下文信息回答用户的问题,从而实现 RAG。还可以创建网页 UI,并进行评测。 在问答测试中,对于同样的问题和上下文,基于不同模型如 Qwen7b、Gemma、Mistral、Mixtral 和 GPT4 分别进行了多次测试,得出了不同模型的表现结论。总结来说,本文展示了如何使用 Langchain 和 Ollama 技术栈在本地部署一个资讯问答机器人,同时结合 RSSHub 来处理和提供资讯。上下文数据质量和大模型的性能决定了 RAG 系统性能的上限,RAG 能提升答案质量和相关性,但不能完全消除大模型幻觉、信息滞后等问题。
2025-01-10
AI多久能学完?
学习 AI 所需的时间因人而异,没有一个固定的期限。不过,对于初学者来说,有一些简明的入门教程可以帮助您在 20 分钟内掌握 Python 和 AI 的相互调用,并完成一些基础任务,例如完成一个简单程序、一个爬虫应用以抓取公众号文章,以及一个为公众号文章生成概述的 AI 应用。 在深入学习 AI 时,很多人会因需要编程而感到困难,且各类教程默认会打命令行,导致入门不易。 从更广泛的角度来看,AI 是一个不断发展的领域,需要持续学习和更新知识。就像 Python 在 AI 领域被广泛使用,它拥有丰富的标准库,还能通过类似 pip 的工具和 GitHub 等平台获取更多资源。 而 OpenAI 通过 ChatGPT 提供开箱即用的服务,也通过 OpenAI API 提供更灵活的服务,可通过代码调用完成更多自动化任务。 总之,学习 AI 是一个长期的过程,取决于个人的基础、学习能力和投入的时间精力。
2024-12-16
帮我制定《通往AGI之路》的学习规划。并在为期一个月内将内容全部学完并掌握AI基本操作技巧
以下是为您制定的为期一个月的《通往 AGI 之路》学习规划: 第一周: 了解并选择感兴趣的学习小组,如 AI 音乐之路、关键词学社(AI 绘画)、SD 学社(AI 绘画)、AI 视频学社等。按照相应要求进群,如添加微信或飞书群,并备注相关信息。 第二周: 熟悉所选学习小组的活动规则和学习内容。 对于 AI 绘画相关的小组,开始学习相关软件的基本操作。 第三周: 积极参与小组活动,如根据关键词出图测试、案例实操等。 尝试将所学应用到实际操作中,如创建图像流智能体等。 第四周: 总结所学知识和实践经验。 巩固 AI 基本操作技巧,确保能够熟练运用。 在学习过程中,要注重学以致用,通过学习、分享不断填补知识的缝隙,成长进步。同时,要记住“少就是多”“先有个初识”“目录索引推荐”“兴趣最重要”“先动手”等学习要点,找到适合自己的学习路径。
2024-10-23
学完ai我可以解决什么样的问题
以下是学习 AI 后可能解决的一些问题: 在生活方面,每个人都可以拥有像钢铁侠中的 Javis 一样的人工智能助手,帮助完成各种任务,重构一切服务。 在教育领域,人工智能生成的角色可以作为数字教师,如让牛顿亲自授课《牛顿运动定律》,让白居易讲述《长恨歌》背后的故事。数字教师可以实现一对一辅导,提供定制化学习计划和资源,提高教育效率和质量,缓解教育资源不平等问题,还能作为数字陪伴促进儿童成长。 在科学方面,虽然在物理科学等领域已有广泛理论和定量预测,但在生物、人类和社会科学等不太正式的领域,人工智能带来了新的“测量”可能性,使一些问题更明确和定量。 需要注意的是,对于某些难以定义的概念,如“有趣性”,最终还是取决于人类作为文明的选择。
2024-10-17