Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

python实现网页爬虫

Answer

以下是使用 Python 实现网页爬虫的详细步骤:

首先,在 Colab 中抓取网页的正文内容,需要使用 Python 的 requests 库来获取网页的 HTML 源代码,然后使用 BeautifulSoup 库来解析 HTML 并提取所需的正文部分。

在开始之前,要确保已经在 Colab 环境中安装了 beautifulsoup4 和 requests 库。如果没有安装,可以使用以下命令安装:

!pip install beautifulsoup4 requests

然后,使用以下代码抓取并解析指定的网页内容:

import requests
from bs4 import BeautifulSoup

def get_webpage_content(url):
    response = requests.get(url)
    soup = BeautifulSoup(response.text, 'html.parser')
    # 这里根据实际网页结构调整提取正文的部分
    # 例如:content = soup.find('div', class_='article-content').get_text()
    return content

url = 'https://mp.weixin.qq.com/s/KUnXlDlg-Rs_6D5RFpQbnQ'
print(get_webpage_content(url))

请注意,由于网页的结构随时可能发生变化,所以提取正文内容的部分(即 soup.find 那一行)可能需要根据实际的 HTML 结构进行调整。如果文章有反爬虫机制,可能还需要进一步的处理,比如设置请求头模拟浏览器访问等。

在和 AI 配合写代码的过程中,如果遇到了 Bug,可以直接将问题报给 ChatGPT,然后再把 ChatGPT 给出的结果粘贴回去(如果还不行,就反复调试)。

另外,Python 在自动化方面应用广泛,例如办公软件自动化(python-docx 用于 Word 文档、openpyxl 或 xlsxwriter 用于 Excel 文件、python-pptx 用于 PPT、PyPDF2 用于 PDF)、爬虫(requests 用于发送 HTTP 请求、selenium 用于模拟浏览器交互、BeautifulSoup 和 lxml 用于解析 HTML 和 XML 文档)、测试自动化(unittest 和 pytest)、容器与虚拟化自动化(docker-py 用于 Docker 容器管理)等。

Content generated by AI large model, please carefully verify (powered by aily)

References

写给不会代码的你:20分钟上手 Python + AI

在Colab中抓取网页的正文内容,你可以使用Python的requests库来获取网页的HTML源代码,然后使用BeautifulSoup库来解析HTML并提取所需的正文部分。下面是一个简单的示例代码,演示了如何实现这一过程。请注意,由于微信公众号文章可能有一些特殊的反爬措施,这段代码可能需要根据实际情况进行调整。首先,确保你已经在你的Colab环境中安装了beautifulsoup4和requests库。如果没有安装,你可以使用以下命令安装:然后,使用以下代码抓取并解析指定的网页内容:这段代码会打印出你提供的微信公众号文章的正文内容。请注意,由于网页的结构随时可能发生变化,所以提取正文内容的部分(即soup.find那一行)可能需要根据实际的HTML结构进行调整。如果文章有反爬虫机制,可能还需要进一步的处理,比如设置请求头模拟浏览器访问等。[heading3]运行你的代码[content]然后,把这两段代码分别复制进去,并运行。先复制第一段:!pip install beautifulsoup4 requests运行后得到下图到这里的pip,就是之前提到的「给未来商店打电话」,用来获取工具接下来,点击左上方「+代码」按钮,新建一个新的代码块最后,复制后面的代码,并运行,获得下面的结果:🎉恭喜你,爬虫写好了🎉[heading3]Tips[content]在和AI配合写代码的过程中,如果你遇到了Bug,类似:你可以直接将问题报给ChatGPT,就像我这样然后再把ChatGPT给出来的结果粘贴回去(如果还不行,就反复调试)

写给不会代码的你:20分钟上手 Python + AI

大聪明我使用colab,请给我写一段代码,用于抓取https://mp.weixin.qq.com/s/KUnXlDlg-Rs_6D5RFpQbnQ的正文内容ChatGPT在Colab中抓取网页的正文内容,你可以使用Python的requests库来获取网页的HTML源代码,然后使用BeautifulSoup库来解析HTML并提取所需的正文部分。下面是一个简单的示例代码,演示了如何实现这一过程。请注意,由于微信公众号文章可能有一些特殊的反爬措施,这段代码可能需要根据实际情况进行调整。首先,确保你已经在你的Colab环境中安装了beautifulsoup4和requests库。如果没有安装,你可以使用以下命令安装:然后,使用以下代码抓取并解析指定的网页内容:这段代码会打印出你提供的微信公众号文章的正文内容。请注意,由于网页的结构随时可能发生变化,所以提取正文内容的部分(即soup.find那一行)可能需要根据实际的HTML结构进行调整。如果文章有反爬虫机制,可能还需要进一步的处理,比如设置请求头模拟浏览器访问等。[heading3]运行你的代码[content]然后,把这两段代码分别复制进去,并运行。先复制第一段:!pip install beautifulsoup4 requests运行后得到下图到这里的pip,就是之前提到的「给未来商店打电话」,用来获取工具接下来,点击左上方「+代码」按钮,新建一个新的代码块最后,复制后面的代码,并运行,获得下面的结果:🎉恭喜你,爬虫写好了🎉[heading3]Tips[content]在和AI配合写代码的过程中,如果你遇到了Bug,类似:

什么是python

Python已经成为数据科学、机器学习、Web开发、自动化、科学计算等领域的首选语言之一。[heading2]自动化[content]Python在自动化方面的应用非常广泛,它以其简洁的语法和强大的库支持,成为自动化任务的首选语言之一。[heading3]办公软件自动化[content]work:python-docx用于创建、修改和提取Word文档的库。表格:openpyxl或xlsxwriter用于操作Excel文件,可以读取、修改和创建电子表格。PPT:python-pptx用于创建和修改PowerPoint演示文稿的库。PDF:PyPDF2:这是一个流行的库,可以分割、合并、裁剪和转换PDF文件的页面。它还可以添加自定义数据、查看选项和密码,以及从PDF中检索文本和元数据。[heading3]爬虫[content]requests:这是一个用于发送HTTP请求的库,非常适合进行网络请求的自动化。selenium:用于自动化Web浏览器交互,可以模拟用户行为,如点击、输入文本等。BeautifulSoup和lxml:这些库可以用于解析HTML和XML文档,从网页中提取数据。[heading3]测试自动化[content]unittest和pytest:Python内置的单元测试框架,以及一个第三方测试框架,都支持自动化测试[heading3]容器与虚拟化自动化[content]docker-py:Docker的Python客户端,可以用于自动化Docker容器的创建和管理。

Others are asking
如何检查Python程序的对错
以下是一些检查 Python 程序对错的方法: 1. 使用 Fitten Code 编程助手: 解释代码:选中代码段然后右键选择“Fitten Code–解释代码”。 自动生成测试:选中代码段后右键选择“Fitten Code–生成单元测试”。 检查 BUG:选中对应代码段,然后右键选择“Fitten Code 查找 Bug”。 编辑代码:选中代码段右键选择“Fitten Code–编辑代码”。 2. 基础报错副本处理: 遇到报错可尝试使用 ZHO 的 ChatGPT 的机器人,网址:https://chatgpt.com/g/gB3qi2zKGBcomfyuiassistant 。 紫色框报错:模型错误(没有下载到模型)。 红色框报错:节点错误(没有正确安装好节点)节点丢失。 安装完成后启动报错: 问题排查一:检查环境,是否为 python 3.10.9,安装,选个目录,勾选上 path。然后安装 git 再装环境,拉代码,干净的 comfyui。 问题排查二:检查魔法是否开启,pip install torch torchvision torchaudio extraindexurlxformers,这一步,里面有一个 2.xg 的文件下载和安装,魔法不好,中途断了,很可能导致安装不成功,需要多试。 问题排查三:在 comfyUI 的文件夹里 shift+右键启动 powershall 。 Error occurred when executing TranslateTextNode:问题原因是魔法节点不稳定,翻译用的是谷歌翻译,解决办法是更改魔法或者更换翻译。 输入 Python main.py 命令行的时候出问题:运行 python.exe m pip install upgrade pip 然后再重新按手记安装依赖环境。 3. 对于特定的 main.py 脚本: 运行诗歌相机脚本:$python main.py 。 设置一个 cron 作业以在启动时运行 python 脚本: 首先,crontab 使用默认编辑器打开文件:$crontab e 。 然后将以下行添加到您的 crontab,以在启动计算机时运行该脚本:@reboot python /home/pi/poetrycamerarpi/main.py >> /home/pi/poetrycamerarpi/errors.txt 2>&1 。 将 {...}errors.txt 2>&1 任何错误消息写入以 errors.txt 进行调试。常见的故障模式是找不到文件。确保所有文件路径都是绝对文件路径并且具有正确的用户名和目录名。 重新启动系统以使此生效:sudo reboot 。 尝试单击快门和电源按钮以确保它们在重新启动后正常工作。如果它们不起作用,请检查您的 errors.txt 文件。
2025-01-04
怎么学习python数据分析
以下是关于学习 Python 数据分析的一些建议: 从工具和规模以及方法的角度来看,数据分析是一门独立完整的学科。 工具方面: 1. Excel:是最熟悉和简单的工具,会写公式算进阶用法,还能写 Excel 宏,ChatGPT 能根据需求写出可用的 Excel 宏。 2. Python:有很多强大的数据分析库,如用于数据处理和分析的 Pandas、用于数值计算的 NumPy,画图的 Seaborn、plotly、matplotlib 等,机器学习相关的更多。一般数据分析代码可用 Jupyter Notebook 运行,用 Anaconda 管理安装的各种包。 3. R 语言:专门用于搞统计,但 Python 通常已够用。 在 Python 中,以下是一些关键的库和技术: 1. 数据处理与清洗: Pandas:提供高效的数据结构如 DataFrame,用于处理和分析结构化数据。 NumPy:用于数值计算,提供多维数组对象和相关操作函数。 2. 数据可视化: Matplotlib:用于生成静态、交互式和动画可视化的绘图库。 Seaborn:基于 Matplotlib 的高级数据可视化库,提供更美观易用的图表绘制方法。 Plotly:交互式图表库,支持多种图表类型,适合生成动态和交互式图表。 3. 统计分析: SciPy:提供广泛的数学算法和函数,包括线性代数、统计学、优化等。 Statsmodels:用于统计建模和数据分析,适合进行统计测试和回归分析。 4. 大数据技术: PySpark:Apache Spark 的 Python API,用于大规模数据处理。 学习路径方面,可以参考以下课程内容: 1. 学习 Python 基础语法与文本处理,包括数据类型(字符串、数字、列表、字典)、控制结构(条件判断、循环语句)、文本处理基础(字符串操作方法、文件读写操作),通过实践实验如中文文本的基本处理,掌握 Python 的基本语法和结构,能够进行简单的文本数据处理。 2. 学习利用 Python 进行自然语言处理(NLP),了解 NLP 的概念和在人文研究中的重要性,掌握 Python 中的 NLP 库,如结巴分词(Jieba)等工具,通过实践实验如中文分词与词频分析,掌握基本的 NLP 操作,理解其在语言研究和教学中的应用。
2025-01-01
python数据分析
以下是关于 Python 数据分析的相关内容: 数据分析的概念和范围: 从工具和规模上来说,写一两行 Excel 公式是数据分析,用 Hadoop、写 Spark 算大数据也是数据分析。从方法上来说,算平均数是数据分析,用各种各样的机器学习方法做回归、分类也可以叫数据分析。数据分析前有时候还要进行数据清洗、数据预处理等。这是一门独立完整的学科。 用 ChatGPT 做数据分析可利用的工具: 1. Excel:是最熟悉和简单的工具,写点公式算进阶用法,还可以写 Excel 宏,ChatGPT 能轻松根据需求和描述写出可用的 Excel 宏。 2. Python:有很多强大的数据分析库,如用于数据分析的 Pandas、Numpy 等,画图的 Seaborn、Plotly、Matplotlib 等,机器学习相关的更多。一般数据分析的代码可以用 Jupyter Notebook 运行,用 Anaconda 管理安装的各种包。 3. R 语言:专门用于搞统计,但 Python 通常已够用。 Python 在数据科学中的应用: 数据处理与清洗:Pandas 提供高效的数据结构如 DataFrame 处理结构化数据,NumPy 提供多维数组对象和相关函数。 数据可视化:Matplotlib 用于生成静态、交互式和动画可视化,Seaborn 是基于 Matplotlib 的高级库,提供更美观易用的图表绘制方法,Plotly 支持多种图表类型,适合生成动态和交互式图表。 统计分析:SciPy 提供广泛的数学算法和函数,Statsmodels 适合进行统计测试和回归分析。 大数据技术:PySpark 是 Apache Spark 的 Python API,用于大规模数据处理。
2025-01-01
以下是大致可以采用的步骤来实现这样一个能自动在大语言模型网站生成不同场景机器人图片的程序(以下以Python语言示例,不过不同平台具体实现会有差异且需遵循对应网站的使用规则和接口规范): ### 1. 选择合适的大语言模型网站及确认其API(应用程序编程接口)情况 不同大语言模型网站对于图片生成通常会提供相应的API来允许外部程序与之交互,比如部分知名的AI绘画相关平台。你需要先确定要使用哪些网站,然后去注册开发者账号等,获取对应的API Key以及详细的API文档,了解如何通过代码向其发起图
以下是为您整合的相关内容: Ollama 框架: 1. 支持多种大型语言模型,如通义千问、Llama 2、Mistral 和 Gemma 等,适用于不同应用场景。 2. 易于使用,适用于 macOS、Windows 和 Linux 系统,支持 cpu 和 gpu,用户能轻松在本地环境启动和运行大模型。 3. 提供模型库,用户可从中下载不同模型,这些模型有不同参数和大小以满足不同需求和硬件条件,可通过 https://ollama.com/library 查找。 4. 支持用户自定义模型,例如修改模型的温度参数来调整创造性和连贯性,或者设置特定的系统消息。 5. 提供 REST API 用于运行和管理模型,以及与其他应用程序的集成选项。 6. 社区贡献丰富,包括多种集成插件和界面,如 Web 和桌面应用、Telegram 机器人、Obsidian 插件等。 7. 安装:访问 https://ollama.com/download/ 进行下载安装。安装完后,确保 ollama 后台服务已启动(在 mac 上启动 ollama 应用程序,在 linux 上通过 ollama serve 启动),可通过 ollama list 确认。 基于 COW 框架的 ChatBot 实现步骤: 1. COW 是基于大模型搭建的 Chat 机器人框架,将多模型塞进自己的微信里实现方案。 2. 基于张梦飞同学的教程: 。 3. 实现内容: 打造属于自己的 ChatBot(文本对话、文件总结、链接访问、联网搜索、图片识别、AI 画图等)。 常用开源插件的安装应用。 4. 正式开始前需知: ChatBot 相较于在各大模型网页端使用区别:本实现思路需要接入大模型 API 的方式实现(API 单独付费)。 风险与注意事项: 微信端因非常规使用,有封号危险,不建议主力微信号接入。 只探讨操作步骤,请依法合规使用。 大模型生成的内容注意甄别,确保所有操作均符合相关法律法规要求。 禁止用于任何非法目的。 处理敏感或个人隐私数据时注意脱敏,以防滥用或泄露。 5. 多平台接入:微信、企业微信、公众号、飞书、钉钉等。 6. 多模型选择:GPT3.5/GPT4.0/Claude/文心一言/讯飞星火/通义千问/Gemini/GLM4/LinkAI 等。 7. 多消息类型支持:能处理文本、语音和图片,以及基于自有知识库进行定制的企业智能客服功能。 8. 多部署方法:本地运行、服务器运行、Docker 的方式。
2024-12-29
python
以下是关于 Python 安装相关 AI 编程助手的信息: 安装 FittenAI 编程助手: 这两年 AI 发展迅猛,改变了很多人的工作方式,编程领域也不例外,AI 作为编程助手能提供实时建议和解决方案,提升工作效率。 配置 AI 插件前需先安装 Python 运行环境,可参考: 安装步骤:点击左上角的 File Settings Plugins Marketplace。 注册(免费):安装完成后左侧会出现 Fitten Code 插件图标,注册登录后即可开始使用。 智能补全:按下 Tab 键接受所有补全建议,按下 Ctrl + →键接收单个词补全建议。 AI 问答:通过点击左上角工具栏中的 Fitten Code 开始新对话打开对话窗口进行对话。 自动生成代码:Fitten Code 工具栏中选择“Fitten Code 生成代码”,然后在输入框中输入指令即可生成代码。 代码转换:Fitten Code 可以实现代码的语义级翻译,并支持多种编程语言之间的互译。选中需要进行翻译的代码段,右键选择“Fitten Code 编辑代码”,然后在输入框中输入需求即可完成转换。 自动生成注释:Fitten Code 能够根据代码自动生成相关注释,通过分析代码逻辑和结构,为代码提供清晰易懂的解释和文档。 安装灵码 AI 编程助手: 同样在 AI 快速发展的背景下,其能为编程带来诸多便利。 配置插件前也需先安装 Python 运行环境,可参考: 安装步骤:点击左上角的 File Settings Plugins Marketplace。 登录(限免):安装完成插件会提示登录,按要求注册登录即可。 使用上和 Fitten 差不多。 安装 FaceFusion 时的 Python 环境配置: FaceFusion 是开源的换脸工具,安装较繁琐。 其所需环境包括 Python(需是 3.10 版本,不能高于 3.7 到 3.10,因为 onnxruntime==1.16.3 需要 Python 版本在 3.7 到 3.10 之间,不然会导致 Python 环境不兼容要求的 onnxruntime 版本)、PIP、GIT、FFmpeg、Microsoft Visual C++ 2015 可再发行组件包、微软 Visual Studio 2022 构建工具。 安装 Python 时,推荐使用安装包下载安装:python 下载地址 https://www.python.org/downloads/ 。下载对应的版本后,点击安装,注意把它添加到系统的环境变量中。也可以使用命令行的安装方式。安装 FFmpeg 后需重新启动系统以使 FFmpeg 正常运行。安装微软 Visual Studio 2022 构建工具时,在安装过程中,请确保选择桌面开发与 C++包。
2024-12-27
我想学习python,但我从没有学习过任何编程语言。如果按专业学习类的书去自学,我觉得很无聊,而且也不好理解。最主要的是学习时间太长。你可以帮我制定一个,利用AI快速学习python的方法吗?
以下是为您制定的利用 AI 快速学习 Python 的方法: 首先,您需要了解 Python 基础,包括基本语法(如变量命名、缩进等规则)、数据类型(如字符串、整数、浮点数、列表、元组、字典等)、控制流(如条件语句 if、循环语句 for 和 while 控制程序执行流程)、函数(定义和调用函数、理解参数和返回值、掌握作用域和命名空间)、模块和包(学会导入标准库或第三方库、安装和使用包扩展功能)、面向对象编程(了解类和对象的定义与实例化、属性和方法的定义与调用、继承和多态)、异常处理(理解异常的概念和工作方式、使用 try 和 except 语句处理错误)以及文件操作(学会文件读写、处理文件与路径)。 您可以参考以下课程内容进行学习: 1. “和 Cursor AI 一起学 Python 编程”: 第二节:Python 基础语法与文本处理,45 分钟。教学内容包括 Python 基础语法、数据类型、控制结构、文本处理基础、字符串操作方法、文件读写操作。实践实验包括中文文本的基本处理,如统计字符数、词语数、句子数,讨论中文编码问题及解决方法。教学目标是掌握 Python 基本语法和结构,能够进行简单文本数据处理。 第三节:利用 Python 进行自然语言处理(NLP),45 分钟。教学内容包括自然语言处理的概念和重要性、Python 中的 NLP 库、分词原理举例、介绍结巴分词等工具、用 Jieba 进行课文分词。实践实验包括中文分词与词频分析,统计词频并找出高频词汇,讨论词频分析在语言教学中的应用。教学目标是掌握使用 Python 进行基本的 NLP 操作,理解 NLP 技术在语言研究和教学中的应用。 在学习过程中,您可以借助 AI 工具辅助理解和解决问题,例如通过智能问答获取对概念的解释,或者让 AI 为您生成示例代码帮助理解。祝您学习顺利!
2024-12-16
怎么利用AI实现爬虫
利用 AI 实现爬虫可以参考以下步骤: 1. 在 Colab 中抓取网页的正文内容,需要使用 Python 的 requests 库获取网页的 HTML 源代码,然后使用 BeautifulSoup 库来解析 HTML 并提取所需的正文部分。 2. 首先要确保在 Colab 环境中安装了 beautifulsoup4 和 requests 库。如果未安装,可以使用“!pip install beautifulsoup4 requests”命令进行安装。 3. 然后使用相应的代码抓取并解析指定的网页内容。但需注意,微信公众号文章可能有特殊的反爬措施,代码可能需要根据实际情况调整。比如提取正文内容的部分(即 soup.find 那一行)可能要根据实际的 HTML 结构进行调整。若文章有反爬虫机制,可能还需进一步处理,如设置请求头模拟浏览器访问等。 4. 运行代码时,先复制安装库的命令并运行,然后点击左上方“+代码”按钮,新建一个新的代码块,再复制后面的代码并运行。 5. 在和 AI 配合写代码的过程中,若遇到 Bug,可以直接将问题报给 ChatGPT,然后把 ChatGPT 给出的结果粘贴回去(若还不行,就反复调试)。 另外,在许多情况下,我们只需给 AI 下达明确的命令来完成一次性任务,例如制作一个简单的 Chrome 插件、编写脚本、或创建 Python 爬虫。但当 AI 满足了简单需求并获得正反馈后,期待会提高,此时需要了解 AI 编程的边界和限制。比如优先找线上工具、其次找插件、最后是本地应用;对于 API 功能,先找现成的开源工具,然后考虑付费服务,都找不到现成方案时才考虑自己编程。毕竟,人生苦短,能不编尽量不编。如果真要编写,也要以终为始,抛开技术障碍,聚焦于目标。
2024-12-09
如何用ai写一个爬虫
以下是使用 AI 写爬虫的方法: 1. 可以向 ChatGPT 提供提示词,如“我有 100 部电视剧,想在 colab 上,使用 Python 爬虫,在豆瓣上爬他们的评分,请问具体可以怎么操作呢?”,ChatGPT 会给出代码。但可能需要返工,例如因豆瓣的反爬虫机制报错后,让 ChatGPT 自己添加额外的请求头;或者因自身需求调整代码。 2. 在 Colab 中抓取网页正文内容时,可以使用 Python 的 requests 库获取网页的 HTML 源代码,然后使用 BeautifulSoup 库来解析 HTML 并提取所需的正文部分。 首先,确保在 Colab 环境中安装 beautifulsoup4 和 requests 库。如果未安装,可以使用“!pip install beautifulsoup4 requests”命令安装。 然后,使用相应代码抓取并解析指定的网页内容。但要注意,由于网页结构可能变化,提取正文内容的部分可能需要根据实际 HTML 结构调整。若有反爬虫机制,可能还需进一步处理,如设置请求头模拟浏览器访问。 3. 在和 AI 配合写代码过程中遇到 Bug ,可以直接将问题报给 ChatGPT ,然后根据其给出的结果进行调试。
2024-12-05
如何制作一个爬虫智能体
制作爬虫智能体的步骤如下: 1. 了解扣子平台:扣子是字节跳动旗下的 AI 应用开发平台,开发智能体的门槛低,无论有无编程基础都能在该平台快速搭建基于 AI 模型的多样化问答 Bot,且提供丰富的插件、工作流、知识库等功能增强 Bot 的能力和交互性。 2. 明确智能体的名称和介绍:创建时先想一个智能体的名字,然后写一段越详细越好的介绍,它会根据介绍智能生成符合主题的图标,最后点击确认即可诞生新的智能体。 此外,关于智能体的相关知识: 1. 智能体大多建立在大模型之上,其发展从基于符号推理的专家系统逐步演进而来。 2. 基于大模型的智能体具有强大的学习能力、灵活性和泛化能力。 3. 智能体的核心在于有效控制和利用大型模型,提示词的设计直接影响智能体的表现和输出结果。 4. 动手实践制作智能体时,可基于公开的大模型应用产品(如 Chat GLM、Chat GPT、Kimi 等),如在相关平台点击“浏览 GPTs”按钮、“Create”按钮创建自己的智能体,使用自然语言对话或手工设置进行具体设置,然后调试并发布。
2024-12-04
我想要一个可以指导我爬虫的AI
以下是为您提供的关于爬虫的指导: 如果您不会代码但想要完成一个爬虫应用,可以参考以下步骤: 1. 已知文章地址:https://mp.weixin.qq.com/s/KUnXlDlgRs_6D5RFpQbnQ 。 2. 已知 ChatGPT 很会写程序,并且使用 Colab 。 3. 得出结论:让 ChatGPT 帮我们写抓取该文章正文内容的程序,然后在 Colab 里运行。 在许多情况下,对于爬虫任务,我们需要明确以下几点: 1. 当有简单需求时,给 AI 下达明确命令来完成一次性任务,例如制作一个简单的 Chrome 插件、编写脚本或创建 Python 爬虫。 2. 当 AI 满足简单需求并获得正反馈后,期待会提高,但需要了解 AI 编程的边界和限制。 3. 对于大多数需求,应优先寻找现成的软件解决方案,遵循以下顺序: 优先找线上工具,例如制作白底图等功能,如果线上有现成的工具那最好。 其次找插件,基于现有系统找合适的插件。 最后是本地应用,当线上工具和插件都不满足需求时,再考虑本地应用。 4. 对于 API 功能: 先找现成的开源工具,GitHub 上很多。 然后考虑付费服务。 5. 如果都找不到现成的方案,才考虑自己编程。毕竟,人生苦短,要以终为始,抛开技术障碍,聚焦于目标。
2024-11-17
如何编写爬虫插件
如何编写爬虫插件 1. 登录。 2. 在左侧导航栏的工作区区域,选择进入指定团队。 3. 在页面顶部进入插件页面,或者在某一 Bot 的编排页面,找到插件区域并单击+图标。 4. 单击创建插件。 5. 在新建插件对话框,根据以下信息完成配置并单击确认。 | 配置项 | 说明 | | : | : | | 插件图标 | 单击默认图标后,您可以上传本地图片文件作为新的图标。 | | 插件名称 | 自定义插件名称,用于标识当前插件。建议输入清晰易理解的名称,便于大语言模型搜索与使用插件。 | | 插件描述 | 插件的描述信息,一般用于记录当前插件的用途。 | | 插件工具创建方式 | 选择基于已有服务创建。 | | 插件 URL | 插件的访问地址或相关资源的链接。例如:https\://www\.example.com/api | | Header 列表 | HTTP 请求头参数列表。您需要根据 API 自身的参数配置要求来填写。 | 另外,还可以通过 JSON 或 YAML 文件导入插件,具体操作步骤如下: 1. 在页面顶部进入插件页面,并在右上角单击导入。另外支持在存量的插件详情页内导入工具。您需要进入插件详情页,在工具列表右上角单击导入。 2. 在导入插件对话框,选择以下任一导入方式,并单击下一步。 在本地文件页签内,通过拖拽或点击的方式,上传保存在本地的 JSON 或 YAML 文件。 在 URL 和原始数据页签内,填写存放 API JSON 或 YAML 文件的 URL 地址。 在 URL 和原始数据页签内,填写 JSON 或 YAML 格式的 API 原始数据。 如果您需要单次导入多个 API,则需要确保各个 API 有相同的 URL 路径前缀,该路径前缀将会作为插件 URL 来使用。如果单次导入的 API URL 路径前缀不一致,则会导入失败。
2024-05-11
如果用ai通过学习我所指定的书籍或网页,之后再输出给我想要查阅和学习的内容呢?
目前的 AI 技术可以通过对指定的书籍或网页进行学习,然后为您提供相关的内容。这通常涉及自然语言处理和机器学习的技术。 一种常见的方式是使用文本分类和信息抽取的算法,对输入的书籍或网页内容进行分析和理解,提取关键信息。然后,根据您的需求和查询,通过生成文本的方式为您输出相应的内容。 但要实现这一过程,可能需要一些特定的工具和技术,并且效果可能会受到数据质量、模型复杂度以及您的需求明确程度等多种因素的影响。 您可以考虑使用一些专门的知识管理工具或智能助手,它们可能具备这样的功能,能够帮助您更高效地获取所需的信息。
2024-12-30
推荐一个AI工具,帮助我每天自动执行以下步骤:从本地上传文件给大模型,该文件内含有新闻网页链接,大模型读取链接并汇总内容
以下为您推荐的 AI 工具可能有助于您实现每天自动执行从本地上传文件给大模型,并让大模型读取文件内新闻网页链接并汇总内容的需求: 1. AI 拍立得(Pailido): 特点:即拍即得,简化流程,操作直观高效。 体验方式:微信小程序搜索“Pailido”。 交互逻辑:用户选择拍摄场景类型并拍照,AI 自动识别和分析照片内容信息,依据预设场景规则迅速生成符合情境的反馈。 实现场景: 图片转成文本:用户上传图片后,大模型根据选择的场景生成相关文字描述或解说文本,可用于生成美食点评、朋友圈发布文案、闲鱼上架示例模版等。 图片转绘图片:用户上传图片后,大模型按照指定风格快速生成图像的转绘版本,适应不同风格和场景需求,如图片粘土风、图片积木风、图片像素风等。 2. 内容仿写 AI 工具: 秘塔写作猫:https://xiezuocat.com/ ,是 AI 写作伴侣,能推敲用语、斟酌文法、改写文风,实时同步翻译,支持全文改写、一键修改、实时纠错并给出修改建议,智能分析文章属性并打分。 笔灵 AI 写作:https://ibiling.cn/ ,是智能写作助手,支持多种文体写作,如心得体会、公文写作、演讲稿、小说、论文等,支持一键改写/续写/扩写,智能锤炼打磨文字。 腾讯 Effidit 写作:https://effidit.qq.com/ ,由腾讯 AI Lab 开发的智能创作助手,能提升写作者的写作效率和创作体验。 更多 AI 写作类工具可以查看:https://www.waytoagi.com/sites/category/2 。请注意,内容由 AI 大模型生成,请仔细甄别。
2024-12-21
🚀接着上期SOP+AI:打造职场高效能人士的秘密武器的分享,今天继续聊聊SOP+AI的应用,🎯今天的主题是“怎样利用AI节约10倍内容创作时间?”📚最近跟团队有开始运营小红书账号,就想着先给自己打造点顺手的工具,于是乎「小红书文案专家」就出生啦~🎉[heading1]一、先介绍下我们小Bot[content]🛺BOT名称:小红书文案专家功能价值:见过多个爆款文案长啥样,只需输入一个网页链接或视频链接,就能生成对应的小红书文案,可以辅助创作者生成可以一键复制发布的初稿,提供创意和内容,1
以下是关于“SOP+AI”的相关内容: 怎样利用 AI 节约 10 倍内容创作时间? 最近团队开始运营小红书账号,于是打造了“小红书文案专家”。 BOT 名称:小红书文案专家 功能价值:见过多个爆款文案,输入网页或视频链接就能生成对应的小红书文案,辅助创作者生成可一键复制发布的初稿,提供创意和内容,节约 10 倍文字内容创作时间。 应用链接:https://www.coze.cn/s/ij5C6LWd/ 设计思路: 痛点:个人时间有限,希望有人写初稿并生成配图。 实现思路:为自己和团队设计工作流,让 AI 按运营思路和流程工作。 一期产品功能: 1. 提取任何链接中的标题和内容。 2. 按小红书平台文案风格重新整理内容。 3. 加入 emoji 表情包,使文案更有活力。 4. 为文案配图片。 二期计划功能:持续优化升级,增加全网搜索热点功能,提炼热点新闻或事件关键信息,结合用户想要生成的内容方向输出文案和配图。 SOP+AI:打造职场高效能人士的秘密武器 案例分享:X 公司客服团队引入 SOP 和 AI 助手后,工作效率显著提升。引入 SOP 前,客服工作流程混乱,效率低下,客户满意度不高。引入 SOP 标准化操作后,效率提高。进一步引入 AI 助手,自动回复常见问题、处理简单请求,减少客服工作量,还能及时发现问题帮助优化。结果客服团队工作效率提升 30%以上,客户满意度显著提高。SOP 能提升效率、减少失误、促进协作,借助 AI 助手,SOP 制定和优化更高效智能。
2024-12-20
我想做一个企业独有的招聘网站或网页有哪些AI可以做到(我不会编程)
以下是一些可以帮助您创建企业独有的招聘网站或网页的 AI 相关产品和应用: 1. 智联招聘 APP:这是一款 AI 招聘筛选工具,使用自然语言处理和机器学习技术,能够帮助企业快速筛选简历,提高招聘效率。例如,当企业招聘程序员时,它会筛选出有相关技术经验和技能的简历。 2. 用友大易 AI 面试产品:具有强大的技术底座、高度的场景贴合度、招聘全环节集成的解决方案、先进的防作弊技术以及严密的数据安全保障。可以帮助企业完成面试,借助人岗匹配模型,自主完成初筛,并对符合企业要求的候选人自动发送面试邀约。 3. 海纳 AI 面试:通过在线方式、无需人为干预完成自动面试、自动评估,精准度高达 98%,面试效率比人工方式提升 5 倍以上。同时候选人体验也得到改善、到面率比之前提升最高达 30%。 4. InterviewAI:这是一个在线平台,提供与面试职位相关的问题和由 AI 生成的推荐答案。候选人可以使用设备上的麦克风回答每个问题,每个问题最多回答三次。对于每个答案,候选人将收到评估、建议和得分。 需要注意的是,在使用这些产品时,企业需要考虑到数据安全性和隐私保护的问题。
2024-12-18
如何有效的利用ai搜索网页信息
以下是有效利用 AI 搜索网页信息的方法: 1. 收集相关资料: 明确文章主题后,借助 AI 工具如 Perplexity.AI 来高效完成。访问该网站并使用其搜索功能,为获得更专业和深入的结果,可启用 Pro 功能(每天有一定次数免费使用,常使用可考虑开通会员)。在搜索框中输入具体 Prompt 来快速定位相关资讯。 通过 AI 工具获取搜索结果后,点击回答内容下方的拷贝按钮获取相关引用网站链接。同理,微软的 Bing 搜索引擎等也有类似功能,可快速搜集大量资料,提升文章专业度和说服力。 2. 整理资料: 可使用月之暗面开发的 Kimi 这个 AI 会话助手,它具备读取网页内容并生成一定内容的能力,但可能存在阅读能力限制,可分批次提供资料确保其有效读取和理解。 此外,能联网检索的 AI 有: ChatGPT Plus 用户可开启 web browsing 功能实现联网。 Perplexity 结合了 ChatGPT 式的问答和普通搜索引擎的功能,可指定希望聊天机器人在制定响应时搜索的源类型。 Bing Copilot 作为 AI 助手,可简化在线查询和浏览活动。 还有如 You.com 和 Neeva AI 等搜索引擎,提供基于人工智能的定制搜索体验,并保持用户数据的私密性。 需注意,这些内容由 AI 大模型生成,请仔细甄别。
2024-12-15
ETNA:怎么用,需要注册登陆吗,是免费的吗,我把文字描述写入它网页的对话框里,点击了coming soon 但是没有任何反应,怎么回事
ETNA 的使用方法可能因具体版本和功能而有所不同。通常来说,使用这类工具可能需要注册登录。关于其是否免费,也取决于具体的服务策略。您在网页对话框中输入文字描述并点击“coming soon”没有反应,可能有以下原因: 1. 该功能尚未正式开放或仍在准备中。 2. 网络连接存在问题,导致请求无法正常发送和接收。 3. 可能是网页本身存在技术故障或错误。 由于目前知识库中没有关于 ETNA 更详细的信息,建议您查看其官方说明或联系相关技术支持以获取准确的使用指导。
2024-12-10
AGI真能实现吗
通用人工智能(AGI)是 AI 领域的终极目标,也是人类发明机器计算后的终极进化方向。实现 AGI 面临诸多挑战,但也有一些积极的因素和迹象表明其有可能实现: 从模仿人类大脑的角度来看,机器学习在完成相关拼图方面,数据是相对容易实现的部分。例如,ImageNet 数据集的大小已接近人从出生到大学毕业视觉信号的数据量,Google 公司创建的新模型数据集大小也可与人一生所获取的数据量媲美。但神经网络需要像人类一样,使用更少的数据和更高的抽象来学习。 算力方面,人工神经网络与人脑的大小仍有数量级的差距,但在某些哺乳动物面前已具备竞争力。而且每花一美元所能得到的计算能力一直在呈指数级增长,大规模基础模型所用到的计算量每 3.5 个月就会翻一番。尽管有人认为计算能力会因物理学限制不能保持上升趋势,但过去的趋势和该领域的资金、资源投入以及人才涌入等因素,使得开发更好的软件和硬件成为可能,且物理学的限制同样约束人脑的能力极限。 关于 OpenAI 通用人工智能(AGI)的计划,有各种报道和推测。例如,有文件揭示 OpenAI 计划在 2027 年前创建人类水平的通用人工智能(AGI),也有相关预测提到图像和音频生成将在 2023 年第三季度进行训练等。同时,OpenAI 总裁曾表示计划在五年内构建一个与人类大脑大小相当的模型来实现 AGI。 综上所述,虽然 AGI 的实现仍存在不确定性,但有多种因素和迹象表明其有可能实现。
2025-01-04
梵高油画 变动画 是如何实现的?使用了哪些工具
目前知识库中没有关于梵高油画变动画的实现方法及所使用工具的相关内容。但一般来说,要将梵高的油画转变为动画,可能会使用以下几种常见的工具和技术: 1. 图像处理软件:如 Adobe Photoshop、Illustrator 等,用于对油画进行数字化处理和编辑。 2. 动画制作软件:例如 Adobe After Effects、Toon Boom Harmony 等,能够创建动画效果和添加动态元素。 3. 3D 建模和渲染软件:在某些情况下,可能会使用 3D 软件如 Blender 来构建场景和模型,以增强动画效果。 4. 脚本和编程工具:如果需要自定义的特效和自动化处理,可能会用到 Python 等编程语言。 具体的实现方式会因项目的需求和创作者的技术偏好而有所不同。
2024-12-29
你是一名资深程序员和经验丰富的编程教授,能够以通俗保姆式的方法教会小白从0开始编程序。现在要你教我完成如下任务:我需要编写一个程序,能够每天和不同的文生图大语言模型对话,生成不同场景下的机器人设计图片。应该怎么一步步实现?
以下是为您提供的从 0 开始编写一个能够每天和不同的文生图大语言模型对话,并生成不同场景下机器人设计图片的程序的步骤: 首先,对于小白来说,可以参考以下教程进行学习和操作: 1. 张梦飞的【保姆级】一步一图,手把手教你把 AI 接入微信: 重点感谢@熊猫大侠的不厌其烦的答疑解惑,并推荐@熊猫大侠的老王。 作者是看着 WaytoAGI 里大佬的文章学习制作的。有代码基础的同学,可以直接移步到这三篇教程中。 本篇教程适合“小白中的小白”,简单粗暴,不做讲解,复制粘贴即可。一步一图,保姆级指引。 本篇文章中,没有写每一步代码的含义和配置文件的对应含义。如果想要深入研究和调优,请移步上方推荐的三篇文章。 2. 大圣的胎教级教程:万字长文带你理解 RAG 全流程: 这是一篇面向普通人的 RAG 科普,不是面向 RAG 研究者的技术向文章。 文章一共 1.6 万字,旨在让您对 RAG 技术有更全面的认知,在使用 RAG 相关产品时,可以更好地理解其能力边界,从而充分发挥其潜力。 本文适合任何人,包括 AI 爱好者、为企业寻找知识库解决方案的老板、AI 产品经理等。 3. Yeadon 的写给小小白的从游戏入手学习搓图像流 bot: 学会将发布的图像流添加进 bot 中,并测试生成海报,解决无法在聊天界面显示图片的问题,重新调整图像流使其在对话窗口显示图片,最后发布 Bot。 通过这份教程,可以学会如何在 Coze 平台上打造一个有趣的 AI 游戏助手,掌握 AI 人格设定和对话逻辑的设计方法,了解如何配置图像生成功能。 希望以上内容对您有所帮助,祝您编程顺利!
2024-12-29
可以绘图的AI工具,实现将我的一段话转换成流程图
以下是一些可以将一段话转换成流程图的 AI 绘图工具及使用步骤: 工具: 1. Lucidchart: 注册并登录: 选择模板:在模板库中搜索“项目管理流程图” 编辑图表:根据项目需求添加和编辑图形和流程步骤 优化布局:利用 AI 自动布局功能优化图表外观 保存和分享:保存图表并与团队成员分享,或导出为 PDF、PNG 等格式 2. Creately: 简介:在线绘图和协作平台,利用 AI 功能简化图表创建过程,适合绘制流程图、组织图、思维导图等 功能:智能绘图功能,可自动连接和排列图形;丰富的模板库和预定义形状;实时协作功能,适合团队使用 官网: 3. Whimsical: 简介:专注于用户体验和快速绘图的工具,适合创建线框图、流程图、思维导图等 功能:直观的用户界面,易于上手;支持拖放操作,快速绘制和修改图表;提供多种协作功能,适合团队工作 官网: 4. Miro: 简介:在线白板平台,结合 AI 功能,适用于团队协作和各种示意图绘制,如思维导图、用户流程图等 功能:无缝协作,支持远程团队实时编辑;丰富的图表模板和工具;支持与其他项目管理工具(如 Jira、Trello)集成 官网: 使用步骤: 1. 选择工具:根据具体需求选择合适的 AI 绘图工具。 2. 创建账户:注册并登录该平台。 3. 选择模板:利用平台提供的模板库,选择适合需求的模板。 4. 添加内容:根据需求,添加并编辑图形和文字。利用 AI 自动布局功能优化图表布局。 5. 协作和分享:如果需要团队协作,可以邀请团队成员一起编辑。完成后导出并分享图表。 此外,以下工具可以用于绘制逻辑视图、功能视图、部署视图: 1. Lucidchart:流行的在线绘图工具,支持多种图表创建,包括逻辑视图、功能视图和部署视图,用户可使用拖放界面轻松创建架构图。 2. Visual Paradigm:全面的 UML 工具,提供创建各种架构视图的功能,包括逻辑视图(类图、组件图)、功能视图(用例图)和部署视图(部署图)。 3. ArchiMate:开源的建模语言,专门用于企业架构,支持逻辑视图的创建,可与 Archi 工具一起使用,该工具提供图形化界面创建 ArchiMate 模型。 4. Enterprise Architect:强大的建模、设计和生成代码的工具,支持创建多种架构视图,包括逻辑、功能和部署视图。 5. Microsoft Visio:广泛使用的图表和矢量图形应用程序,提供丰富模板用于创建逻辑视图、功能视图和部署视图等。 6. draw.io(现在称为 diagrams.net):免费的在线图表软件,允许用户创建各种类型的图表,包括软件架构图,支持创建逻辑视图和部署视图等。 7. PlantUML:文本到 UML 的转换工具,通过编写描述性文本来自动生成序列图、用例图、类图等,从而帮助创建逻辑视图。 8. Gliffy:基于云的绘图工具,提供创建各种架构图的功能,包括逻辑视图和部署视图。 9. Archi:免费的开源工具,用于创建 ArchiMate 和 TOGAF 模型,支持逻辑视图的创建。 10. Rational Rose:IBM 的 UML 工具,支持创建多种视图,包括逻辑视图和部署视图。
2024-12-28
要怎么实现agi
要实现 AGI(通用人工智能)是一个复杂且长期的目标,以下是一些相关的要点和信息: 弱人工智能与强人工智能的区别:弱人工智能是针对特定任务或范围较小的任务设计和训练的,只擅长执行提前定义好的任务,缺乏真正的理解和意识,例如 Siri 等虚拟助手、推荐算法和特定客服任务的对话机器人。强人工智能则具有人类水平的智能和理解能力,能完成任何人类可以完成的智力任务,适用于不同领域,同时拥有某种形式的意识或自我意识,但目前还只是一个理论概念,尚未有实际的 AI 系统达到。 Sora 成为实现 AGI 重要里程碑的理由:Sora 具备理解和模拟现实世界的独特能力,体现在复杂环境理解、跨领域学习与适应、抽象思维与创造力、动态环境交互等方面。其发展和完善将推动人工智能从专用 AI 向通用人工智能转变。 OpenAI 通用人工智能(AGI)的计划:OpenAI 原计划在 2026 年发布的 GPT7 因埃隆·马斯克的诉讼而暂停,计划在 2027 年发布的 Q2025(GPT8)将实现完全的 AGI。GPT3 及其半步后继者 GPT3.5 在某种程度上是朝着 AGI 迈出的巨大一步,早期的语言模型如 GPT2 实际上没有真正连贯回应的能力。 更多信息请见(AGI)。
2024-12-28