Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

python入门

Answer

Python 是一种高级编程语言,具有以下特点:

  1. 简单易学:语法简单,可读性强,是适合小白的编程语言。
  2. 功能强大:拥有丰富的库,可用于完成各种任务,如画画、计算、整理东西等。
  3. 应用广泛:能用于网站开发、游戏开发、数据分析、自动化任务等领域。

其起源如下: 1989 年,Guido van Rossum 在荷兰的 Centrum Wiskunde&Informatica(CWI)开始开发 Python。1991 年,Python 的第一个公开发行版 Python 0.9.0 发布。1994 年,Python 1.0 发布,这是第一个具有稳定 API 的版本。2000 年,Python 2.0 发布,引入了列表推导式、内存管理和垃圾回收等特性。2008 年,Python 3.0 发布,是重要里程碑,不完全向后兼容,引入新语法特性和改进。2020 年 1 月 1 日,Python 2 正式停止支持,社区鼓励迁移到 Python 3。2020 年,Python 3.9 发布,引入字典合并和更新操作符等新特性。

如果您想入门 Python,需要了解以下内容:

  1. Python 简介:包括 Python 的发展历史、特点与优势、应用领域。
  2. 安装与环境配置:Python 安装教程、配置环境变量、安装和使用 IDE(如 PyCharm、VSCode)。
  3. Python 基本语法:变量与数据类型、运算符、控制结构(条件判断、循环)。
  4. Python 函数与模块:函数定义与调用、参数传递、Python 模块与包。
  5. Python 数据结构:列表(List)、元组(Tuple)、集合(Set)、字典(Dictionary)。
  6. Python 面向对象编程:类与对象、封装、继承、多态、特殊方法(如__init__、str)。
  7. 常用 Python 模块:os 模块、sys 模块、datetime 模块、math 模块。
  8. 文件操作与异常处理:文件的打开、读写与关闭、异常捕捉与处理。

若希望继续精进,还需熟悉以下方面:

  1. 基本语法:了解变量命名、缩进等规则。
  2. 数据类型:熟悉字符串(String)、整数(Integer)、浮点数(Float)、列表(List)、元组(Tuple)、字典(Dictionary)等。
  3. 控制流:掌握条件语句(if)、循环语句(for 和 while)控制程序执行流程。
  4. 函数:学会定义和调用函数,理解参数和返回值,以及作用域和命名空间。
  5. 模块和包:掌握导入模块,使用包来扩展程序功能。
  6. 面向对象编程(OOP):了解类和对象、属性和方法、继承和多态。
  7. 异常处理:理解异常,学会使用 try 和 except 语句处理错误。
  8. 文件操作:学会文件读写,处理文件与路径操作。
Content generated by AI large model, please carefully verify (powered by aily)

References

办公:高效做 PPT

小白如何快速入门Python##目录1.Python简介-Python的发展历史-Python的特点与优势-Python的应用领域2.安装与环境配置-Python安装教程-配置环境变量-安装和使用IDE(如PyCharm,VSCode)3.Python基本语法-变量与数据类型-运算符-控制结构(条件判断、循环)4.Python函数与模块-函数定义与调用-参数传递-Python模块与包5.Python数据结构-列表(List)-元组(Tuple)-集合(Set)-字典(Dictionary)6.Python面向对象编程-类与对象-封装、继承、多态-特殊方法(如__init__、__str__)7.常用Python模块-os模块-sys模块-datetime模块-math模块8.文件操作与异常处理-文件的打开、读写与关闭-异常捕捉与处理9.实战项目-示例项目介绍-逐步实现项目功能-总结与优化大纲出来后,我们只需要针对每个主题进行内容补充就行,比如,我想让他简单介绍Python是什么,并限制好字数。按照这个流程,一个完整的PPT内容大概1小时就可以完成,换作以前,你至少花2到3天才能把内容建完。有了ChatGPT的加持,效率直接飞起。内容完成后,我们就可以用mindshow工具将markdown内容转换成PPT。在https://www.mindshow.fun/#/login?inviteCode=6487516注册账号登录后,我们直接把内容复制过来。

写给不会代码的你:20分钟上手 Python + AI

[heading3]如果希望继续精进...在本份教程中,你会发现,在AI的帮助下,你本就可以完成很多基础的编程工作。但希望再深入一点,最好还是可以体系化的了解一下编程以及AI。至少熟悉以下内容:Python基础基本语法:了解Python的基本语法规则,比如变量命名、缩进等。数据类型:熟悉Python中的基本数据类型,如字符串(String)、整数(Integer)、浮点数(Float)、列表(List)、元组(Tuple)、字典(Dictionary)等。控制流:学习如何使用条件语句(if)、循环语句(for和while)来控制程序的执行流程。函数定义和调用函数:学习如何定义自己的函数,以及如何调用现有的函数。参数和返回值:理解函数如何接收参数和返回结果。作用域和命名空间:了解局部变量和全局变量的概念,以及它们是如何在Python中工作的。模块和包导入模块:学习如何导入Python标准库中的模块或者第三方库。使用包:理解如何安装和使用Python包来扩展程序的功能。面向对象编程(OOP)类和对象:了解面向对象编程的基本概念,包括类的定义和实例化。属性和方法:学习如何为类定义属性和方法,以及如何通过对象来调用它们。继承和多态:了解类之间的继承关系以及如何实现多态。异常处理理解异常:了解什么是异常,以及它们在Python中是如何工作的。异常处理:学习如何使用try和except语句来处理程序中可能发生的错误。文件操作文件读写:学习如何打开文件、读取文件内容以及写入文件。文件与路径操作:理解如何使用Python来处理文件路径,以及如何列举目录下的文件。

什么是python

作者:[木木的个人说明书](https://gida8fb9mrg.feishu.cn/wiki/GNJkwL39niyI3xkSfYWccq2bn4g)[heading1]Python是什么:[content]Python是一种高级编程语言,有简单易学、功能强大、库丰富等特点。你可以把Python想象成一个工具箱,里面有很多工具(功能),可以帮助你完成各种任务,比如画画、计算、整理东西等。[heading1]为什么使用Python:[content]环境部署简单:下载两个软件,然后点点点就安装好了简单易学:python的语法特别简单,而且可读性很强,是最适合小白的编程语言应用广泛:可以做网站、开发游戏、分析数据、自动化任务等。[heading1]起源[content]1989年:Guido van Rossum在荷兰的Centrum Wiskunde&Informatica(CWI)开始开发Python。他希望创建一种易于学习、易于阅读且功能强大的编程语言。1991年:Python的第一个公开发行版Python 0.9.0发布,标志着Python的正式诞生。1994年:Python 1.0发布,这是Python语言的第一个具有稳定API的版本。2000年:Python 2.0发布,引入了列表推导式、内存管理和垃圾回收等特性。2000年代初:Python社区开始迅速增长,Python的流行度也随之上升。2008年:Python 3.0发布,这是Python语言的一个重要里程碑,它不完全向后兼容,引入了新的语法特性和改进,以提高语言的可读性和性能。2020年1月1日:Python 2正式停止支持,社区鼓励所有用户迁移到Python 3。2020年:Python 3.9发布,引入了许多新特性,包括字典合并和更新操作符。

Others are asking
python程序员 学习AI
对于 Python 程序员学习 AI,以下是一些建议和基础内容: AI 背景知识: 基础理论:理解人工智能、机器学习、深度学习的定义及相互关系。 历史发展:简要回顾 AI 的发展历程和重要里程碑。 数学基础: 统计学基础:熟悉均值、中位数、方差等统计概念。 线性代数:掌握向量、矩阵等基本概念。 概率论:了解基础的概率论知识,如条件概率、贝叶斯定理。 算法和模型: 监督学习:熟悉常用算法,如线性回归、决策树、支持向量机(SVM)。 无监督学习:了解聚类、降维等算法。 强化学习:知晓其基本概念。 评估和调优: 性能评估:掌握如何评估模型性能,包括交叉验证、精确度、召回率等。 模型调优:学会使用网格搜索等技术优化模型参数。 神经网络基础: 网络结构:理解神经网络的基本结构,如前馈网络、卷积神经网络(CNN)、循环神经网络(RNN)。 激活函数:熟悉常用的激活函数,如 ReLU、Sigmoid、Tanh。 此外,还有相关的课程内容,如“和 Cursor AI 一起学 Python 编程”: 第一节:Python 是什么、Cursor 使用、notebook 远程编程。包括熟悉 Cursor 界面,安装和设置,指导下载安装 Cursor 编辑器,了解界面布局和基本功能,编写第一个程序,体验 AI 辅助功能,如代码自动补全和错误提示,使用 Bohrium 进行远程编程,注册和登录,在线编写和运行代码等。课程时间为 45 分钟,教学内容涵盖 Python 简介、发展历史和特点、在数据分析和人工智能领域的优势、在人文学科的应用、在语言教学和研究中的实际案例,以及对 Cursor 编程环境和 Bohrium 在线编程平台的介绍。
2025-02-26
怎么学python,以适应AI时代趋势为导向
以下是一些关于以适应 AI 时代趋势为导向学习 Python 的建议: 1. 学习资源: 微信机器人教程,其中介绍了在 Linux 环境安装 Python 以及 Python 虚拟环境的相关知识。 吴恩达的 AI Python 初学者课程,这是一系列四门短期课程,适合任何技术水平的人。 2. 基础知识: 掌握 Python 的安装和编程基础,包括变量、数据类型、控制结构、函数等。 了解 Python 虚拟环境,它是一个独立的 Python 运行空间,用于隔离不同项目的依赖库,避免与系统的 Python 版本形成冲突。 3. 数学和理论基础: 统计学基础:熟悉均值、中位数、方差等统计概念。 线性代数:了解向量、矩阵等线性代数基本概念。 概率论:基础的概率论知识,如条件概率、贝叶斯定理。 了解人工智能、机器学习、深度学习的定义及其之间的关系,以及 AI 的发展历程和重要里程碑。 4. 算法和模型: 监督学习:了解常用算法,如线性回归、决策树、支持向量机(SVM)。 无监督学习:熟悉聚类、降维等算法。 强化学习:简介强化学习的基本概念。 神经网络基础:理解神经网络的基本结构,包括前馈网络、卷积神经网络(CNN)、循环神经网络(RNN),以及常用的激活函数,如 ReLU、Sigmoid、Tanh。 5. 实践和应用: 学会向 AI 提供线索,这对于快速修复问题非常重要。 可以使用 Cursor 的菜单 Open in intergrated Terminal 直接切换到对应目录,也可以使用 cd 命令。 参考 Cursor 提示词网站:https://cursor.directory/,学习和参考其中大量网友实践后上传的提示词。 通过构建 AI 应用程序进行学习,例如编写与大型语言模型交互的代码,以快速创建有趣的应用程序来定制诗歌、编写食谱和管理待办事项列表。 总之,强烈推荐在 AI 时代掌握 Python 这门编程语言,不断学习和实践,以适应时代的发展趋势。
2025-02-17
python
以下是关于 Python 安装相关 AI 编程助手的信息: 安装 FittenAI 编程助手: 这两年 AI 发展迅猛,改变了很多人的工作方式,编程领域也不例外,AI 作为编程助手能提供实时建议和解决方案,提升工作效率。 配置 AI 插件前需先安装 Python 运行环境,可参考:。 安装步骤:点击左上角的 File Settings Plugins Marketplace。安装完成后左侧会出现 Fitten Code 插件图标,注册登录后即可开始使用。 功能包括智能补全(按下 Tab 键接受所有补全建议,按下 Ctrl+→键接收单个词补全建议)、AI 问答(通过点击左上角工具栏中的 Fitten Code 开始新对话打开对话窗口进行对话)、自动生成代码(Fitten Code 工具栏中选择“Fitten Code 生成代码”,然后在输入框中输入指令即可生成代码)、代码转换(选中需要进行翻译的代码段,右键选择“Fitten Code 编辑代码”,然后在输入框中输入需求即可完成转换)、自动生成注释(Fitten Code 能够根据代码自动生成相关注释)。 安装灵码 AI 编程助手: 同样在 AI 快速发展的背景下,其能为编程带来高效帮助。 配置前也需先安装 Python 运行环境,可参考:。 安装步骤:点击左上角的 File Settings Plugins Marketplace。安装完成插件会提示登录,按要求注册登录即可。使用上和 Fitten 差不多。 安装 FaceFusion 时的 Python 环境配置: FaceFusion 是开源换脸工具,安装较繁琐。 其所需环境包括 Python(需是 3.10 版本,不能高于 3.7 到 3.10,因为 onnxruntime==1.16.3 需要 Python 版本在 3.7 到 3.10 之间,推荐使用安装包下载安装:python 下载地址 https://www.python.org/downloads/,下载对应版本后点击安装,注意添加到系统环境变量中,也可使用命令行安装方式)、PIP、GIT、FFmpeg(安装后需重新启动系统以使 FFmpeg 正常运行)、Microsoft Visual C++2015 可再发行组件包、微软 Visual Studio 2022 构建工具(安装过程中确保选择桌面开发与 C++包)。
2025-02-13
python现在能和ai软件怎么结合应用
Python 与 AI 软件可以通过以下方式结合应用: 1. 安装编程助手插件,如 FittenAI 编程助手或灵码 AI 编程助手: 安装 Python 的运行环境,可参考 。 对于 FittenAI 编程助手,安装步骤为点击左上角的 FileSettingsPluginsMarketplace,安装完成后左侧会出现插件图标,注册登录后即可开始使用。使用时,按下 Tab 键接受所有补全建议,按下 Ctrl+→键接收单个词补全建议;通过点击左上角工具栏中的 Fitten Code–开始新对话打开对话窗口进行 AI 问答;在 Fitten Code 工具栏中选择“Fitten Code生成代码”,然后在输入框中输入指令即可自动生成代码;选中需要进行翻译的代码段,右键选择“Fitten Code–编辑代码”,然后在输入框中输入需求即可完成代码转换;Fitten Code 能够根据代码自动生成相关注释。 对于灵码 AI 编程助手,安装步骤为点击左上角的 FileSettingsPluginsMarketplace,安装完成插件会提示登录,按要求注册登录即可,使用上和 Fitten 差不多。 2. 如果希望更深入地结合应用,最好体系化地了解编程以及 AI 知识,至少熟悉以下内容: Python 基础:包括基本语法(如变量命名、缩进等)、数据类型(如字符串、整数、浮点数、列表、元组、字典等)、控制流(如条件语句、循环语句)、函数(定义和调用函数、参数和返回值、作用域和命名空间)、模块和包(导入模块、使用包)、面向对象编程(类和对象、属性和方法、继承和多态)、异常处理(理解异常、异常处理)、文件操作(文件读写、文件与路径操作)。
2025-01-25
你觉得作为一个普通不懂得程序的人来说,在面对未来的AI时代,需要学习编程的基础知识吗?系统性的学习Python或者你觉得学习Python哪些主要知识注音对了。
对于普通不懂得程序的人来说,在面对未来的 AI 时代,学习编程的基础知识是有一定必要的。如果想系统性地学习 Python,以下是一些需要重点关注的主要知识: 1. Python 基础: 基本语法:了解 Python 的基本语法规则,如变量命名、缩进等。 数据类型:熟悉字符串(String)、整数(Integer)、浮点数(Float)、列表(List)、元组(Tuple)、字典(Dictionary)等基本数据类型。 控制流:学会使用条件语句(if)、循环语句(for 和 while)来控制程序执行流程。 2. 函数: 定义和调用函数:学习如何定义自己的函数以及调用现有的函数。 参数和返回值:理解函数接收参数和返回结果的方式。 作用域和命名空间:了解局部变量和全局变量的概念及工作方式。 3. 模块和包: 导入模块:学习如何导入 Python 标准库中的模块或第三方库。 使用包:理解如何安装和使用 Python 包来扩展程序功能。 4. 面向对象编程(OOP): 类和对象:了解类的定义和实例化等基本概念。 属性和方法:学习为类定义属性和方法,并通过对象调用。 继承和多态:了解类之间的继承关系及实现多态的方法。 5. 异常处理: 理解异常:了解异常的概念及在 Python 中的工作原理。 异常处理:学会使用 try 和 except 语句处理程序中可能出现的错误。 6. 文件操作: 文件读写:学习如何打开文件、读取文件内容和写入文件。 文件与路径操作:理解如何使用 Python 处理文件路径及列举目录下的文件。 对于中学生学习 AI,建议如下: 1. 从编程语言入手学习:可以从 Python、JavaScript 等编程语言开始,学习编程语法、数据结构、算法等基础知识。 2. 尝试使用 AI 工具和平台:使用 ChatGPT、Midjourney 等 AI 生成工具体验应用场景,探索如百度的“文心智能体平台”、Coze 智能体平台等面向中学生的教育平台。 3. 学习 AI 基础知识:了解 AI 的基本概念、发展历程、主要技术(如机器学习、深度学习),学习其在教育、医疗、金融等领域的应用案例。 4. 参与 AI 相关的实践项目:参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动,尝试利用 AI 技术解决实际问题,培养动手能力。 5. 关注 AI 发展的前沿动态:关注权威媒体和学者,了解最新进展,思考 AI 技术对未来社会的影响,培养思考和判断能力。 总之,中学生可以从编程基础、工具体验、知识学习、实践项目等多方面入手,全面系统地学习 AI 知识和技能,为未来的 AI 发展做好准备。但需注意,以上内容由 AI 大模型生成,请仔细甄别。
2025-01-24
Python机器学习基础教程
很抱歉,目前知识库中没有关于“Python 机器学习基础教程”的具体内容。但我可以为您提供一个大致的指导方向。 首先,学习 Python 机器学习需要掌握 Python 编程语言的基础知识,包括数据类型、控制结构、函数等。 其次,了解常见的机器学习概念和算法,如线性回归、逻辑回归、决策树、聚类等。 然后,学习使用相关的 Python 库,如 Scikitlearn,它提供了丰富的机器学习工具和函数。 您可以通过在线课程、书籍、官方文档等多种资源来深入学习 Python 机器学习。
2025-01-23
如何从入门到精通AI
以下是从入门到精通 AI 的学习路径: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,可根据自己的兴趣选择特定模块深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解其工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 如果希望继续精进,对于 AI,可以尝试了解以下内容作为基础: 1. AI 背景知识: 基础理论:了解人工智能、机器学习、深度学习的定义及其之间的关系。 历史发展:简要回顾 AI 的发展历程和重要里程碑。 2. 数学基础: 统计学基础:熟悉均值、中位数、方差等统计概念。 线性代数:了解向量、矩阵等线性代数基本概念。 概率论:基础的概率论知识,如条件概率、贝叶斯定理。 3. 算法和模型: 监督学习:了解常用算法,如线性回归、决策树、支持向量机(SVM)。 无监督学习:熟悉聚类、降维等算法。 强化学习:简介强化学习的基本概念。 4. 评估和调优: 性能评估:了解如何评估模型性能,包括交叉验证、精确度、召回率等。 模型调优:学习如何使用网格搜索等技术优化模型参数。 5. 神经网络基础: 网络结构:理解神经网络的基本结构,包括前馈网络、卷积神经网络(CNN)、循环神经网络(RNN)。 激活函数:了解常用的激活函数,如 ReLU、Sigmoid、Tanh。
2025-02-27
我是一名AI工具使用小白,渴望快速掌握AI工具,在电子表格制作、ppt制作、公文写作、文案写作等方面提升应用能力,请问应该学习哪些入门课程。
以下是一些适合您入门学习的 AI 课程: 1. 工具入门篇(AI Tools): 数据工具多维表格小白之旅:适合 Excel 重度使用者、手动数据处理使用者、文件工作者。通过表格+AI 进行信息整理、提效、打标签,满足 80%数据处理需求。 文章链接: 视频链接: 2. 工具入门篇(AI Code): 编程工具Cursor 的小白试用反馈:适合 0 编程经验、觉得编程离我们很遥远的小白。通过 AI 工具对编程祛魅,降低技术壁垒。 文章链接: 3. 工具入门篇(AI Music): 音乐工具Suno 的小白探索笔记:适合 0 乐理知识、觉得作词作曲和我们毫不相关成本巨大的小白。AI 赋能音乐创作,无需乐理知识即可参与音乐制作。 文章链接: 此外,还有以下相关内容供您参考: 1. 关于 AI 视频制作的交流与答疑: 视频流表格制作:在知识库的 AI 视频专栏中有相关教程和模板。 Copy UI 社区:微推有专门研究 Copy UI 的社区,相关内容有趣但本次未展开讲。 SD 类图片作用:国内大厂很卷,一般需求吉梦等产品可完成,特殊精细要求才用 SD,不了解可在微推加 AI 会话中找。 图片视角转移:使用 P 模型,上传图片并告知镜头移动方向和相关内容。 PNG 与背景融合:Recraft 产品目前不太擅长 PNG 与背景的特别好的融合,可通过合并方式处理。 保证文字不崩:使用吉梦的 2.1 模型效果较好。 新手 AI 视频制作:纯小白参与项目时,项目组会做好部分准备工作,上手难度不高,专注出图和出视频,用好相关技术。 关于利用 AI 工具创作北京宣传片相关问题的探讨。 AI 工具使用思路:对于如何利用 AI 工具创作,建议直接上手尝试,通过试错和与 AI 交流获取反馈,遇到具体问题再向社区请教。 素材处理方法:若有故宫相关照片素材,可采用导入参考图生图、让实拍素材动起来等方式,还可通过抠图、融图等操作将素材与虚拟背景融合。 创作需先构思:创作时不能仅考虑如何连接已有素材,而应先构思剧本和想要表达的内容,再合理运用素材。 2. 入门工具推荐: Kimi 智能助手:Chatgpt 的国产平替,实际上手体验最好,推荐新手用 Kimi 入门学习和体验 AI。不用科学🕸️、不用付费、支持实时联网。是国内最早支持 20 万字无损上下文的 AI,也是目前对长文理解做的最好的 Ai 产品。能一次搜索几十个数据来源,无广告,能定向指定搜索源。 PC 端: 移动端 Android/ios: 您还可以通过「飞书」这款工具,浏览其社区的精选课程、先进客户实践。下载飞书:
2025-02-26
dify平台入门
Dify 是一个开源的大模型应用开发平台: 理念:结合后端即服务和 LLMOps 的理念。 特点:为用户提供直观界面,快速构建和部署生产级别的生成式 AI 应用。具备强大工作流构建工具,支持广泛模型集成,有功能丰富的提示词 IDE 和全面的 RAG Pipeline 用于文档处理和检索。允许用户定义 Agent 智能体,通过 LLMOps 功能持续监控和优化应用程序性能。 部署选项:提供云服务和本地部署,满足不同需求。 优势:开源特性确保对数据完全控制和快速产品迭代,设计理念注重简单、克制和快速迭代,能帮助用户将 AI 应用创意快速转化为现实。 建议:个人研究推荐单独使用,企业级落地项目推荐多种框架结合。 Dify 官方手册:https://docs.dify.ai/v/zhhans
2025-02-26
哪里可以下载《DeepSeek:从入门到精通》
《DeepSeek:从入门到精通》可以通过以下链接下载:https://waytoagi.feishu.cn/record/QAURr4CNGeJ5GIcvU0nc9X3dndg
2025-02-24
《DeepSeek:从入门到精通》
《DeepSeek:从入门到精通》是由清华大学新闻与传播学院新媒体研究中心出品的指南。该指南详细阐述了 DeepSeek 的功能,如智能对话、文本生成、代码生成、自然语言理解等,并探讨了如何使用 DeepSeek,包括推理模型与通用模型的区别、提示语设计策略以及如何从入门到精通。文章还介绍了提示语设计的核心技能、常见陷阱及应对方法,旨在帮助用户更好地掌握 AI 工具的使用,提升工作效率和创新能力。 此外,还有一些相关的报告和内容,如 2 月 10 日社区动态速览中提到的《2025DeepSeek 爆火详细报告:回顾 DeepSeek 的爆火过程》《DeepSeek 15 天指导手册——从入门到精通》《DeepSeekV3 技术报告》中文翻译版、华西证券的《计算机行业深度Deepseek:国产 AI 应用的“诺曼底时刻”》、中信建投的《DeepSeek R1 深度解析及算力影响几何》等。
2025-02-24
帮我推荐一本入门llm的书
以下是为您推荐的入门 LLM 的相关资源: 1. 《皇子:LLM 经典论文速读版,看完感觉自己通透了》:包含 31 篇 LLM 的经典论文速读版,涵盖大语言模型架构、RAG、预训练、微调、提示词等内容。阅读前可安装浏览器插件“沉浸式翻译”方便中文阅读,将 arxiv PDF 论文原地址域名中的 x 更换成 5 可调整为 HTM 版本方便阅读。 2. 课程学习: 首先学习大语言模型(LLM)入门者的课程,这是了解 LLM 的基础。 进一步学习面向开发者的课程,帮助更好地应用 LLM 于实际项目中。 3. AI 大神 Karpathy 再发的 LLM 入门介绍视频:时长三个半小时,详细介绍 LLM 训练的全部过程,包括预训练、有监督微调和强化学习。即使没有技术背景也能看懂,将提供对 ChatGPT 等 LLM 完整训练流程的直观理解,包含许多示例,并可能帮助思考当前的能力、所处的位置以及未来的发展方向。
2025-02-23