Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

国产ai,除了deepseek能力最强,如元宝ai,文言一心,kimi,纳米ai,通义等,哪个能力最强

Answer

以下是关于国产 AI 产品在 2025 年 1 月的一些榜单情况:

  • 在国内流量榜中,排名依次为:deepseek、豆包、Kimi、文心一言、deepseek 开放平台、百度 AI 助手、阿里通义、纳米 AI 搜索、秘塔 AI 搜索。
  • 在国内月活榜中,排名依次为:deepseek、豆包、deepseek 开放平台、Kimi、百度 AI 助手、文心一言、知乎直答、纳米 AI 搜索、沉浸式翻译。

需要注意的是,不同 AI 产品在不同方面可能具有各自的优势,其能力的强弱也会因具体应用场景和用户需求而有所不同。

Content generated by AI large model, please carefully verify (powered by aily)

References

AI智库|月度榜单🏆(2025-01)

|排名|产品|分类|网址|访问量(万)|环比变化|所属公司|返回导航||-|-|-|-|-|-|-|-||1|deepseek|聊天机器人|chat.deepseek.com|22541|20.4093|深度求索|||A4+1|豆包|聊天机器人|doubao.com|3457|0.1041|字节跳动|||A5+1|Kimi|聊天机器人|kimi.moonshot.cn|3282|-0.1283|月之暗面|||A6+1|文心一言|聊天机器人|yiyan.baidu.com|1448|-0.3014|百度|||A7+1|deepseek开放平台|开发工具|platform.deepseek.com|1093|10.0697|深度求索|||A8+1|百度AI助手|聊天机器人|chat.baidu.com|881|-0.2519|百度|||A9+1|阿里通义|聊天机器人|tongyi.aliyun.com|831|-0.2158|阿里巴巴|||A10+1|纳米AI搜索|智慧搜索|n.cn|555|0.1454|360|||A11+1|秘塔AI搜索|智慧搜索|metaso.cn|552|-0.2867|秘塔网络||

AI智库|月度榜单🏆(2025-01)

|排名|产品|分类|网址|活跃用户(万人)|环比变化|所属公司|返回导航||-|-|-|-|-|-|-|-||1|deepseek|聊天机器人|chat.deepseek.com|7068|24.3616|深度求索|||A4+1|豆包|聊天机器人|doubao.com|779|0.1911|字节跳动|||A5+1|deepseek开放平台|开发工具|platform.deepseek.com|660|-|深度求索|||A6+1|Kimi|聊天机器人|kimi.moonshot.cn|591|0.1135|月之暗面|||A7+1|百度AI助手|聊天机器人|chat.baidu.com|489|-0.2741|百度|||A8+1|文心一言|聊天机器人|yiyan.baidu.com|358|-0.1492|百度|||A9+1|知乎直答|智慧搜索|zhida.zhihu.com|279|0.3637|知乎|||A10+1|纳米AI搜索|智慧搜索|n.cn|275|0.1926|360|||A11+1|沉浸式翻译|翻译|immersivetranslate.com|157|0.1393|书同文网络||

2024人工智能报告|一文迅速了解今年的AI界都发生了什么?

Llama 3.1是迄今为止最大版本,其在推理、数学、多语言和长上下文任务中能够与GPT-4相抗衡。这标志首次开放模型缩小与专有前沿的差距。上图为人们关于Llama 3.1 405B与GPT,Claude的评估,win:胜Tie:平Loss:输借助AlphaGeometry,符号推理引擎得以拯救谷歌DeepMind与纽约大学团队使用符号引擎生成了数百万条合成定理和证明,利用这些数据从零开始训练了一个语言模型。AlphaGeometry在语言模型提出新构造,与符号引擎执行推理交替进行,直至找到解决方案。令人印象深刻的是,AlphaGeometry在奥林匹克级几何问题基准测试中解决了30题中的25题,接近人类国际数学奥林匹克金牌得主的表现。第二好的AI表现仅得10分。它还展示了泛化能力——例如,发现2004年国际数学奥林匹克问题中的一个具体细节对于证明并非必要“尽管受到制裁,中国LLMs在排行榜上风头正劲”由DeepSeek、零一万物、知谱AI和阿里巴巴开发的模型在LMSYS排行榜上取得了优异的成绩,尤其在数学和编程方面表现尤为出色。中国的最强模型与美国生产的第二强前沿模型竞争,同时在某些子任务上挑战了SOTA。中国模型更能优先考虑计算效率,以弥补GPU访问的限制,并学会比美国同行更有效地利用资源。中国模型各有优势。例如,DeepSeek在推理过程中通过多头隐式注意力减少内存需求,并且改进了MoE架构。同时,零一万物更加关注数据集的建设而不是建筑创新。由于在像Common Crawl这样的流行存储库中相对缺乏数据,因此它更加关注建立强大的中文数据集来弥补不足。

Others are asking
如何生成稳定的AI视频
以下是关于生成稳定的 AI 视频的相关信息: 工具推荐: Runway: 网址:https://app.runwayml.com/videotools/ 官方使用教程:https://academy.runwayml.com/ 知识库详细教程: 特点:支持文生视频、图生视频、视频生视频;文生视频支持正向提示词、风格选择、运镜控制、运动强度控制、运动笔刷,支持多种尺寸,可设置种子值;生成好的视频可以延长时间,默认生成 4s 的视频;使用英文提示词。 Stable video: 网址:https://www.stablevideo.com/generate 知识库详细教程: 特点:支持文生视频、图生视频,仅英文;图生视频不可写 prompt,提供多种镜头控制;文生视频先生成 4 张图片,选择其中一张图片以后再继续生成视频。 技术差异: 代表产品如 Runway,在端到端视频生成中,涉及的技术包括 GAN 生成对抗网络、VAE 变分自编码器和 Transformer 自注意力机制。 GAN 生成对抗网络:是一种无监督的生成模型框架,能生成视觉逼真度高的视频,但控制难度大、时序建模较弱。 VAE 变分自编码器:可以学习数据分布,像压缩和解压文件一样重建视频数据,能根据条件输入控制生成过程,但质量较 GAN 略低。 GAN、VAE 生成视频速度快,但存在生成质量和分辨率较低、长度短、控制能力弱的缺点。 Transformer 自注意力机制:通过学习视频帧之间的关系,理解视频的长期时间变化和动作过程,对长视频建模更好,时序建模能力强,可实现细粒度语义控制,但计算量大。 当前面临的问题及解决方案: 当前仍面临生成时间长、视频质量不稳定、生成的视频语义不连贯、帧间存在闪烁、分辨率较低等问题。解决方案包括使用渐进生成、增强时序一致性的模型等方法,上述的补帧算法、视频完善策略也可在一定程度上缓解问题。 制作技巧: 在镜头衔接上要写运镜提示词,描述多种运镜方式,否则画面会乱变。在做视频时要不断尝试参数。
2025-02-26
AI陪伴有什么好的产品
以下是一些 AI 陪伴的好产品: 1. Character.ai:这是一个 AI 虚拟陪伴平台,用户能与数百个 AI 驱动的角色交流,还可创建自己的角色并赋予其各种特性。 2. Replika:一款 AI 虚拟陪伴应用,用户可设计理想伴侣,其会存储记忆并在未来对话中参考,甚至能发送照片。 3. Talkie:主打情感路线的 AI 虚拟陪伴应用,设计有大量 npc,游戏和休闲娱乐体验感强,每个 npc 都有自己的剧情体系,交流中会触发抽取卡牌机会。 AI 陪伴已进入成长爆发期,可能看起来是小众市场,但实际上已成为生成式 AI 主流应用场景之一。网页端和移动端数据表明其正变得越来越普及。例如,在网页端榜单上,Character.ai 领跑 AI 陪伴榜单。 陪伴应用的范畴也在迅速扩大,不仅限于“男友”“女友”概念,还涵盖友谊、指导、娱乐、医疗保健等方面。一些早期研究显示,AI 在诊断准确性和患者沟通技巧上能超越真人医生,如 Replika 聊天机器人帮助部分用户减轻了自杀念头。 移动端和网页端应用在 AI 使用类型上有明显不同。网页端产品更倾向支持内容创作和编辑的复杂工作流程,如 ElevenLabs、Leonardo、Gamma 等。移动端应用更倾向通用型助手,不少模仿了 ChatGPT。
2025-02-26
AI基础
以下是关于 AI 基础的全面介绍: 一、AI 背景知识 1. 基础理论:人工智能、机器学习、深度学习的定义及其之间的关系。 2. 历史发展:简要回顾 AI 的发展历程和重要里程碑。 二、数学基础 1. 统计学基础:熟悉均值、中位数、方差等统计概念。 2. 线性代数:了解向量、矩阵等线性代数基本概念。 3. 概率论:基础的概率论知识,如条件概率、贝叶斯定理。 三、算法和模型 1. 监督学习:了解常用算法,如线性回归、决策树、支持向量机(SVM)。 2. 无监督学习:熟悉聚类、降维等算法。 3. 强化学习:简介强化学习的基本概念。 四、评估和调优 1. 性能评估:了解如何评估模型性能,包括交叉验证、精确度、召回率等。 2. 模型调优:学习如何使用网格搜索等技术优化模型参数。 五、神经网络基础 1. 网络结构:理解神经网络的基本结构,包括前馈网络、卷积神经网络(CNN)、循环神经网络(RNN)。 2. 激活函数:了解常用的激活函数,如 ReLU、Sigmoid、Tanh。 六、学习资源和方法 1. 了解 AI 基本概念:阅读「」部分,熟悉 AI 的术语和基础概念。浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅:在「」中,找到一系列为初学者设计的课程。通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。特别推荐李宏毅老师的课程。 3. 选择感兴趣的模块深入学习:AI 领域广泛(比如图像、音乐、视频等),根据自己的兴趣选择特定的模块进行深入学习。掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试:理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出作品。在知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品:与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 七、书籍推荐 1. 《认知神经学科:关于心智的生物学》(作者:Michael S.Gazzaniga;Richard B.Lvry;George R.Mangun):世界权威的认知神经科学教材,认知神经科学之父经典力作,系统了解认知神经科学的发展历史、细胞机制与认知、神经解剖与发展、研究方法、感觉知觉、物体识别、运动控制、学习与记忆、情绪、语言、大脑半球特异化、注意与意识、认知控制、社会认知和进化的观点等。 2. 《神经科学原理》(作者:Eric R.Kandel;James H.Schwartz):让你系统神经元的细胞和分子生物学、突触传递、认知的神经基础、感觉、运动、神经信息的加工、发育及行为的出现、语言、思想、感动与学习。 3. 《神经生物学:从神经元到脑》(作者:John G.Nicholls 等著):神经生物学领域内的一本世界级名著,涵盖了神经科学的方方面面,系统介绍了神经生物徐的基本概念、神经系统的功能及细胞和分子机制。
2025-02-26
普通人怎么学习AI
普通人学习 AI 可以参考以下步骤: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,如图像、音乐、视频等,可根据自身兴趣选择特定模块深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习后,通过实践巩固知识,尝试使用各种产品做出作品。 在知识库分享实践后的作品和文章。 5. 体验 AI 产品: 与现有的 AI 产品互动,如 ChatGPT、Kimi Chat、智谱、文心一言等聊天机器人,了解其工作原理和交互方式。 此外,还可以参考以下方法: 1. 万能公式法:问 AI【一个(xxx 职业)需要具备哪些知识?】,AI 就可给出知识框架,然后根据知识框架每一个小点去问,就能让 AI 工具帮你指数级深度思考。 2. 寻找优质信息源:像没有技术背景的普通人,学习或了解 AI 最好的信息源在「即刻」App 的“”等免费圈子里。 3. 信息爆炸之做减法的小 tips: 只掌握最好的产品,少关注新产品测评(除非远超 ChatGPT)。 只解决具体问题,不做泛泛了解。从问题中来,到问题中去。 只关注核心能力,不关注花式玩法,用 AI 扬其长避其短。 只关注理清需求和逻辑,不死记硬背提示词。 先关注提升认知/洞察,然后再谈技巧。 对于纯 AI 小白,如果还在观望 AI 不知从何入手,可以参考《雪梅 May 的 AI 学习日记》。其学习模式是输入→模仿→自发创造。学习资源免费开源,可去 waytoAGI 社区发现自己感兴趣的 AI 领域,学习最新内容。
2025-02-26
AI基础
以下是关于 AI 基础的知识: 一、背景知识 了解人工智能、机器学习、深度学习的定义及其之间的关系,简要回顾 AI 的发展历程和重要里程碑。 二、数学基础 1. 统计学基础:熟悉均值、中位数、方差等统计概念。 2. 线性代数:了解向量、矩阵等线性代数基本概念。 3. 概率论:掌握基础的概率论知识,如条件概率、贝叶斯定理。 三、算法和模型 1. 监督学习:了解常用算法,如线性回归、决策树、支持向量机(SVM)。 2. 无监督学习:熟悉聚类、降维等算法。 3. 强化学习:了解强化学习的基本概念。 四、评估和调优 1. 性能评估:了解如何评估模型性能,包括交叉验证、精确度、召回率等。 2. 模型调优:学习如何使用网格搜索等技术优化模型参数。 五、神经网络基础 1. 网络结构:理解神经网络的基本结构,包括前馈网络、卷积神经网络(CNN)、循环神经网络(RNN)。 2. 激活函数:了解常用的激活函数,如 ReLU、Sigmoid、Tanh。 六、学习建议 1. 了解 AI 基本概念:阅读相关部分,熟悉术语和基础概念,了解主要分支及联系,浏览入门文章。 2. 开始学习之旅:在入门课程中学习生成式 AI 等基础知识,推荐李宏毅老师的课程,通过在线教育平台按自己节奏学习。 3. 选择感兴趣模块深入:AI 领域广泛,可根据兴趣选择特定模块,如掌握提示词技巧。 4. 实践和尝试:理论学习后进行实践,巩固知识,使用各种产品创作作品,并分享实践成果。 5. 体验 AI 产品:与 ChatGPT、Kimi Chat、智谱、文心一言等互动,了解工作原理和交互方式。 此外,为您推荐三本神经科学相关的基础学科书籍: 1. 《认知神经学科:关于心智的生物学》(作者:Michael S.Gazzaniga;Richard B.Lvry;George R.Mangun):世界权威的认知神经科学教材,系统了解认知神经科学的多方面内容。 2. 《神经科学原理》(作者:Eric R.Kandel;James H.Schwartz):让您系统了解神经元的相关知识。 3. 《神经生物学:从神经元到脑》(作者:John G.Nicholls 等著):神经生物学领域的名著,涵盖神经科学的方方面面。
2025-02-26
AI介入设计的相关案例
以下是大淘宝设计部 2023 年度 AI 设计实践的相关案例: 1. 在工作流方面: 主要工具为 Midjourney 和 Stabel Diffusion,辅助工具有 RUNWAY 和 PS beta 等。 在营销设计中,AI 设计使整体项目设计时间大约减少 18%左右,其中在创意阶段丰富性提升 150%左右、时间节省 60%左右。 创意多样,项目中不同创意概念的提出数量增加了 150%。 执行加速,设计师在创意生成阶段的时间缩短了平均 60%。 整体提效,从创意发散到落地执行品效都有显著提升。 2. 具体应用场景案例: 大促营销:通过 AI 生成图像或素材,再结合平面合成及修正,确保符合品牌形象,更精准表达营销活动主题,如淘宝天猫大促视觉、双 11 大促横向会场版头模板化应用、天猫小黑盒新品联名等。 AI 布景:对于定制化真人模特实景素材的主题活动,通过 AI 完成页面所有素材的生产和输出,如七夕主题活动页面、超级品类日传播拍摄创意等。 产品营销视觉:在 UI 设计场景中,采用 AI 能力快速定制多种用户需要的视觉效果,如 88VIPAI 定制皮肤。 品牌超级符号映射:根据品牌符号的模型训练和结构控制,用户输入丰富关键词即可快速完成准确的超级符号主视觉,如双 11AI 创作赢红包、双 11 联合传播猫头海报&花车大巡游、超级品类日品牌符号系列海报等。 品牌 IP 形象 AI 生成:训练特定的天猫/淘宝/营销 IP 公仔模型,稳定输出定制化 IP 形象,如天猫 AI 玩行动品牌联合海报、天猫双 11出游主题喵卡、淘宝天猫一起冲亚、天猫 U 先公仔三视图生成及应用等。 传播&投放:如双 11 超级发布品牌联合海报、媒介投放开屏海报。
2025-02-26
目前最强大的ai是什么
目前,很难明确指出哪一个是最强大的 AI。在大语言模型方面,OpenAI 的 GPT4.0 功能强大,GPT3.5 也引发了当前的 AI 热潮。微软的 Bing 混合使用 GPT4 和 3.5,常率先推出新功能且连接到互联网。谷歌的 Bard 由 PaLM 2 等基础模型驱动,虽有改进但仍有待提升。Anthropic 发布的 Claude 2 具有较大的上下文窗口,且不太可能恶意行事。此外,Open AI 发布的 Code Interpreter 也是非常强大的 ChatGPT 版本。但不同的 AI 在不同的应用场景和任务中可能表现出不同的优势,其强大程度也会因评估标准和具体需求的不同而有所差异。
2025-02-19
最强大AI 工具是哪个
以下是一些在不同领域表现出色的 AI 工具: 在软件架构设计中,用于绘制逻辑视图、功能视图和部署视图的工具包括:Lucidchart、Visual Paradigm、ArchiMate、Enterprise Architect、Microsoft Visio、draw.io(现在称为 diagrams.net)、PlantUML、Gliffy、Archi、Rational Rose。 2023 年,能帮助月赚 5w 的部分 AI 工具:AI 研究工具如 Claude、ChatGPT、Bing Chat、Perplexity;图片处理工具如 DallE、Leonardo、BlueWillow、Midjourney;版权写作工具如 Rytr、Copy AI、Wordtune、Writesonic;设计工具如 Canva、Clipdrop、Designify、Microsoft Designer;网站搭建工具如 10Web、Framer、Hostinger、Landingsite;视频处理工具如 Klap、Opus、Invideo、Heygen;音频处理工具如 Murf、LovoAI、Resemble、Eleven Labs;SEO 优化工具如 Alli AI、BlogSEO、Seona AI、Clearscope;Logo 设计工具如 Looka、LogoAI、Brandmark、Logomaster;聊天机器人工具如 Droxy、Chatbase、Voiceflow、Chatsimple;自动化工具如 Make、Zapier、Bardeen、Postman。 在 AI 聊天机器人领域,访问量最大的是 Open AI 的 ChatGPT,占总访问量的 76.31%,角色 AI 以 19.86%的访问量位居第二。其他如 Google 的 Bard、Janitor AI、Perplexity AI、You.com、Crushon AI 和 Personal AI 各自产生的访问量不到总访问量的 2%。
2025-02-09
哪款AI软件,逻辑性最强,知识点最全面
目前市场上有多种 AI 软件在不同领域展现出较强的逻辑性和全面的知识点。以下为您列举部分示例: 医渡云病历分析系统:使用数据分析和自然语言处理技术,能够分析医疗病历,为医生提供辅助诊断建议,市场规模达数十亿美元。 讯飞听见会议总结功能:运用自然语言处理和机器学习技术,可自动总结会议发言内容,市场规模达数亿美元。 英语流利说纠错功能:借助自然语言处理和机器学习,帮助语言学习者纠正发音、语法等错误,并提供纠正建议和练习,市场规模达数十亿美元。 腾讯文档分类功能:通过数据分析和机器学习,自动分类办公文件,方便管理,市场规模达数亿美元。 美图美妆 APP:利用图像识别和数据分析,根据用户肤质提供美容护肤建议,市场规模达数亿美元。 喜马拉雅儿童版:采用自然语言处理和机器学习,为儿童生成有趣故事,激发想象力,市场规模达数亿美元。 汽车之家 APP:使用数据分析和机器学习,快速诊断汽车故障,提供维修建议,市场规模达数十亿美元。 顺丰速运 APP:凭借数据分析和机器学习,优化物流配送路径,提高物流效率,市场规模达数十亿美元。
2025-02-06
国产Ai中哪个的英语理解能力和翻译能力最强
目前国产 AI 中,在英语理解和翻译能力方面,不同的产品各有特点。 通义万相在中文理解和处理方面表现出色,作为阿里生态系统的一部分,操作界面简洁直观,用户友好度高,且目前免费,每天签到获取灵感值即可使用。但在处理非中文语言或国际化内容方面,可能不如一些国际 AI 图像生成工具出色,由于模型训练数据可能主要基于中文环境,在处理多元文化内容时可能存在偏差。 可灵是由快手团队开发的 AI 应用,主要用于生成高质量的图像和视频,图像质量非常高,但价格相对较高。 需要注意的是,对于英语理解和翻译能力的评价会因具体的应用场景和需求而有所不同。
2025-01-29
当前最强AI模型有哪些?
当前最强的 AI 模型包括: 1. OpenAI 的 o3 模型:在 ARCAGI 测试中达到了 87.5%的准确率,几乎与人类水平相当。能够进行自我对话、多角度分析和自我质疑,具备一定的“思考意识”。下一代 o3mini 模型的推理能力能够媲美 o1 模型。 2. Google 的 Gemini 2.0 Flash:在重要的基准能力上直接追平甚至部分超越了 Gemini 1.5 Pro,同时模型速度有极大提升。 3. OpenAI 的 GPT4:是一个大型多模态模型,在各种专业和学术基准测试中表现出与人类相当的水平。 4. Midjourney v5:具有极高的一致性,擅长以更高分辨率解释自然语言 prompt,并支持像使用 tile 这样的重复图案等高级功能。 5. DALL·E 3:代表了生成完全符合文本的图像能力的一大飞跃。 6. Mistral 7B:在所有基准测试上超越了 Llama 2 13B,在许多基准测试上超越了 Llama 1 34B,在代码任务上接近 CodeLlama 7B 的性能,同时在英语任务上表现良好。 此外,还有智谱·AI 开源的一些模型,如 WebGLM10B、MathGLM2B 等。
2025-01-25
哪个AI对PDF文件的提炼总结能力最强
目前在对 PDF 文件的提炼总结能力方面,Claude 2 表现出色。将整本书粘贴到 Claude 的前一版本中能取得令人印象深刻的结果,新模型更强大。可以通过查看相关经验和提示。此外,myaidrive.com 网站上的 AI PDF 也能处理较大的 PDF 文件,并为冗长的文档提供上级摘要。同时,近期出现的各类 AI 搜索引擎,如 perplexity.ai、metaso、360 搜索、ThinkAny 等,其智能摘要功能能够辅助快速筛选信息。但需要注意的是,这些系统仍可能产生幻觉,若要确保准确性,需检查其结果。
2025-01-23
我想时刻关注Deepseek目前在电商行业应用落地的场景的信息及对应的应用APP、小程序等,可以通过什么渠道第一时间获取
目前关于 Deepseek 在电商行业应用落地的场景信息以及对应的应用 APP、小程序等,您可以通过以下渠道第一时间获取: 1. 关注 Deepseek 官方网站的动态发布和通知。 2. 订阅 Deepseek 官方的社交媒体账号,如微信公众号、微博等,获取最新消息。 3. 加入相关的电商行业论坛或社区,与其他从业者交流,获取相关信息。 4. 关注电商行业的权威媒体和资讯平台,可能会有相关报道。
2025-02-26
Deepseek目前已在电商行业应用落地的场景有哪些?
DeepSeek 在电商行业已应用落地的场景包括: 电商商品策划:如“电商商品策划 DeepSeek 大师版|一键领取同款多维表格模板”。 商品链接分析:如“商品链接分析工具”。 电商产品上架规划:如“电商产品上架规划”。 您可以通过以下链接获取更详细的信息:
2025-02-26
Deepseek本地化部署
以下是关于 DeepSeek 本地化部署的相关信息: 在“智能纪要:0225|最新的 DeepSeek 玩法教学 2025 年 2 月 25 日”中提到,明天(02/26 20:00)将教授 DeepSeek 本地部署。 在“第三期「AI 实训营」手把手学 AI【第三期:尝鲜阿里云上的 DeepSeek 玩法】”中,02/26 20:00 的课程主题为“人工智能平台 PAI 篇:本地部署满血版 DeepSeek”,课程内容包括 DeepSeek R1 技术原理、解锁 DeepSeek 的不同玩法(问答助手、蒸馏、微调)以及实战演练 DeepSeek R1 满血版快速部署和蒸馏训练。相关课程文档为
2025-02-26
目前市面上的文心一言,通义,deepseek等,用于写作效果如何
目前市面上的文心一言、通义、DeepSeek 等用于写作的效果各有特点: 文心一言(百度):大语言模型,可用以文学创作、商业文案创作、数理逻辑推算、中文理解、多模态生成。 通义(阿里巴巴):在特定领域和任务上表现出卓越的能力。 DeepSeek:在文字能力上表现突出,尤其在中文场景中高度符合日常、写作习惯,但在专业论文总结方面稍弱。数学能力经过优化表现不错,编程能力略逊于 GPT。 需要注意的是,不同模型的效果会因用户的具体需求和使用场景而有所差异。
2025-02-26
deepseek promat
DeepSeek 是当前在 AI 领域表现出色的模型。 其官网发声渠道包括微信公众号:DeepSeek,小红书:@DeepSeek(deepseek_ai),X。 DeepSeek 深夜发布了大一统模型 JanusPro,将图像理解和生成统一在一个模型中。该模型是一种新型的自回归框架,通过将视觉编码解耦为独立的路径解决了先前方法的局限性,利用单一的统一变压器架构进行处理,缓解了视觉编码器在理解和生成中的角色冲突,增强了框架的灵活性,超越了之前的统一模型,匹配或超过了特定任务模型的性能,成为下一代统一多模态模型的有力候选者。其模型(7B)和模型(1B)的相关链接分别为。 DeepSeek 爆火,具有价格亲民、实力超群的特点,是智慧开源领航者,实时联网深度推理双冠王,用技术普惠重新定义了 AI 边界,在 Appstore 排行第一,导致算力股大跌。 DeepSeek 的成功有其独特之处,开源永远是正确的。聪明的年轻 AI 研究人员、研究机构的氛围、开源社区的分享和交流,提高了其在全球 AI 领域的影响力和声望。过去一年,中国的开源大模型在全球 AI 研究和产品方面赢得了不少尊敬,中国的开源大模型在开源程度上更为彻底,容易被研究人员和开发者直接使用。国际 AI 界特别是硅谷认为中国大模型的代表玩家是 DeepSeek 和阿里巴巴,而我们自己认为是其他一些模型。客观地说,就国际 AI 界特别是硅谷能公正、积极地看待中国 AI 创新能力和对全球社区的贡献方面,DeepSeek 和阿里巴巴们做得更多。
2025-02-26
如何获取DeepSeek R1 满血版且能联网
获取 DeepSeek R1 满血版且能联网的方法如下: 1. 拥有扣子专业版账号:如果您还是普通账号,请自行升级或注册专业号后使用。 2. 开通 DeepSeek R1 大模型: 访问地址:https://console.volcengine.com/cozepro/overview?scenario=coze 打开火山方舟,找到开通管理,找到 DeepSeek R1 模型,点击开通服务。 添加在线推理模型,添加后在扣子开发平台才能使用。添加过程包括添加模型和完成接入。 3. 创建智能体:点击创建,先完成一个智能体的创建。 此外,您还可以参考以下教程获取更多信息: 教程地址:
2025-02-26
给出实际的操作案例,结合deepseek、kimi、豆包工具。
以下是结合 deepseek、kimi、豆包工具的实际操作案例: 在 2025 年 1 月的国内月活榜中: deepseek 作为聊天机器人,网址为 chat.deepseek.com,活跃用户达 7068 万人,环比变化为 24.3616%,所属公司为深度求索。 豆包作为聊天机器人,网址为 doubao.com,活跃用户为 779 万人,环比变化为 0.1911%,所属公司为字节跳动。 kimi 作为聊天机器人,网址为 kimi.moonshot.cn,活跃用户为 591 万人,环比变化为 0.1135%,所属公司为月之暗面。 在 2025 年 1 月的国内流量榜中: deepseek 作为聊天机器人,网址为 chat.deepseek.com,访问量达 22541 万,环比变化为 20.4093%,所属公司为深度求索。 豆包作为聊天机器人,网址为 doubao.com,访问量为 3457 万,环比变化为 0.1041%,所属公司为字节跳动。 kimi 作为聊天机器人,网址为 kimi.moonshot.cn,访问量为 3282 万,环比变化为 0.1283%,所属公司为月之暗面。 此外,在使用效果方面,DeepSeek 的思考与表达被认为碾压了包括豆包和 kimi 在内的其他模型,其思考过程细腻、自洽、深刻、全面,输出结果在语气、结构、逻辑上天衣无缝。
2025-02-20
kimi、豆包、deepseek的区别和优劣
以下是 kimi、豆包、deepseek 的区别和优劣: 从月活榜来看: deepseek:在月活用户方面表现出色,排名第一,月活用户达 7068 万人,环比变化为 24.3616%。 豆包:月活用户为 779 万人,环比变化为 0.1911%。 kimi:月活用户为 591 万人,环比变化为 0.1135%。 从流量榜来看: deepseek:访问量排名第一,达 22541 万。 豆包:访问量为 3457 万。 kimi:访问量为 3282 万。 在输出效果方面,DeepSeek 的思考与表达被认为碾压了包括豆包和 kimi 在内的其他模型,其思考过程细腻、自洽、深刻、全面,输出结果在语气、结构、逻辑上表现出色。 需要注意的是,这些数据仅反映了一定时期内的情况,且不同模型在不同的应用场景和用户需求下可能具有不同的优势。
2025-02-19
请你讲讲如何写提示词能与KIMI有效沟通
以下是关于如何写提示词与 KIMI 有效沟通的一些要点: 1. 不要期望设计一个完美的提示词就能得到理想答案,应将提示词视为一个相对完善的“谈话方案”,在与 KIMI 的对话中产生最终成果,并限缩自己思维中的模糊地带。 2. 多给 KIMI 几轮对话修正的余地,不要期望一次输入提示词就能得到想要的东西,因为很多时候自己刚开始也不清楚想要什么。 3. 可以参考以下步骤: 询问 KIMI“更好的提问”的方法论。 让 KIMI 分析提问适合的优化方法,并给出优化过程和结果。 将 KIMI 优化后的提问输入给特定的自动结构化框架,得到“提问优化助手”Prompt。 新建对话,先将“提问优化助手”发给 KIMI,再发送原始提问,得到结果。 再新建对话,让 KIMI 对比两份结果。 4. 在创作视频分镜头时,也可以借助 KIMI 写画面描述,甚至加上对音效的需求。同时,要尽可能精简人物对话,提炼重点。画面数量与台词长短有关,需平衡画面之间的联系。
2025-02-16
请对比文心一言、豆包、天工、Kimi以上几个软件各自的优势
以下是文心一言、豆包(字节跳动)、天工(不太明确您提到的天工具体所指,可能是指某些特定的模型或产品)、Kimi 这几个软件的优势对比: 文心一言 4.0(网页版): 优势:由百度开发,可能在某些特定领域的知识储备和语言理解能力上有一定优势。 豆包(字节跳动): 优势:无需科学上网,使用方便。 Kimi: 优势:不需要科学上网,无收费,不需要登录可以直接使用;有案例,点击预设问题即可开始尝试。 需要注意的是,对于不同的用户和应用场景,这些软件的优势可能会有所不同,其表现也会受到数据、算法、训练等多种因素的影响。
2025-01-16
请给我提供一些用KIMI处理excel数据的方法
以下是一些用 KIMI 处理 Excel 数据的方法: 1. 对数据的基本操作包括增加、删除、修改和查询。 2. 若要与数据库沟通,需学会 SQL 语句。 3. 可以通过 Kimi Chat(https://kimi.moonshot.cn)向 KIMI 提问,获取针对增、删、改、查的回答。 4. 对于新人,可通过深挖 KIMI 的回答来了解相关语法。 5. 收集资料时,可借助 AI 工具如 Perplexity.AI 高效完成,也可使用 KIMI 读取和整理网页内容,但需注意其阅读能力的限制,可分批次提供资料。
2025-01-09
kimi是什么
Kimi 是由 Moonshot AI 出品的智能助手,具有超大“内存”,能一口气读完二十万字的小说,还会上网冲浪。在聊天对话类 AI 产品中,Kimi 最显著的特点是超长上下文能力,最初支持 20 万字,现已提升到 200 万字,对于处理长文本或大量信息的任务有优势,但在文字生成和语义理解、文字生成质量方面可能不如国内其他产品,且不支持用户自定义智能体。
2025-01-08