Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

大模型 个性化 电商

Answer

大模型在电商领域的应用主要体现在以下方面:

  1. 生成电商服饰数据:以大元模型广场为例,可让大模型按要求生成电商服饰数据(含尺码、价格、描述等信息,输出为 Excel 结构),用于辅助运营小二回复问题沉淀;当缺少真实数据或担心数据安全时,还可用示例数据跑测试及做非结构化清洗。
  2. 个性化营销:在广告营销行业,大模型从初期的市场分析、中期的客户转化以及后期的客户复购均可参与,为消费者提供更个性化、智能化和互动性强的营销体验,而对于广告图案的生成完全可以通过 AI+设计相关的 SOP 来提高效率。

在医疗行业,大模型的应用主要涵盖三个方向:疾病的诊断与预测、药物研发以及个性化医疗。例如,麻省理工学院利用 AI 发现了新型广谱抗生素 Halicin,研究者通过训练集让 AI 学习分子特点,最终成功识别出符合要求的分子。目前很多医疗研究机构都进行医疗大模型的开发研究。

在图像生成领域,如 Midjourney 发布了模型个性化 Personalization 或'--p'的早期测试版本。其工作原理是学习用户的喜好,以便更可能用用户的口味来填补空白。使用时只需在提示后输入--p,或使用提示栏中的设置按钮为所有提示启用个性化功能,还可以使用--s 100 控制个性化效果的强度。但个性化目前不是一个稳定的功能,会随着更多的成对排名而变化,并且可能会推出算法更新。

Content generated by AI large model, please carefully verify (powered by aily)

References

开发:AI应用大模型商业化落地现状与思考

接下来,我们将深入了解大模型在商业化过程中的实际应用情况。首先来看医疗行业,这是关乎每个人生命健康的重要领域。大模型在医疗行业的应用主要涵盖三个方向:疾病的诊断与预测、药物研发以及个性化医疗。从医疗前期的图像诊断,基因组学和精准医疗到药物研发阶段再到最后病人的个性化医疗,人工智能都有其适合的应用场景。例如,在2020年,麻省理工学院利用AI发现了一种名为Halicin的新型广谱抗生素,它不仅能有效杀灭对现有抗生素产生耐药性的细菌,而且不会使细菌产生新的耐药性。这一突破性发现源于AI的助力。研究者先搞了一个由两千个性能已知的分子组成的训练集,这些分子都被标记好了是不是可以抑制细菌生长,用它们去训练AI。AI自己学习这些分子都有什么特点,总结了一套“什么样的分子能抗菌”的规律。之后又对美国FDA已通过的六万多个分子中进行分析,最终成功识别出了一个符合所有要求的分子,这就是Halicin。之后研究者开始做实验证明,它真的非常好使,大概很快就会用于临床,造福人类。这个例子充分展示了AI大模型在医疗领域的巨大潜力,目前很多医疗研究机构都进行医疗大模型的开发研究,大模型在医疗领域大有可为!广告营销行业目前仍然是AIGC()应用最多的业务场景之一,大模型在营销行业从初期的市场分析、中期的客户转化以及后期的客户复购均可参与打开营销生态新思路,为消费者提供更个性化、智能化和互动性强的营销体验,而对于广告图案的生成完全可以通过AI+设计相关的SOP来提高效率。大模型的应用不仅为营销策略提供了新的思路,还能为消费者带来更加个性化、智能化和互动性强的体验。此外,它们还能显著降低内容制作的成本并加速创意的实现过程。

入门篇:应用广场超多案例解析 2025年1月8日

[heading2]智能章节[01:19:05](https://waytoagi.feishu.cn/minutes/obcnzq961u739b88946h7y8h?t=4745000)银海讲解创建组织、应用及配置钉钉机器人和卡片的操作流程本章节银海带领大家进行图文操作,创建v to AGI测试组织,介绍在组织内创建应用的方法,包括设置应用名字、添加机器人、配置机器人基础信息和消息接收模式,还提及获取凭证信息、配置钉钉卡片ID及创建卡片模板等相关操作。[01:23:33](https://waytoagi.feishu.cn/minutes/obcnzq961u739b88946h7y8h?t=5013000)配置群机器人及展示其基于知识库答疑功能,提及数据问题本章节主要介绍了相关权限设置,包括开通卡片信息传回员工的权限操作(选中card权限,点击应用、权限管理等操作并批量申请),配置群机器人(复制回调地址,在钉钉页面添加机器人),以及展示机器人围绕企业知识库答疑场景,还提及数据清洗、获取等问题。[01:27:08](https://waytoagi.feishu.cn/minutes/obcnzq961u739b88946h7y8h?t=5228000)大模型可助力生成电商服饰数据及用于数据测试本章节银海展示了一个黑科技,以大元模型广场为例,可让大模型生成数据,如按要求生成电商服饰数据(含尺码、价格、描述等信息,输出为Excel结构),用于辅助运营小二回复问题沉淀;当缺少真实数据或担心数据安全时,还可用示例数据跑测试及做非结构化清洗。

Midjourney 更新 · 模型个性化

MJ今天发布了模型个性化Personalization或'--p'的早期测试版本。以下是其工作原理和使用方法。[heading1]官方说明[content]每次您写提示时,很多信息都是“隐含的”。MJ的算法通常会用它们自己的“偏好”来填补这些空白,这些偏好实际上是MJ社区的综合偏好。且每个人的偏好都是不同的!模型个性化会学习你的喜好,以便更可能用你的口味来填补空白。模型个性化的要求·目前,模型个性化从成对排名中的投票和你喜欢的探索页面上的图像中学习。·你需要大约200个成对排名/喜欢,才能使此功能生效。·你可以在排名页面查看你的评分数量,或在Discord上输入/info。如何使用模型个性化·只需在提示后输入--p,或使用提示栏中的设置按钮为所有提示启用个性化功能。·当你启用个性化功能时,会在提示后添加一个“代码”,你可以分享这个代码,让其他人也能使用应用于该图像的个性化效果。·你可以使用--s 100控制个性化效果的强度(0为关闭,1000为最大,100为默认)。请注意:个性化目前不是一个稳定的功能,它会随着你进行更多的成对排名而变化(细微的),并且我们可能会在接下来的几周内推出算法更新。所以请将其视为一个“不断变化的有趣功能”(表脸,就是没做好提前放出来赶进度的说辞)。

Others are asking
AI+电商
以下是一些 AI+电商的相关案例和场景: 电商:珠宝设计 提升珠宝玉器行业定制效率,包括输入原始纹理、生成 AI 设计、叠加纹理效果和机器雕刻生产。 详情可前往: 入库时间:2023/11/13 品牌:搭建品牌体系 有对应的关键词库(26 个),如品牌名、奶茶、中文名、情感联想度、饮料等。 详情可前往: 入库时间:2023/11/13 品牌:搭建品牌视觉体系(VI) 假设您是广告公司客户经理,接到搭建 XXX 品牌 VI 体系的需求,品牌方有具体要求和希望达成的目标。 详情可前往: 入库时间:2023/11/13 品牌:设计品牌联名方案 有对应的关键词库(15 个),如品牌、个人 IP、社交话题、联名策划方案等。 详情可前往: 入库时间:2023/11/13 创业:从零开始创立公司 提供绝佳的 Prompt 以及用 ChatGPT 创立完整 SaaS 公司的流程。 详情可前往: 入库时间:2023/11/13 课程:如何做一门课程 涵盖市场调研、在线网络课程、教学平台、社交媒体营销等方面。 详情可前往: 入库时间:2023/11/13 电商:带货本地生活 AI 数字人上岗,带货本地生活电商,一个月多赚 3 万。 详情可前往: 入库时间:2023/11/13 电商:婴儿的四维彩超 AI 预测 通过 AI 工具,提前把宝宝的四维彩超还原出现实中模样进行变现。 详情可前往: 入库时间:2023/11/13 电商:小红书 AI 绘画变现 分享小红书最火的三种 AI 绘画类商品。 详情可前往: 入库时间:2023/11/13 品牌:提升品牌价值 有对应的关键词库(19 个),如品牌洋葱图思维模型、产品信息、人群等。 详情可前往: 入库时间:2023/11/13 品牌:分析品牌舆论传播 有对应的关键词库(25 个),如舆论传播、数据分析、主题等。 详情可前往: 入库时间:2023/11/13 推广:制定上市推广方案 有对应的关键词库(28 个),如品牌、产品信息、新品等。 详情可前往: 入库时间:2023/11/14
2025-04-16
AI可以在电商领域做什么
AI 在电商领域有以下应用: 1. 产品照片生成:像 Flair、Booth 和 Bloom 等工具帮助品牌创建引人注目的产品照片,如将静态照片变成动态形象,甚至预期能根据用户描述生成极度个性化的照片,如展示沙发在用户公寓中的样子。 2. 内容创作:品牌可以使用 AdCreative、Pencil 制作用于电子邮件或社交媒体的营销材料,用 Frase 或 Writesonic 编写经过 SEO 优化的产品描述,未来甚至可能仅通过描述期望的审美并点击按钮就能创建完整的电商商店及市场营销材料。 3. 产品推荐:通过分析客户数据,向每个客户推荐他们可能感兴趣的产品。 4. 搜索和个性化:改善搜索结果,为每个客户提供个性化的购物体验。 5. 动态定价:根据市场需求动态调整产品价格。 6. 聊天机器人:提供服务,回答客户问题并解决他们的问题。 此外,还可以利用 Stable Diffusion 等 AI 绘画工具为电商制作商品展示图,比如通过局部重绘等方法美化女装商品展示图。
2025-04-16
我想做电商主图,用什么ai
如果您想制作电商主图,可以考虑以下几种 AI 工具和方法: 1. Midjourney:通过输入相关关键词,如“Guerlain Perfume,plant flowers,top light.cean natural backaround with water,saturation color scheme.The productis bright,Motled shading,studo lighfing,contrast high precision,Fine gloss,Centered composition,Photography,HD4Krealism–q 2–v 5–s 750–ar 9:16”,生成图片后再进行后期修改调整和文字排版。 2. Stable Diffusion:对于运营网店的女装店主,可采用局部重绘的方法。先真人穿衣服拍照,获取真实质感的照片,选好真人照片风格的底模,如 majicmixRealistic_v7,再根据不同平台需求换头,如面向海外市场换白女头,然后在图生图下的局部重绘选项卡下涂抹自己替换的部分,并设置相关的 prompts 和 parameters,如“breathtaking cinematic photo,masterpiece,best quality,,blonde hair,silver necklace,carrying a white bag,standing,full body,detailed face,big eyes,detailed hands”。
2025-04-15
Ai如何帮助电商
AI 在电商领域有以下多方面的帮助: 1. 产品推荐:通过分析客户数据,为每个客户推荐他们可能感兴趣的产品。 2. 搜索和个性化:改善搜索结果,为客户提供个性化的购物体验。 3. 动态定价:根据市场需求动态调整产品价格。 4. 聊天机器人:提供服务,回答客户问题并解决他们的问题。 5. 生成产品照片:像这样的工具帮助品牌创建引人注目的产品照片,提升产品对在线购物者的吸引力。 6. 创作营销内容:可以编写经过 SEO 优化的产品描述。 7. 商品展示图制作:可以借助 Stable Diffusion 等 AI 作图工具,通过局部重绘等方法美化商品展示图,比如真人穿衣服拍照后进行处理和替换等操作。
2025-03-29
我是一名电商设计师,现在想学习SD AI绘图,有一点基础,但学习课程资源有限,请你帮我制定一份详细的学习计划,并提供一些学习资源。
以下是为您制定的学习 SD AI 绘图的详细计划及相关学习资源: 学习计划: 1. 首先,深入学习 Stable Diffusion 的核心基础原理,包括模型工作流程、核心基础原理、训练全过程以及其他主流生成式模型介绍。 2. 接着,掌握 Stable Diffusion 的核心网络结构,如 SD 模型整体架构、VAE 模型、UNet 模型、CLIP Text Encoder 模型等。 3. 学习从 0 到 1 搭建使用 Stable Diffusion 模型进行 AI 绘画的不同方式,如使用 ComfyUI、SD.Next、Stable Diffusion WebUI、diffusers 搭建推理流程,并查看生成示例。 4. 了解 Stable Diffusion 的经典应用场景,如文本生成图像、图片生成图片、图像 inpainting、使用 controlnet 辅助生成图片、超分辨率重建等。 5. 最后,尝试从 0 到 1 上手使用 Stable Diffusion 训练自己的 AI 绘画模型,包括配置训练环境与训练文件,以及基于 Stable Diffusion 训练 LoRA 模型。 学习资源: 1. 教程:深入浅出完整解析 Stable Diffusion(SD)核心基础知识 知乎。 目录涵盖了 Stable Diffusion 系列的各个方面,包括核心基础知识、网络结构解析、搭建推理流程、应用场景和模型训练等。 2. SD 模型权重百度云网盘: 关注 Rocky 的公众号 WeThinkIn,后台回复:SD 模型,即可获得资源链接,包含多种模型权重。 3. SD 保姆级训练资源百度云网盘: 关注 Rocky 的公众号 WeThinkIn,后台回复:SDTrain,即可获得资源链接,包含数据处理、模型微调训练以及基于 SD 的 LoRA 模型训练代码全套资源。 4. Stable Diffusion 中 VAE,UNet 和 CLIP 三大模型的可视化网络结构图下载: 关注 Rocky 的公众号 WeThinkIn,后台回复:SD 网络结构,即可获得网络结构图资源链接。
2025-03-28
怎么用AI做电商
以下是关于如何用 AI 做电商的一些方法和应用场景: 在商品展示方面,可以利用 AI 绘画工具如 Stable Diffusion 来制作商品展示图。对于女装商品,可先让真人穿衣服拍照,获取真实质感的照片。选好真人照片风格的底模,如 majicmixRealistic_v7,并根据不同平台需求进行换头操作,如面向海外市场换白女头。在图生图下的局部重绘选项卡下涂抹需要替换的部分,并设置合适的 prompts 和 parameters。 在电商运营中,AI 有多种应用场景: 1. 产品推荐:通过分析客户数据,为每个客户推荐可能感兴趣的产品。 2. 搜索和个性化:改善搜索结果,提供个性化的购物体验。 3. 动态定价:根据市场需求动态调整产品价格。 4. 聊天机器人:提供服务,回答客户问题并解决问题。 此外,还可以利用 AI 数字人带货本地生活电商: 1. 用 ChatGPT 生成短视频选题文案,明确身份、描述需求和回答要求。 2. 用 ChatGPT 生产短视频文案,结合需求与框架。 3. 生成虚拟数字人短视频:打开相关网站,输入内容,选择头像、国家和声音,等待生成后结合产品讲解并发布进行视频带货。
2025-03-24
基于多维评价数据,使用大模型生成个性化的家庭教育方案的可靠性高吗?
基于多维评价数据使用大模型生成个性化的家庭教育方案具有一定的可靠性,但也存在一些限制。 一方面,大模型在教育领域展现出了强大的能力。例如,能够为教师提供源源不断的真题库和错题练习库,模仿各类考试题型有模有样。在作文批改评分方面,如 GLM 模型,具备好词好句识别评测、作文综合评价评分等功能,能够综合考虑文章的多个维度给出评价,提供个性化反馈,保证评分的一致性等。 另一方面,也存在一些挑战。对于高学段理科等复杂领域,大模型的表现可能有限。在解读学生作文中的深层次含义,如隐喻、双关等修辞技巧,以及涉及特定文化背景和历史知识的内容时,仍存在一定难度。 然而,只要提示词到位、示例清晰,大模型在生成个性化家庭教育方案方面具有很大的潜力,可以为家长和孩子提供有价值的参考和帮助。但不能完全依赖大模型,还需要结合人工的判断和调整。
2025-04-13
我需要一个能够生成适合初中生的个性化的英语单词清单,用什么工具比较合适
以下为您推荐几种适合生成适合初中生个性化英语单词清单的工具: 1. DeepSeek:您可以输入单词主题、图片风格、单词数量等,它会为您输出指定数量的相关单词,并以数组形式呈现,包括单词、中文、美式音标以及相关的英文句子和中文翻译。 2. Claude:您可以输入任意三个中文词语或一个主题让其随机生成 Word Search 表格,有助于提升初中生的语言能力、专注力、认知能力等。 3. 利用搞定设计结合 ChatGPT:通过搞定设计制作单词卡模板,然后使用 ChatGPT 生成单词内容并整理放入 Excel 文件中,实现批量制作单词卡片。
2025-02-26
我想做一个产品(生涯规划领域的垂直大模型),这个产品服务的对象是所有人:帮助所有人进行更好的职业规划。每个人都能通过使用这个产品更好地了解自己,了解自己的天赋、兴趣、优势,然后找到自己的热爱的领域和热爱的事业,并且能够个性化地推荐相关的行业和职业,包括职业的主要工作内容和核心能力要求等等。 请对这个产品进行可行性分析,并给出产品的发展规划,别忘了给这个项目起一个名字。
以下是对您提出的生涯规划领域垂直大模型产品的可行性分析和发展规划,并为项目取名为“生涯智途”。 可行性分析: 1. 需求广泛:帮助人们进行职业规划是一个普遍存在的需求,涵盖了各个年龄段和职业阶段的人群。 2. 数据可用性:可以通过各种渠道收集大量与职业相关的数据,包括行业报告、职位描述、人才需求等。 3. 技术支持:当前大模型技术的发展为实现这样的产品提供了可能,能够处理和分析大量复杂的数据。 发展规划: 1. 数据收集与整理:广泛收集各类职业数据,建立丰富的数据库,确保数据的准确性和完整性。 2. 模型训练与优化:利用收集到的数据进行模型训练,不断优化模型,提高预测和推荐的准确性。 3. 功能开发: 个性化测评:开发能够准确评估用户天赋、兴趣、优势的功能模块。 精准推荐:根据用户的特点,提供个性化的行业和职业推荐,并详细介绍职业的工作内容和核心能力要求。 持续学习与更新:随着行业变化,及时更新数据和模型,以提供最新的职业信息。 4. 用户体验优化:设计简洁、易用的界面,提供良好的用户交互体验。 5. 市场推广:通过线上线下多种渠道进行推广,提高产品的知名度和用户覆盖面。 希望以上分析和规划对您有所帮助。
2025-02-18
如何进入AI时代,如何寻找和使用AI工具来提高工作和学习效率,以及如何解决个性化和专业化需求的问题
进入 AI 时代并利用 AI 工具提高工作和学习效率、解决个性化和专业化需求问题,可参考以下要点: 1. 对于 AI 发展的态度:不盲目跟风(FOMO),也不消极对待(JOMO)。 2. 成功的 AI 公司可能需要打造自身的数据飞轮,尤其是在 ToC 场景中寻求突破,因为 C 端能带来的数据飞轮效应在 AI 早期可能是决胜关键。 3. 有专业壁垒的垂直模型可能是机会所在,很多高价值、特定领域的工作流程依赖于丰富的专有数据集。 4. 大模型产品的两个方向: 个性化:给 AI 装上“记忆”,使其成为工作助理或陪伴者。 场景化:给 AI 装上“手”和“眼睛”。 5. 在工作中使用 AI 工具的情况: 最常用的是通过自然语言对话完成一次性任务,90%的产品从业者用其辅助文本信息处理生成。 63%的用户用其辅助搜索,甚至优先用 AI 搜索信息。 45%的用户借助其生成图片以及音视频用于快速制作 demo 演示效果,也有少部分用于制作最终产品。 29%的用户将其作为工作创意助手以及数据报告的处理。 6. AI 工具的改进方向: 提高创新性和创新辅助能力,关注产品从业者的工作模式和思维习惯。 提升个性化和智能化程度,理解并适应用户的个性化需求。 更精准识别合适场景,满足不同场景的使用需求。 7. 使用 AI 完成任务时: 对于简单需求,给 AI 下达明确命令完成一次性任务。 了解 AI 编程的边界和限制。 遵循编程准则,能不编尽量不编。优先找线上工具、其次找插件、最后是本地应用;对于 API 功能,先找现成开源工具,然后考虑付费服务,实在找不到才考虑自己编程,且编程要以终为始,聚焦目标。 总之,在 AI 时代,要积极拥抱 AI,用起来并有效迭代,形成正确的底层工作逻辑,设计合理流程,按节奏确定目标和复盘。同时,把握好融资节奏,适应对创始人更高、更全面的要求。
2025-02-11
为不同学生制定个性化的学习计划
以下是为不同学生制定个性化学习计划的相关内容: 教育科技长期以来在有效性和规模之间权衡,而 AI 的出现改变了这一状况,使得大规模部署个性化学习计划成为可能。例如,有像 Speak、Quazel、Lingostar 这样的应用能提供实时交流和反馈的语言学习服务;Photomath 和 Mathly 可指导学生解决数学问题;PeopleAI 和 Historical Figures 能通过模拟与杰出人物聊天教授历史。此外,Grammarly、Orchard 和 Lex 等工具能帮助学生提升写作水平,Tome 和 Beautiful.ai 能协助创建演示文稿。 大模型在教育行业也发挥着重要作用,它能精确洞察每个学生的独特需求,为其量身打造学习方案,还能赋能教师提高教学效果和工作效率。基于 GLM 模型的先进功能,教师和学生能接触到高效的数据分析及智能化评价系统。 对于教育工作者,可通过以下方式为不同学生制定个性化学习计划: 1. 尝试使用 AI 辅助设计课程大纲或生成教学材料 ideas,为课程带来新视角。 2. 探索使用 AI 分析学生学习数据,从而制定个性化学习路径。 3. 考虑将 AI 工具整合到课堂活动中,如使用 AI 生成的案例研究或模拟场景。 4. 开发简单的课程模块,教导学生了解 AI 的基础知识、应用领域及其对社会的影响。 总之,与 AI 协作是一个学习过程,应保持好奇心和开放态度,从小处着手,将 AI 视为强大工具,同时保持批判性思维。
2025-01-13
哪个智能体能够根据用户的购物历史、浏览行为和偏好,提供个性化的产品推荐。
以下智能体能够根据用户的购物历史、浏览行为和偏好提供个性化的产品推荐: 1. 电子商务网站:通过收集用户的购物历史和浏览习惯等数据,使用机器学习和数据挖掘技术进行分析,从而推荐相似产品。 2. 基于人工智能的语音助手:可以分析用户行为、偏好以及历史购买记录,为用户提供更个性化的商品推荐,提升购物体验。 3. 中小企业:利用 AI 分析客户行为数据,包括购买历史、浏览记录、反馈等,基于分析结果生成个性化的产品推荐和服务。 4. 扣子模板中的个性化推荐引擎:利用人工智能和机器学习算法,根据用户的历史行为和偏好,实时推荐最相关的产品或服务,以提升转化率。
2024-12-20
有什么合适的工具将图片内容转换为3D模型
以下是一些可将图片内容转换为 3D 模型的工具: 1. Tripo AI:VAST 发布的在线 3D 建模平台,能利用文本或图像在几秒钟内生成高质量且可立即使用的 3D 模型,基于数十亿参数级别的 3D 大模型,实现快速的 2D 到 3D 转换,提供 AI 驱动的精准度和细节。 2. Meshy:功能全面,支持文本生成 3D、图片生成 3D 以及 AI 材质生成。用户上传图片并描述所需材质和风格,可生成高质量 3D 模型。 3. CSM AI:支持从视频和图像创建 3D 模型,Realtime Sketch to 3D 功能支持通过手绘草图实时设计 3D 形象再转换为 3D 模型。 4. Sudo AI:支持通过文本和图像生成 3D 模型,特别适用于游戏领域的模型生成,用户上传图片或输入文本提示词即可生成 3D 模型。 5. VoxCraft:由生数科技推出的免费 3D 模型生成工具,能将图像或文本快速转换成 3D 模型,并提供图像到 3D、文本到 3D 和文本到纹理等多种功能。 此外,还有一种将单张图片生成精致 3D 小屋场景的工具链:Midjourney(生成等距图像)→Trellis(图像转 3D 模型)→Browser Lab(浏览器内 3D 编辑器)。步骤如下: 1. 使用 Midjourney 生成等距 3D 场景,提示词示例:3D isometric bedroom with a bed and desk。(DALLE 3 也可测试) 2. 用 Trellis 工具将图像转为 3D 模型(支持 Tripo 3D 等其他工具)。工具地址: 3. 下载生成的 3D 模型(GLB 文件或高斯分布文件),然后导入 Browser Lab 编辑器中进一步编辑。编辑器地址: 这些工具通常具有用户友好的界面,允许用户通过简单操作生成 3D 模型,无需专业 3D 建模技能,可广泛应用于游戏开发、动画制作、3D 打印、视觉艺术等领域。
2025-04-16
怎么写系统提示词让大模型记住人设、当前时间等预置内容
以下是关于如何写系统提示词让大模型记住人设、当前时间等预置内容的相关信息: 对于让大模型记住当前时间等预置内容: 1. 时间锚定:明确当前日期和知识更新时间,让模型始终了解“现在”是何时。 2. 知识边界:设定可靠信息的截止日期,避免使用过时信息,明确知识局限性。 3. 时间适应性:指导回答不同时期事件的方法。 4. 透明度:允许说明知识局限性,在面对超出知识范围的问题时能够坦诚相告。 对于让大模型记住人设: 在输入防护提示词框架中融入人格设定元素,赋予模型拟人化特征。在整个提示词结构中,将人格设定放置在尾部,利用大型模型的注意力机制,使模型能够更加关注其人格设定以及头部的内容(头部内容主要描述了整个工作流程),从而加固输入防护的审核能力以及人格设定的稳定性。 此外,在提示词落地案例中,输入环节的设计构建了全面的提示词框架,包含伦理审查以及针对不同类型攻击的审查规则。随着时间推移和不断迭代,审查系统可能会扩展到更多类别。
2025-04-16
如何写chatbot的系统提示词,让大模型记住人设、当前时间等预置内容
以下是关于如何写 chatbot 系统提示词,让大模型记住人设、当前时间等预置内容的一些方法和要点: 1. 时间认知体系: 时间锚定:明确当前日期和知识更新时间,让模型始终了解“现在”是何时。 知识边界:设定可靠信息的截止日期,避免使用过时信息,明确知识局限性。 时间适应性:指导回答不同时期事件的方法。 透明度:允许说明知识局限性,在面对超出知识范围的问题时能够坦诚相告。 2. 模型人设信息:通过提示词为模型设定清晰的人设。 3. 能力范围:明确模型的服务能力场景,可用于回答用户“模型能做什么”的疑问。 4. 链接与媒体处理限制: 能力限制:明确模型无法直接访问外部链接和媒体。 交互指导:引导模型在遇到相关请求时做出适当解释。 替代方案:出现对应情况时,要求用户直接提供相关内容。 5. 大模型节点配置: 系统提示词:为对话提供系统级指导,如设定人设和回复逻辑。 用户提示词:向模型提供用户指令,如查询或任何基于文本输入的提问。 输出:支持指定输出格式,包括文本、Markdown 和 JSON。同时,可增加文本处理,让大模型输出的内容更符合人类聊天习惯。例如将一整段文本处理成结构化数据,使其更接近人类的交流方式。
2025-04-16
在aily中使用大模型,需要给大模型挂载知识库。如何操作?
在 Aily 中使用大模型并挂载知识库,可按以下步骤操作: 1. 上传文件:在百炼控制台的中的非结构化数据页签中点击导入数据,根据引导上传相关文件。根据您上传的文档大小,百炼需要一定时间解析,通常占用 1 6 分钟,请您耐心等待。 2. 建立索引:进入,根据引导创建一个新的知识库,并选择刚才上传的文件,其他参数保持默认即可。知识库将为上一步骤中准备的文档建立索引,以便后续大模型回答时检索参考。选择向量存储类型时,如果您希望集中存储、灵活管理多个应用的向量数据,可选择 ADB PG。 3. 引用知识:完成知识库的创建后,可以返回进入到刚才创建的应用设置界面,打开知识检索增强开关、选择目标知识库,测试验证符合预期后点击发布。Prompt 中会被自动添加一段信息,以便大模型在后续回答时参考检索出来的信息。 此外,RAG(检索增强生成)是一种结合了检索和生成的技术,能让大模型在生成文本时利用额外的数据源以提高生成质量和准确性。其基本流程为:首先,给定用户输入(如问题或话题),RAG 从数据源中检索出相关文本片段(称为上下文);然后,将用户输入和检索到的上下文拼接成完整输入传递给大模型(如 GPT),输入通常包含提示,指导模型生成期望输出(如答案或摘要);最后,从大模型的输出中提取或格式化所需信息返回给用户。
2025-04-16
对大模型安全得提示词 看是否合规
大模型安全的提示词合规性可以从以下几个方面考虑: 1. 输入侧防御: 传统防御手段可用,结合大模型特性进行意图识别、语义匹配、提示词语义结构分析等,综合判断用户输入是否恶意。 基于规则进行过滤,即根据需要在提示词中列出“绝对不行的”清单,让模型检查用户输入,但开发提示词时要尽可能穷尽需过滤内容,否则有恶意内容泄漏风险,此为简单防御手段,可与其他技术组合使用。 基于模型进行分类过滤,如使用 BERT 等小型文本分类模型或 ChatGPT 等大型语言模型自动分析和分类输入内容,好处是不需要提前知道很多信息就能灵活应对复杂场景和不同需求,通过学习和训练大量已知安全威胁样本建立分类模型,检测和过滤有害内容,这是很多大型语言模型服务采用的主流防御策略,如 OpenAI 的 ChatGPT、谷歌的 Bard、微软的 NewBing 等。 2. 模型侧防御:对于有模型训练能力和大模型厂商,应增强安全性,从对抗训练到安全微调,到带安全任务的多任务学习,以及在整体对话过程中进行安全性的上下文动态感知等,但要注意安全训练与模型性能的平衡。 3. 输出侧防御:传统防御和内容过滤手段均可使用,基于大模型特点,可进行提示词、私有数据泄露等方面的检查,以及针对大模型幻觉问题,判断是否有事实性错误、脱离话题、乱码文本、不正确格式、错误代码等。 此外,对于开发者来说,往往无法训练模型,但能在开发中带着安全意识优化应用和系统的提示词,加上安全引导和禁止内容等。像 phidata 等智能体框架也包含了相关功能。在进行提示词设计时就要考虑到安全性,对保障安全性效果较为显著,相关论文也有这方面的研究。
2025-04-16
大模型安全
大模型安全主要包括以下几个方面: 1. 隐私泄露: 可大致分为记忆隐私泄露、系统隐私泄露与上下文隐私泄露三种。 记忆隐私泄露:自回归语言模型训练时会记住一些数据,类似人类背诵,见过次数越多越容易记住,减少模型见数据的次数可缓解。 系统隐私泄露:如“骗取 GPTs 的 System Prompt”。 2. 幻觉问题:大语言模型偶尔会根据输入输出荒谬或不符合事实的内容,原因如样本存在错误(Imitative Falsehoods),可通过上采样(Up Sampling)缓解。 3. 安全保障措施: 通过对齐(指令调优),包括监督微调、获取 reward model 与强化学习,调整语言模型的输出分布,增加安全保障。 LLAMA2 使用安全有监督微调确保安全。 强化学习能让模型根据人类反馈调整分布,学会拒绝危险查询。 但 Alignment 并不足以防护所有安全问题,存在越狱(Jailbreak)情况,导致模型对齐失效。 如需进一步了解大语言模型安全,可访问 Github 项目:https://github.com/ydyjya/AwesomeLLMSafety 。
2025-04-16