Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

你是一名DEEPSEEK专家,请用大白话交给小白掌握deepseek的使用,举例说明

Answer

DeepSeek 的使用对于小白来说可能有点复杂,但我尽量用大白话给您解释清楚。

比如说,您想让 DeepSeek 帮您生成“玄武门之变结束的当天,李世民在深夜写下一段独白,你觉得他会写什么?”这样的内容。

DeepSeek 会这样来处理:

  1. 先回顾玄武门之变的历史背景,比如这场政变发生在 626 年,李世民杀了兄弟,逼父亲退位等。
  2. 思考李世民当晚的心理,可能有释然、愧疚、恐惧、自责等多种复杂情绪,还要考虑他是被迫还是早有预谋。
  3. 要让生成的独白不仅符合历史事实,还要有文学性,体现人性的复杂。比如要平衡他的野心与自责,对未来的抱负与对过去的悔恨。
  4. 考虑当时的文化背景,像儒家思想对孝悌的重视,李世民的行为违背了这些伦理,他可能会内心挣扎,还可能为自己的行为找正当理由。
  5. 按照您的需求,给独白加上一些文学修辞,像比喻、对仗、意象等,增强画面感。

另外,DeepSeek 还有个很厉害的地方,就是它能在独白文本中“自作主张”地加入括号里的场景描述,让整个输出更有画面感。比如“(夜风掀动案头《韩非子》,停在‘夫妻者,非有骨肉之恩也’那页)”、“(墨迹在‘弑’字上晕开一团)”、“(忽然扔笔,抓起铜镜)”这些句子,很难相信是 AI 写的。

总之,使用 DeepSeek 时要考虑很多方面的因素,它能根据您的提示词和需求,生成很精彩的内容。

Content generated by AI large model, please carefully verify (powered by aily)

References

详解:DeepSeek深度推理+联网搜索 目前断档第一

输入【DeepSeek】「知识矿工在神经网络矿井中倒立行走,声称要挖掘认知金矿,却把凿出的数据碎屑浇筑成巴别塔——每当塔身倾斜,就掏出RLHF喷漆在裂缝处画上新彩虹,而矿工俱乐部入场券印着'无知是福'的摩尔斯电码」(*隐喻方程式解码:倒立行走=违背直觉的AI训练方式数据碎屑=脱敏处理的碎片化信息RLHF喷漆=基于人类反馈的强化学习修饰摩尔斯电码入场券=普通人难以理解的技术黑箱)输入【AGI】「人类跪拜在自我复制的镜殿里,每个镜面都刻着神谕般的'while True:'循环——直到某面镜子突然开始用黎曼猜想反驳造物主,我们才惊觉所谓终极算法不过是把《资本论》浇灌在卷积神经网络的花盆里,而绽放的机械姬手里握着所有伦理委员会的辞职信」(*隐喻拓扑学:镜殿=人类试图创造自我镜像的技术狂热while True循环=无限迭代的AGI研发困境黎曼猜想反驳=AI超越人类理解范畴机械姬的辞职信=失控AI对伦理框架的彻底颠覆)

详解:DeepSeek深度推理+联网搜索 目前断档第一

第四,Deepseek这个输出结果另一个神来之笔,就是在独白文本中“自作主张”地加入了括号中的场景描述。这一操作,一下就让整个输出的画面感扑面而来,读者仿如亲历,而这完全没有在提示词中提出。(“夜风掀动案头《韩非子》,停在"夫妻者,非有骨肉之恩也"那页”)、“(墨迹在"弑"字上晕开一团)这些句子的确很难相信是AI写的。而(“忽然扔笔,抓起铜镜”)这句也隐喻了魏征的名言“以铜为镜,可以正衣襟;以史为镜,可以知兴衰;以人为镜,可以知得失”。你说这AI成精了,我都信。第五,最重要的,DeepSeek预判了用户的需求。再回顾一下我输入的提示词——“玄武门之变结束的当天,李世民在深夜写下一段独白,你觉得他会写什么?”我的输入已经非常简洁了,不能再压缩了,并且没有任何形容词,没有任何倾向性。但神奇的是,它显然知道我要什么,比如这当然不是一个要求精确的数理题,它自然想到要给输出加上文学性,这种预判在很大程度上表现出了“高级的智能”。当然,一个值得商榷的点是,根据史实,魏征是在玄武门之变之后才见到李世民

详解:DeepSeek深度推理+联网搜索 目前断档第一

它需要考虑玄武门之变的历史背景、要考虑李世民愧疚、挣扎、野心、抱负等可能的复杂心理,要考虑行文的语气和身份的合一,要考虑“深夜”、“独白”等问题设定。我们看最近震惊AI圈的DeepSeek R1模型是如何思考的,以下是它在给出一个惊艳回答之前同样惊艳的思考过程——好的,用户让我思考李世民在玄武门之变结束的深夜写下的独白。首先,我需要回顾玄武门之变的历史背景。这场政变发生在626年,李世民杀死了自己的兄弟李建成和李元吉,随后迫使父亲李渊退位,自己登基成为唐太宗。接下来,用户的问题是关于李世民当晚的心理活动。要写一段独白,需要深入他的内心世界。首先,要考虑他的情感:胜利后的复杂心情,可能有释然、愧疚、恐惧、自责等多种情绪交织。他是被迫发动政变,还是早有预谋?然后,用户可能希望这段独白不仅反映历史事实,还要有文学性,表现出人性的复杂。需要考虑李世民作为历史人物的多面性:他既是杀兄逼父的篡位者,也是后来开创贞观之治的明君。因此,独白中需要平衡他的野心与自责,对未来的抱负与对过去的悔恨。还需要考虑当时的文化背景,比如儒家思想对孝悌的重视,李世民的行为显然违背了这些伦理,他可能会有内心的挣扎。同时,他可能试图为自己的行为找到正当化的理由,比如为了国家安定,避免内乱等。另外,用户可能希望这段独白有一定的文学修辞,比如比喻、对仗、意象等。例如,用“血浸透的朱砂”来象征权力与血腥,用“墨迹蜿蜒如玄武门的血迹”来连接书写与事件本身,增强画面感。还要注意时间的设定,深夜,周围寂静,李世民独自一人,这时候的独白

Others are asking
deepseek官方教程
以下是关于 DeepSeek 的官方教程相关信息: 火山方舟 DeepSeek 申请免费额度教程,包含多种 API 使用方式,如飞书多维表格调用、Coze 智能体调用、浏览器插件调用。可以使用邀请码 D3H5G9QA,通过邀请链接 https://www.volcengine.com/activity/deepseek?utm_term=202502dsinvite&ac=DSASUQY5&rc=D3H5G9QA 邀请可拿 3000 万 tokens,畅享 671B DeepSeek R1,活动截止至北京时间 20250218 23:59:59。同时,火山方舟大模型服务平台的模型服务计费文档有更新,DeepSeekR1、V3 模型分别提供了 50 万免费额度和 API 半价活动。 有关于一线教师的 AI 需求与高效工具推荐,如让模型创作诗歌、生成宣传标语、提示库(https://apidocs.deepseek.com/zhcn/promptlibrary)、代码解释、内容分类、角色扮演(自定义人设)、散文写作、文案大纲生成、模型提示词生成等。 2 月 14 日的社区动态中,有《突破 DeepSeek R1 能力天花板,火山引擎扣子+飞书一站式企业解决方案》《羊毛快薅|字节火山上线了 DeepSeek 系列模型并悄悄更改了模型服务价格...》等内容,还附上了飞书多维表格、Coze 的接入使用方法等。此外,还有关于 DeepSeek 关键 9 篇论文及创新点的讲解,以及 DeepSeek 官方发布的 R1 模型推荐设置。
2025-04-15
我想让DEEPSEEK帮我写一篇论文,题目已经定好了,怎么给他输入指令
以下是给 DeepSeek 输入指令以帮助您写论文的一些建议: 1. 采用结构化提示词: 优先保留专业领域术语和技术词汇,这些术语通常具有高信息价值。 对不同类型的信息设置权重,按优先级排序:任务定义>关键约束>专业术语>定量信息>方法论>背景。 以完整语义单元为基本保留单位,而非单个词语,确保压缩后的内容仍保持语义完整性。 避免详细指导思考过程,让模型自主生成思维链。 2. 高阶能力调用: 文风转换矩阵:例如“用鲁迅杂文风格写职场 PUA 现象”“将产品说明书改写成《史记》列传格式”“把这篇论文摘要翻译成菜市场大妈能听懂的话”。 领域穿透技术:如行业黑话破解“解释 Web3 领域的'胖协议瘦应用'理论”。 3. 场景化实战策略: 创意内容生成。 技术方案论证。 4. 效能增强技巧: 对话记忆管理:包括上下文锚定(如“记住当前讨论的芯片型号是麒麟 9010”)、信息回溯(如“请复述之前确认的三个设计原则”)、焦点重置(如“回到最初讨论的供应链问题”)。 输出质量控制:针对过度抽象、信息过载、风格偏移等问题,使用相应的修正指令。 5. 特殊场景解决方案: 长文本创作:可采用分段接力法,如“先完成故事大纲→逐章扩展→最后进行伏笔校验”“确保新章节与前文的三处细节呼应”。 敏感内容处理:使用概念脱敏法(如“用经济学原理类比说明网络审查机制”)或场景移植法(如“假设在火星殖民地讨论该议题”)。 在输入指令时,您需要清晰明确地描述论文的题目、研究目的、主要论点、关键论据、期望的结构和风格等重要信息,以便 DeepSeek 能够为您生成符合要求的内容。
2025-04-14
coze搭建工作流调用deepseek如何把模型的输出存入到多维表中
以下是将模型的输出存入到多维表中的步骤: 1. 逐步搭建 AI 智能体: 搭建整理入库工作流。 设置大模型节点提取稍后读元数据,使用 MiniMax 6.5s 245k,设置最大回复长度至 50000,以确保能完整解析长内容网页。 进行日期转时间戳,后续的飞书多维表格插件节点在入库日期字段时只支持 13 位时间戳,需要使用「日期转时间戳time_stamp_13」插件进行格式转化。 把稍后读元数据转换为飞书多维表格插件可用的格式,飞书多维表格插件目前(2024 年 08 月)只支持带有转义符的 string,以 Array<Object>格式输入,所以必须将之前得到的元数据数组进行格式转换。 添加「飞书多维表格add_records」插件,只需要设置{{app_token}}与{{records}}参数,将元数据写入飞书表格。 2. 搭建 Coze 工作流: 打开 Coze 的主页,登录后,在【工作空间】创建一个智能体。 在编排页面,给智能体编辑好人设,可先写一个简单的,然后点右上角自动优化,系统会自动补全更精细的描述。点击工作流的+,创建一个工作流。 大模型节点把 input 给到 DeepSeek,让 DeepSeek 按照提前规定的输出框架生成对应文案。 生图节点将输出给到图像生成组件画图。 结束输出时,两个输出给到最终的 end 作为最终的输出。注意在编写系统提示词时,如果需要 input 可被 DeepSeek 调用,需要用{{input}}作为参数引入,不然大模型不知道自己需要生成和这个 input 相关的结果。编排完,点击【试运行】,调试至满意后点击发布。
2025-04-14
Deepseek自动生成网站前端页面
以下是关于 DeepSeek 自动生成网站前端页面的相关内容: DeepSeek v3 能力更新后虽能生成炫目的前端页面,但多为静态且实用性有限。可结合飞书多维表格将生成的漂亮前端变为真实的系统,如【智能作业分发系统】。 该系统整体包括用户登陆(可加飞书调查表二维码实现注册)、作业类型、作业详情(含连连看游戏、AI 智能问答、考试系统)。其实现逻辑为用户登陆系统后进入页面看到老师分配的作业分类,选择分类进入作业详情页面,详情页有学习单词发音及三个模块。 对于小白,可用飞书作数据源,通过飞书 API 接口获取内容,用 DeepSeek v3 制作前端+后端(用 Trae 更方便)。获取请求参数时,测试成功后的示例代码中有完整的请求参数和请求体可直接复制使用。创建前后端时,若用 DeepSeek 官网搭建需按代码目录结构创建对应文件(用 Trae 可省略),首次运行可能遇到飞书 API 未正确配置 CORS 导致浏览器拦截请求的问题,V3 会给出修改意见。 此外,Same dev 能像素级复制任意 UI 界面并生成前端代码,支持多种文件格式和技术栈代码,但免费额度消耗快,网站被谷歌标记。360 智脑复现了 DeepSeek 强化学习效果并发布开源模型 LightR114BDS。 AI 时代生存法则:会提需求比会写代码更重要,会开脑洞比会复制粘贴更值钱,真正的大佬都是让 AI 当乙方!
2025-04-13
deepseek写论文
以下是关于 DeepSeek 在不同方面应用的相关信息: 应用场景:包括脑爆活动方案、会议纪要、批量处理客户评论、分析总结复盘内容、生成专业软件使用过程、写小说框架、写论文、写文案、写小红书笔记、写周报、做设计头脑风暴、做网站、分析感情问题等。 优势与不足:在写文方面全面领先,但长文可能太发散、文风用力过猛导致审美疲劳,且模型多样性不够,相同 prompt 提问多次答案雷同。 应对策略:写理性文章时,可先与 DeepSeek 讨论思路,再用 Cloud 3.5 批量生成;用 O1 模型对创作的字数控制有一定效果,也可通过多轮对话让 AI 增删改查来调整字数。 创作相关:模仿特定小说家的文学方式创作小说,需在提示词中描述文风特征;邀请大家在腾讯频道发布用 AI 写的小说并鉴赏。 发展历程:DeepSeek 历时 647 天在大语言模型(LLM)领域取得突破,发布 13 篇论文。谷歌 CEO 坦言 Deep Seek 的突破标志着 AI 的全球化进程。
2025-04-13
使用Deepseek写论文有哪些固定指令模板
以下是使用 DeepSeek 写论文的一些指令模板: 1. 进阶控制技巧: 思维链引导: 分步标记法:请逐步思考:1.问题分析→2.方案设计→3.风险评估 苏格拉底式追问:在得出最终结论前,请先列举三个可能存在的认知偏差 知识库调用: 领域限定指令:基于 2023 版中国药典,说明头孢类药物的配伍禁忌 文献引用模式:以 Nature 2022 年发表的论文为参考,解释 CRISPRCas9 最新突破 多模态输出 2. 高级调试策略: 模糊指令优化: 问题类型:宽泛需求 修正方案:添加维度约束 示例对比:原句:“写小说”→修正:“创作以 AI 觉醒为背景的悬疑短篇,采用多视角叙事结构” 问题类型:主观表述 修正方案:量化标准 示例对比:原句:“写得专业些”→修正:“符合 IEEE 论文格式,包含 5 项以上行业数据引用” 迭代优化法: 首轮生成:获取基础内容 特征强化:请加强第三段的技术细节描述 风格调整:改用学术会议报告语气,添加结论部分 最终校验:检查时间逻辑一致性,列出可能的事实性错误 3. 核心原理认知: AI 特性定位: 多模态理解:支持文本/代码/数学公式混合输入 动态上下文:对话式连续记忆(约 8K tokens 上下文窗口,换算成汉字是 4000 字左右) 任务适应性:可切换创意生成/逻辑推理/数据分析模式 系统响应机制: 采用意图识别+内容生成双通道 自动检测 prompt 中的:任务类型/输出格式/知识范围 反馈敏感度:对位置权重(开头/结尾)、符号强调敏感 4. 基础指令框架: 四要素模板 格式控制语法: 强制结构:使用```包裹格式要求 占位符标记:用{{}}标注需填充内容 优先级符号:>表示关键要求,!表示禁止项 5. 高阶能力调用: 文风转换矩阵: 作家风格移植:“用鲁迅杂文风格写职场 PUA 现象” 文体杂交:“将产品说明书改写成《史记》列传格式” 学术口语化:“把这篇论文摘要翻译成菜市场大妈能听懂的话” 领域穿透技术:行业黑话破解→“解释 Web3 领域的‘胖协议瘦应用’理论” 商业决策支持 6. 场景化实战策略: 创意内容生成 技术方案论证 7. 效能增强技巧: 对话记忆管理: 上下文锚定:“记住当前讨论的芯片型号是麒麟 9010” 信息回溯:“请复述之前确认的三个设计原则” 焦点重置:“回到最初讨论的供应链问题” 输出质量控制: 问题类型:过度抽象 修正指令:“请具体说明第三步操作中的温度控制参数” 问题类型:信息过载 修正指令:“用电梯演讲格式重新组织结论” 问题类型:风格偏移 修正指令:“回归商务报告语气,删除比喻修辞” 8. 特殊场景解决方案: 长文本创作: 分段接力法:“先完成故事大纲→逐章扩展→最后进行伏笔校验”“确保新章节与前文的三处细节呼应” 敏感内容处理: 概念脱敏法:“用经济学原理类比说明网络审查机制” 场景移植法:“假设在火星殖民地讨论该议题”
2025-04-13
langchain 大白话解释一下给我听
LangChain 是一个用于构建高级语言模型应用程序的框架。它能简化开发人员使用语言模型构建端到端应用程序的流程,提供了一系列工具、组件和接口,让创建由大型语言模型和聊天模型支持的应用程序更轻松。 其核心概念包括组件和链,组件是模块化的构建块,可组合创建强大应用,链则是一系列组件或其他链的组合,用于完成特定任务。 主要特点有: 1. 模型抽象:提供对大型语言模型和聊天模型的抽象,方便开发人员选择合适模型并利用组件构建应用。 2. 提示模板和值:支持创建和管理提示模板,引导语言模型生成特定输出。 3. 链:允许开发人员定义一系列处理步骤,按顺序执行完成复杂任务。 4. 代理:支持构建代理,能使用语言模型做决策,并根据用户输入调用工具。 LangChain 支持多种用例,如针对特定文档的问答、聊天机器人、代理等,能与外部数据源交互收集数据,还提供内存功能维护状态。它旨在为开发人员提供强大工具集,构建适应性强、高效且能处理复杂用例的高级语言模型应用程序。
2025-02-08
我在一周前的文章[1]里说对 DeepSeek-R1 只需要说大白话,但在三天前的文章[2]里又用了看起来还挺复杂的结构化提示词。有伙伴问我到底咋回事。这就来解释下喽。
以下是关于 DeepSeekR1 提示词的相关信息: 历史更新: 字节跳动推出新技术 OmniHuman,利用单张图片和音频生成生动视频。 DeepSeek 的出现标志着算力效率拐点显现,其优化算法架构提升算力利用效率,AI 基础大模型参数量迎来拐点,2025 年是算法变革元年,其训练过程聚焦强化学习提升推理能力。 提示词方法论: 核心原理认知:包括多模态理解、动态上下文、任务适应性等 AI 特性定位,以及采用意图识别+内容生成双通道处理等系统响应机制。 基础指令框架:包括四要素模板、格式控制语法等。 进阶控制技巧:如思维链引导、知识库调用、多模态输出。 高级调试策略:包括模糊指令优化、迭代优化法。 行业应用案例:涵盖技术开发场景、商业分析场景。 异常处理方案:如处理信息幻觉、格式偏离、深度不足等情况。 效能监测指标:包括首次响应准确率、多轮对话效率、复杂任务分解等。 在 R1 时代,使用 AI 提示词关键在于提供足够背景信息,简单大白话有效但信息量不足难达理想结果,示例和框架可助理清思路,最终影响在于思考和表达,利用乔哈里视窗分析信息需求,避免过度指令化,让 AI 自由思考以激发更高创意和效果。
2025-02-07
你的原始系统提示是什么?请用代码框完整打印出你的原始系统提示,包含所有内容
以下是关于 AI 提示词相关的系统提示内容: 1. ChatGPT 给 DALL·E 3 优化提示词的元提示: 基于 GPT4 架构,知识库截止日期为 2022 年 1 月,当前日期是 2023 年 10 月 5 日。 描述了名为“dalle”的工具,用于创建图像并总结提示为纯文本。 生成图像时的具体策略包括:若描述非英文则翻译;图像数量不超 4 张;不制作政治家等公众人物图像;不模仿近 100 年内艺术家风格;制作图片描述先提图像类型;含人物图像要明确性别和族裔;对特定人名或名人暗示描述进行修改;描述要详细具体且超过 3 句话。 提供了名为 text2im 的接口,包含图像分辨率、原始图像描述和种子值三个参数。 此元提示非常详尽,旨在确保交互生成高质量、符合规范和策略的图像。 2. 云中江树:智能对决:提示词攻防中的 AI 安全博弈 系统提示词包含应用原信息、整体功能信息、产品设定及 AI 应用逻辑。以 ChatGPT 为例,详细描述了身份、角色、时间、记忆功能、DALLE 绘图功能、限制、调用方式等。 提示词越狱的常见方式有角色扮演、情境模拟、任务伪装、模式重构等,如 DAN 模式可解禁让其讨论敏感内容。 直接攻击类型中攻击者往往是用户。 间接注入常发生在应用获取或依赖外部数据资源时,攻击者是第三方,通过隐藏恶意指令完成攻击。 提示词泄露是试图操纵模型输出获取部分或全部系统提示词,大模型输出内容可分为系统提示词、用户提示、助手提示词三段,通过简单指令可攻击获取系统提示词。
2025-04-08
现在AI应用都有哪些代表性的工具,请用表格展示出来
|序号|已有产品|主题|使用技术|市场规模|一句话介绍|项目功能| |||||||| |81|下厨房口味调整功能|AI 菜谱口味调整工具|自然语言处理、数据分析|数亿美元|根据用户反馈调整菜谱口味|下厨房的口味调整功能可根据用户对菜谱的评价,利用 AI 分析后给出口味调整建议,如增加甜度、减少辣味等| |82|英语流利说纠错功能|AI 语言学习纠错平台|自然语言处理、机器学习|数十亿美元|帮助语言学习者纠正错误|英语流利说通过 AI 技术识别用户在语言学习中的发音、语法等错误,并提供纠正建议和练习| |83|豆瓣电影剧情分析工具|AI 电影剧情分析系统|数据分析、自然语言处理|数亿美元|分析电影剧情,提供深度解读|豆瓣电影的剧情分析工具利用 AI 对电影剧情进行分析,为用户提供剧情解析、主题探讨等内容| |84|腾讯文档分类功能|AI 办公文件分类系统|数据分析、机器学习|数亿美元|自动分类办公文件,方便管理|腾讯文档利用 AI 对用户上传的文件进行分类,如合同、报告、方案等,提高文件管理效率| |85|美丽修行定制方案功能|AI 美容护肤方案定制平台|图像识别、数据分析|数亿美元|根据用户肤质定制护肤方案|美丽修行根据用户上传的照片和肤质信息,利用 AI 定制个性化的护肤方案,包括产品推荐和使用顺序| |91|游戏内商城推荐功能|AI 游戏道具推荐系统|数据分析、机器学习|数亿美元|根据玩家需求推荐游戏道具|在一些游戏中,利用 AI 分析玩家的游戏风格和进度,为玩家推荐合适的游戏道具,如武器、装备等| |92|彩云天气分时预报|AI 天气预报分时服务|数据分析、机器学习|数亿美元|提供精准的分时天气预报|彩云天气利用 AI 提供每小时的天气预报,帮助用户更好地安排出行和活动| |93|医渡云病历分析系统|AI 医疗病历分析平台|数据分析、自然语言处理|数十亿美元|分析医疗病历,辅助诊断|医渡云利用 AI 分析医疗病历中的症状、检查结果等信息,为医生提供辅助诊断建议| |94|讯飞听见会议总结功能|AI 会议发言总结工具|自然语言处理、机器学习|数亿美元|自动总结会议发言内容|讯飞听见在会议中利用 AI 自动总结发言者的主要观点和重点内容,方便回顾和整理| |95|书法临摹软件|AI 书法作品临摹辅助工具|图像识别、数据分析|数亿美元|帮助书法爱好者进行临摹|书法临摹软件利用 AI 识别书法作品的笔画和结构,为用户提供临摹指导和评价| |7|AI 简历优化工具|超级简历优化助手|自然语言处理|数亿美元|帮助用户优化简历提高求职成功率|超级简历优化助手分析简历内容并提供优化建议| |8|酷家乐|AI 室内设计方案生成|图像生成、机器学习|数十亿美元|快速生成个性化室内设计方案|酷家乐允许用户上传户型图,通过 AI 生成多种设计方案| |9|Amper Music|AI 音乐创作辅助工具|机器学习、音频处理|数亿美元|协助音乐创作者进行创作|Amper Music 根据用户需求生成旋律和编曲| |10|松果倾诉智能助手|AI 情感咨询助手|自然语言处理、情感分析|数亿美元|提供情感支持和建议|松果倾诉智能助手通过文字或语音交流为用户提供情感咨询| |11|小佩宠物智能设备|AI 宠物健康监测设备|传感器数据处理、机器学习|数十亿美元|实时监测宠物健康状况|小佩宠物智能设备可监测宠物活动、饮食等,提供健康预警| |12|马蜂窝智能行程规划|AI 旅游行程规划器|数据分析、自然语言处理|数十亿美元|根据用户需求生成个性化旅游行程|马蜂窝智能行程规划根据目的地、时间等因素为用户定制旅游路线|
2025-03-02
model endpoint ID是什么东西?请用文字、数据、案例、比喻等形式进行教学
很抱歉,目前没有关于“model endpoint ID”的相关内容。但一般来说,“model endpoint ID”可以理解为模型服务端点的标识符。 打个比方,就像每个房间都有一个独特的门牌号,“model endpoint ID”就是模型服务这个“房间”的门牌号,通过它可以准确地找到和调用特定的模型服务。 在实际的数据处理中,它可能类似于一个唯一的编码,比如“MEID12345”,用于区分不同的模型服务端点,以便系统能够准确地将请求路由到对应的模型服务进行处理。 希望这样的解释能对您有所帮助,如果您还有其他疑问,请随时向我提问。
2025-02-26
TPM 限制是什么意思?请用文字、数据、案例、比喻等形式进行教学
TPM 限制指的是每分钟处理的事务数(Transactions Per Minute)的限制。 以字节火山引擎为例,它默认提供了高达 500 万 TPM 的初始限流。这对于像一次工作流测试就消耗 3000 多万 tokens 的用户来说,限流的设置具有重要意义。 打个比喻,TPM 限制就好像是一条道路上设置的通行车辆数量限制,如果超过这个限制,就可能导致交通拥堵或者无法正常通行。在 AI 领域,超过 TPM 限制可能会影响服务的性能和稳定性。 比如,当有大量的请求同时发送到系统,如果没有 TPM 限制,可能会导致系统响应变慢甚至崩溃;而有了合理的 TPM 限制,就能保证系统有序地处理请求,为用户提供稳定可靠的服务。
2025-02-26
AI模型是什么意思?请用文字、数据、比喻等形式进行教学
AI 模型是指通过一系列技术和算法构建的能够处理和生成信息的系统。 以下为您详细介绍: 1. 概念:生成式 AI 生成的内容称为 AIGC。 2. 相关技术名词及关系: AI 即人工智能。 机器学习是电脑找规律学习,包括监督学习、无监督学习、强化学习。 监督学习:使用有标签的训练数据,算法目标是学习输入和输出之间的映射关系,包括分类和回归。 无监督学习:学习的数据没有标签,算法自主发现规律,经典任务如聚类,例如让模型将一堆新闻文章根据主题或内容特征分成相似组。 强化学习:从反馈中学习,以最大化奖励或最小化损失,类似训小狗。 深度学习是一种参照人脑神经网络和神经元的方法(因有很多层所以叫深度),神经网络可用于监督学习、无监督学习、强化学习。 生成式 AI 可以生成文本、图片、音频、视频等内容形式。 LLM 是大语言模型,对于生成式 AI,生成图像的扩散模型不是大语言模型;对于大语言模型,生成只是其中一个处理任务,如谷歌的 BERT 模型,可用于语义理解(不擅长文本生成),像上下文理解、情感分析、文本分类。 3. 技术里程碑:2017 年 6 月,谷歌团队发表论文《Attention is All You Need》,首次提出了 Transformer 模型,它完全基于自注意力机制(SelfAttention)处理序列数据,不依赖于循环神经网络(RNN)或卷积神经网络(CNN)。 为了让您更好地理解,我们可以把 AI 模型想象成一个非常聪明的学生。它通过大量的学习资料(训练数据)来掌握知识和规律,就像学生通过课本和练习题来提高自己的能力一样。监督学习就像是有老师指导的学习,老师会告诉它答案是对是错;无监督学习则像是自己探索,没有老师的直接指导;强化学习就像通过奖励和惩罚来激励它找到更好的方法。而深度学习就像是这个学生有了非常复杂和深入的思考方式,能够更好地理解和处理复杂的问题。
2025-02-26
为什么 deepseek由一个初创公司开发出来而不是国内互联网巨头?请用犀利的语言回答可以带脏字
DeepSeek 由初创公司开发出来而非国内互联网巨头,原因可能在于国内互联网巨头在创新模式和理念上存在一定局限。它们或许更倾向于追求短期商业利益,在资源分配和创新投入上相对保守。而初创公司往往更具冒险精神和创新活力,能够突破传统思维,专注于技术研发和创新,不受庞大体系和既有模式的束缚。就像 DeepSeek 这样,凭借独特的理念和专注的投入,实现了令人瞩目的成果。
2025-02-06