Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

怎么学习AI提示词??

Answer

以下是关于学习 AI 提示词的建议:

  1. 了解 AI 基本概念:建议阅读「从这里启程」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。同时,浏览入门文章,了解 AI 的历史、当前应用和未来发展趋势。
  2. 开始 AI 学习之旅:在「入门:AI 学习路径」中,您可以找到为初学者设计的课程,特别推荐李宏毅老师的课程。还可以通过在线教育平台(如 Coursera、edX、Udacity)按照自己的节奏学习,并获得证书。
  3. 选择感兴趣的模块深入学习:AI 领域广泛,您可以根据兴趣选择特定模块,比如一定要掌握提示词的技巧,它上手容易且很有用。
  4. 实践和尝试:理论学习后,实践是巩固知识的关键。尝试使用各种产品做出作品,在知识库中也有很多实践后的作品和文章分享。
  5. 体验 AI 产品:与现有的 AI 产品(如 ChatGPT、Kimi Chat、智谱、文心一言等)进行互动,了解其工作原理和交互方式。
  6. 学习提示词的构建技巧:
    • 理解提示词的作用,它向模型提供上下文和指示,影响模型输出质量。
    • 明确任务目标,用简洁准确的语言描述,给予足够背景信息和示例,使用清晰指令,对特殊要求明确指示,如输出格式、字数限制等。
  7. 参考优秀案例:研究和学习已有的优秀提示词案例,在领域社区、Github 等资源中可找到大量案例。
  8. 实践、迭代、优化:多与语言模型互动,根据输出提高提示词质量,尝试各种变体,比较分析输出差异,持续优化提示词构建。
  9. 活用提示工程工具:目前已有一些提示工程工具可供使用,如 Anthropic 的 Constitutional AI。
  10. 跟上前沿研究:提示工程是前沿研究领域之一,持续关注最新研究成果和方法论。

精心设计的提示词能最大限度发挥语言模型的潜力,多实践、多学习、多总结,终可掌握窍门。

Content generated by AI large model, please carefully verify (powered by aily)

References

问:新手如何学习 AI?

了解AI基本概念:首先,建议阅读「[从这里启程](https://waytoagi.feishu.cn/wiki/PFXnwBTsEiGwGGk2QQFcdTWrnlb?table=blkjooAlLFNtvKJ2)」部分,熟悉AI的术语和基础概念。了解什么是人工智能,它的主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。浏览入门文章,这些文章通常会介绍AI的历史、当前的应用和未来的发展趋势。开始AI学习之旅:在「[入门:AI学习路径](https://waytoagi.feishu.cn/wiki/ZYtkwJQSJiLa5rkMF5scEN4Onhd?table=tblWqPFOvA24Jv6X&view=veweFm2l9w)」中,你将找到一系列为初学者设计的课程。这些课程将引导你了解生成式AI等基础知识,特别推荐李宏毅老师的课程。通过在线教育平台(如Coursera、edX、Udacity)上的课程,你可以按照自己的节奏学习,并有机会获得证书。选择感兴趣的模块深入学习:AI领域广泛(比如图像、音乐、视频等),你可以根据自己的兴趣选择特定的模块进行深入学习。我建议你一定要掌握提示词的技巧,它上手容易且很有用。实践和尝试:理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出你的作品。在知识库提供了很多大家实践后的作品、文章分享,欢迎你实践后的分享。体验AI产品:与现有的AI产品进行互动是学习AI的另一种有效方式。尝试使用如ChatGPT、Kimi Chat、智谱、文心一言等AI聊天机器人,了解它们的工作原理和交互方式。通过与这些AI产品的对话,你可以获得对AI在实际应用中表现的第一手体验,并激发你对AI潜力的认识。

从零开始:AI视频制作小白的成长之路📹

提示词的坑太多了,我周围甚至有人花了钱去学提示词模板、学了不少提示词框架的课程···然后还是上手就麻爪主体(什么东西)+动作(干啥了)+场景+镜头(怎么拍)举个例子:生成视频:[1月8日(2).mp4](https://bytedance.feishu.cn/space/api/box/stream/download/all/Fxj3biZ3hoFxvjxhXLfcN7kCnmf?allow_redirect=1)第一次生成[失败案例.mp4](https://bytedance.feishu.cn/space/api/box/stream/download/all/Emslboy2no9z6ixsxG8cemANnNe?allow_redirect=1)抽卡结果不理想[纳米哄孩子01.mp4](https://bytedance.feishu.cn/space/api/box/stream/download/all/DYwtbYWfAoJPx2xuzyVcswmpnVe?allow_redirect=1)符合要求,修改提示词:母亲很疲惫看着孩子

问:如何学习提示词运用?

提示词(Prompt)在现代大型语言模型中扮演着极其重要的角色,掌握提示词的运用技巧可以最大限度地发挥模型的潜能。以下是一些学习提示词运用的建议:1.理解提示词的作用提示词向模型提供了上下文和指示,使其能更准确地理解并完成所需的任务。提示词的质量直接影响了模型输出的质量。1.学习提示词的构建技巧明确任务目标,用简洁准确的语言描述给予足够的背景信息和示例,帮助模型理解语境使用清晰的指令,如"解释"、"总结"、"创作"等对特殊要求应给予明确指示,如输出格式、字数限制等2.参考优秀案例研究和学习已有的优秀提示词案例,了解行之有效的模式和技巧。你可以在领域社区、Github等资源中找到大量案例。1.实践、迭代、优化多与语言模型互动,根据输出提高提示词质量。尝试各种变体,比较分析输出差异,持续优化提示词构建。1.活用提示工程工具目前已有一些提示工程工具可供使用,如Anthropic的Constitutional AI。这些工具可辅助构建和优化提示词。1.跟上前沿研究提示工程是当前最前沿的研究领域之一,持续关注最新的研究成果和方法论。精心设计的提示词能最大限度发挥语言模型的潜力,是高效使用大模型的关键技能。多实践、多学习、多总结,终可掌握窍门。内容由AI大模型生成,请仔细甄别。

Others are asking
AI的发展历史
AI 的发展历史可以追溯到二十世纪中叶,大致经历了以下几个阶段: 1. 早期阶段(1950s 1960s):包括专家系统、博弈论、机器学习初步理论等。心理学家麦卡洛克和数学家皮特斯在 1943 年提出了机器的神经元模型,为后续的神经网络奠定了基础。1950 年,图灵最早提出了图灵测试,作为判别机器是否具备智能的标准。1956 年,马文·明斯基和约翰·麦凯西等人共同发起召开了著名的达特茅斯会议,“人工智能”一词被正式提出,并作为一门学科被确立下来。 2. 知识驱动时期(1970s 1980s):这一时期专家系统、知识表示、自动推理较为流行。 3. 统计学习时期(1990s 2000s):机器学习算法如决策树、支持向量机、贝叶斯方法等得到发展。 4. 深度学习时期(2010s 至今):深度神经网络、卷积神经网络、循环神经网络等技术兴起。当前的前沿技术点包括大模型(如 GPT、PaLM 等)、多模态 AI(视觉 语言模型、多模态融合)、自监督学习(自监督预训练、对比学习、掩码语言模型等)、小样本学习(元学习、一次学习、提示学习等)、可解释 AI(模型可解释性、因果推理、符号推理等)、机器人学(强化学习、运动规划、人机交互等)、量子 AI(量子机器学习、量子神经网络等)、AI 芯片和硬件加速等。 然而,AI 的发展并非一帆风顺,20 世纪 70 年代曾出现“人工智能寒冬”,因为当时符号推理等方法在实现应用场景大规模拓展时面临诸多困难。但随着计算资源变得便宜、数据增多,神经网络方法在计算机视觉、语音理解等领域展现出卓越性能,在过去十年中,“人工智能”一词常被用作“神经网络”的同义词。
2025-01-31
我是一名会计从业者,可以怎样利用AI赚钱
作为一名会计从业者,您可以通过以下方式利用 AI 赚钱: 1. 利用生成式 AI 改进金融服务团队的内部流程,简化财务团队的日常工作流程。例如,帮助编写 Excel、SQL 和 BI 工具中的公式和查询,实现分析的自动化;发现模式,并从更广泛、更复杂的数据集中为预测建议输入,为公司决策提供依据。 2. 借助生成式 AI 自动创建文本、图表、图形等内容,并根据不同的示例调整报告,无需手动将数据和分析整合到外部和内部报告中。 3. 利用生成式 AI 综合、总结税法和潜在的扣除项,并就其提出可能的答案。 4. 利用生成式 AI 自动生成和调整合同、采购订单和发票以及提醒。 此外,您还可以研究 Prompt 提示词,例如像雪梅 May 那样,尝试不同的方法,让 AI 识别会计分类,训练出一个在会计专业领域能提高效率的 AI。
2025-01-31
总结一下当前AI发展现状以及指导非开发者一类的普通用户如何使用及进阶使相关工具
当前 AI 发展现状: 涵盖了不同领域的应用和发展,如电子小说行业等。 包括了智能体的 API 调用、bot 串联和网页内容推送等方面。 对于非开发者一类的普通用户使用及进阶相关工具的指导: 可以先从国内模型工具入手,这些工具不花钱。 学习从提示词开始,与模型对话时要把话说清,强调提示词在与各类模型对话中的重要性及结构化提示词的优势。 对于技术爱好者:从小项目开始,如搭建简单博客或自动化脚本;探索 AI 编程工具,如 GitHub Copilot 或 Cursor;参与 AI 社区交流经验;构建 AI 驱动的项目。 对于内容创作者:利用 AI 辅助头脑风暴;建立 AI 写作流程,从生成大纲开始;进行多语言内容探索;利用 AI 工具优化 SEO。 若想深入学习美学概念和操作可报野菩萨课程。国内模型指令遵循能力较弱时,可使用 launch BD 尝试解决。
2025-01-31
怎么制作一个AI agent?
制作一个 AI Agent 通常有以下几种方式和步骤: 方式: 1. Prompttuning:通过 Prompt 来构建大脑模块,但一般适合拟人化不是很重的情况,其缺点是使用的 Prompt 越长,消耗的 Token 越多,推理成本较高。 2. Finetuning:针对“有趣的灵魂”,通过微调一个定向模型来实现,能将信息直接“记忆”在 AI 的“大脑模块”中,提高信息提取效率,减少处理数据量,优化性能和成本。 3. Prompttuning + Finetuning:对于复杂情况,一般是两种方式结合。 步骤(以工作流驱动的 Agent 为例): 1. 规划: 制定任务的关键方法。 总结任务目标与执行形式。 将任务分解为可管理的子任务,确立逻辑顺序和依赖关系。 设计每个子任务的执行方法。 2. 实施: 在 Coze 上搭建工作流框架,设定每个节点的逻辑关系。 详细配置子任务节点,并验证每个子任务的可用性。 3. 完善: 整体试运行 Agent,识别功能和性能的卡点。 通过反复测试和迭代,优化至达到预期水平。
2025-01-31
ai发展现状
目前 AI 的发展现状呈现出以下特点: 1. 持续学习和跟进是关键:AI 是快速发展的领域,新成果和技术不断涌现。要通过关注新闻、博客、论坛和社交媒体,加入社群和组织,参加研讨会等方式保持对最新发展的了解。 2. 《2024 年度 AI 十大趋势报告》发布:从技术、产品、行业三个维度勾勒 AI 现状和未来走势,基于长期理解和积淀,持续跟踪领域创新、洗牌和动态,并结合与众多机构的交流。 3. 2024 年人工智能现状: 更多资金投入:预计明年会有团队花费超 10 亿美元训练单个大型模型,生成式 AI 热潮持续且更“奢华”。 计算压力挑战:政府和大型科技公司承受计算需求压力,逼近电网极限。 AI 介入选举:虽预期影响尚未成真,但不能掉以轻心。 总之,人工智能领域充满惊喜、伦理挑战和大量资金,各方势力竞相角逐,像一场激动人心的 UFC 比赛。
2025-01-31
如何用AI写新闻
以下是关于如何用 AI 写新闻的相关内容: 好用的 AI 新闻写作工具: 1. Copy.ai:功能强大,提供丰富的新闻写作模板和功能,可快速生成新闻标题、摘要、正文等,节省写作时间并提高效率。 2. Writesonic:专注写作,提供新闻稿件生成、标题生成、摘要提取等功能,智能算法能根据用户信息生成高质量新闻内容,适合新闻写作和编辑人员。 3. Jasper AI:主打博客和营销文案,也可用于生成新闻类内容,写作质量较高,支持多种语言。 儿童新闻百事通的相关内容: 1. 新闻获取:通过插件实现新闻搜索。 2. 新闻可信度分析:根据搜索的新闻内容,通过大模型推理,列出判断依据,包括来源检查、信息一致性、官方通知、详细性与具体性、社会知晓度、矛盾信息等,并对新闻进行评分。 3. 新闻转写:用户提供新闻关键词,bot 调用插件搜索对应的新闻信息,并转写成 6 12 岁儿童能听懂(看懂)的新闻,工作流内嵌入新闻搜索插件,运用大模型进行转写,再采用卡片形式输出。 4. 新闻故事创作:根据转写后的新闻内容,生成适合儿童读的新闻故事,对新闻内容进行拓展和再次创作,采用两层工作流嵌套的方式实现。 搭建 AI 工作流: 搭建 AI 工作流不是一蹴而就的,是一个不断迭代优化的过程。要培养 AI 工作流思维习惯,遇到事情思考“这个事情 AI 能帮我做什么”。接下来会用公众号写作场景实战演示如何梳理一套 AI 工作流,详细拆解公众号写作的工作流,梳理出可嵌入 AI 工具的关键节点,提供可落地执行的 AI 写作提效方案。 需要注意的是,以上内容由 AI 大模型生成,请仔细甄别。
2025-01-31
提示词怎么用
提示词在现代大型语言模型中具有重要作用,以下是关于提示词使用的相关知识: 1. 理解提示词的作用:提示词为模型提供上下文和指示,直接影响模型输出质量。 2. 学习提示词的构建技巧: 明确任务目标,用简洁准确的语言描述。 给予足够的背景信息和示例,帮助模型理解语境。 使用清晰的指令,如“解释”“总结”“创作”等。 对特殊要求应给予明确指示,如输出格式、字数限制等。 3. 参考优秀案例:可在领域社区、Github 等资源中研究和学习已有的优秀提示词案例。 4. 实践、迭代、优化:多与语言模型互动,根据输出提高提示词质量,尝试各种变体,持续优化。 5. 活用提示工程工具:如 Anthropic 的 Constitutional AI 等。 6. 跟上前沿研究:持续关注提示工程最新的研究成果和方法论。 在具体的应用场景中,如星流一站式 AI 设计工具: 在 prompt 输入框中可输入提示词,使用图生图功能辅助创作。 输入语言方面,星流通用大模型与基础模型 F.1、基础模型 XL 使用自然语言(一个长头发的金发女孩),基础模型 1.5 使用单个词组(女孩、金发、长头发),支持中英文输入。 提示词优化方面,启用提示词优化后可帮您扩展提示词,更生动地描述画面内容。 写好提示词的方法: 小白用户可点击提示词上方官方预设词组进行生图。 提示词内容准确,包含人物主体、风格、场景特点、环境光照、画面构图、画质等。 调整负面提示词,点击提示框下方的齿轮按钮,弹出负面提示词框,帮助 AI 理解不想生成的内容。 利用“加权重”功能,让 AI 明白重点内容,可在功能框增加提示词,并进行加权重调节,权重数值越大越优先。 辅助功能包括翻译功能(一键将提示词翻译成英文)、删除所有提示词(清空提示词框)、会员加速(加速图像生图速度,提升效率)。 在 Stable Diffusion 中: 根据想画的内容写出提示词,多个提示词之间使用英文半角符号“,”。 一般而言,概念性的、大范围的、风格化的关键词写在前面,叙述画面内容的关键词其次,最后是描述细节的关键词。 每个词语本身自带的权重可能有所不同,关键词最好具有特异性,措辞越不抽象越好,尽可能避免留下解释空间的措辞。 可以使用括号人工修改提示词的权重。
2025-01-31
提示词
以下是关于提示词的相关知识: 艺术字生成:模型选择图片 2.1,输入提示词(可参考案例提示词)。案例提示词如:金色立体书法,“立冬”,字体上覆盖着积雪,雪山背景,冬季场景,冰雪覆盖,枯树点缀,柔和光影,梦幻意境,温暖与寒冷对比,静谧氛围,传统文化,唯美中国风;巨大的春联,金色的书法字体,线条流畅,艺术美感,“万事如意”;巨大的字体,书法字体,线条流畅,艺术美感,“书法”二字突出,沉稳,大气,背景是水墨画;巨大的奶白色字体“柔软”,字体使用毛绒材质,立在厚厚的毛绒面料上,背景是蓝天。原文链接:https://mp.weixin.qq.com/s/jTMFYKxsN8dYNZu3VHKBnA 星流一站式 AI 设计工具:在 prompt 输入框中可输入提示词、使用图生图功能辅助创作。提示词用于描绘画面,星流通用大模型与基础模型 F.1、基础模型 XL 使用自然语言(如一个长头发的金发女孩),基础模型 1.5 使用单个词组(如女孩、金发、长头发),支持中英文输入。写好提示词要做到内容准确,包含人物主体、风格、场景特点、环境光照、画面构图、画质等,如一个女孩抱着小猫,背景是一面红墙,插画风格、孤独感,高质量。还可调整负面提示词,利用“加权重”功能让 AI 明白重点内容,使用辅助功能如翻译、删除所有提示词、会员加速等。 提示词要素:提示词由一些要素组成,包括指令(想要模型执行的特定任务或指令)、上下文(包含外部信息或额外的上下文信息,引导语言模型更好地响应)、输入数据(用户输入的内容或问题)、输出指示(指定输出的类型或格式)。但提示词所需的格式取决于想要语言模型完成的任务类型,并非所有要素都是必须的。
2025-01-30
怎么给你提示词
以下是关于如何写提示词(prompt)的相关内容: 在学校通用场景中,有创建课程计划助手、写作素材收集助手、雅思写作助手等,其提示词示例如下: 创建课程计划助手:“我是教{……}的老师,帮我创建一份课程计划” 写作素材收集助手:“提供{指定主题}的结论和数据,帮我提供写作素材” 雅思写作助手:“我希望你作为雅思写作考官,帮我提升英语。我们现在开始,我的第一个问题是……” 编写提示词的方法和技巧包括: 假设情景:鼓励探讨假设性场景,例如“假设全球变暖持续恶化,我们需要采取哪些措施应对?” 数据:鼓励使用统计数据或数据支持主张,比如“在关于电动汽车的文章中提供销售数据和环境影响数据。” 个性化:根据用户偏好或特点要求个性化,如“请根据用户对喜剧电影的喜好推荐几部好看的电影。” 语气:指定所需语气(如正式、随意、信息性、说服性),例如“请用正式语气编写一篇关于气候变化的文章。” 格式:定义格式或结构(如论文、要点、大纲、对话),比如“请为我提供一个关于健康饮食的要点清单。” 限制:指定约束条件,如字数或字符数限制,例如“请提供一个关于太阳能的 100 字简介。” 引用:要求包含引用或来源以支持信息,比如“请在关于全球变暖的文章中引用权威研究。” 语言:如果与提示不同,请指明回应的语言,例如“请用法语回答关于巴黎旅游景点的问题。” 反驳:要求解决潜在的反驳论点,比如“针对抵制疫苗接种的观点提出反驳。” 术语:指定要使用或避免的行业特定或技术术语,例如“请用通俗易懂的语言解释区块链技术。” 编写提示词的建议: 1. 明确任务:清晰地定义任务,如写故事时包含背景、角色和主要情节。 2. 提供上下文:若任务需背景知识,提供足够信息。 3. 使用清晰语言:避免模糊或歧义词汇。 4. 给出具体要求:明确格式或风格等。 5. 使用示例:提供期望结果的示例。 6. 保持简洁:避免过多信息导致困惑。 7. 使用关键词和标签:帮助模型理解主题和类型。 8. 测试和调整:生成文本后检查并调整。 希望这些内容能帮助您更好地编写提示词。请注意,内容由 AI 大模型生成,请仔细甄别。
2025-01-29
提示词是什么
提示词(Prompt)是给大语言模型的输入文本,用于指定模型应执行的任务和生成的输出。它发挥“提示”模型的作用,设计高质量的提示词需根据目标任务和模型能力精心设计,良好的提示词能让模型正确理解人类需求并给出符合预期的结果。 提示词由一些要素组成,包括指令(想要模型执行的特定任务或指令)、上下文(包含外部信息或额外的上下文信息,引导语言模型更好地响应)、输入数据(用户输入的内容或问题)、输出指示(指定输出的类型或格式)。但提示词所需的格式取决于想要语言模型完成的任务类型,并非所有要素都是必须的。 在星流一站式 AI 设计工具中,prompt 输入框可输入提示词,使用图生图功能辅助创作。输入语言方面,不同基础模型有不同要求,支持中英文输入。写好提示词要做到内容准确,包含人物主体、风格、场景特点、环境光照、画面构图、画质等;可调整负面提示词,帮助 AI 理解不想生成的内容;利用“加权重”功能让 AI 明白重点内容;还可使用预设词组、辅助功能如翻译、删除所有提示词、会员加速等。 如果您接触过大量提示工程相关的示例和应用,会注意到提示词是由一些要素组成的。为了更好地演示提示词要素,下面是一个简单的提示,旨在完成文本分类任务。在上面的提示示例中,指令是“将文本分类为中性、否定或肯定”。输入数据是“我认为食物还可以”部分,使用的输出指示是“情绪:”。请注意,此基本示例不使用上下文,但也可以作为提示的一部分提供。例如,此文本分类提示的上下文可以是作为提示的一部分提供的其他示例,以帮助模型更好地理解任务并引导预期的输出类型。
2025-01-29
AI提示词学习资料
以下是为您整理的关于 AI 提示词的学习资料: 《拘灵遣将|不会写 Prompt(提示词)的道士不是好律师——关于律师如何写好提示词用好 AI 这件事》:指出要从古人总结的智慧中学习写提示词,接受 AI 存在的“不稳定性”,提示词应是相对完善的“谈话方案”,成果在对话中产生,不能期待完美的提示词和答案。 《从零开始:AI 视频制作小白的成长之路📹》:提到提示词有很多坑,如有人花钱学习但仍上手困难。提示词的框架为主体(什么东西)+动作(干啥了)+场景+镜头(怎么拍),并举例说明。 《雪梅 May 的 AI 学习日记》:2023 年 ChatGPT 出现后,提示词成为基本功,沉淀了一些经典框架。作者学习了一段时间 Agent 后,打算看吴恩达的体系课程,推荐吴恩达的 prompt 课程,并分享了相关学习链接。作者还通过练习用 prompt 写白皮书,实际体验中 AI 能帮助完成约 20%的工作。
2025-01-29
提示词学习
以下是关于提示词学习的相关内容: 提示词的知识体系: 可分为五个维度,从高到低依次是思维框架、方法论、语句、工具和场景。但对于初学者,舒适的学习顺序应是反过来的。 场景:直接切入提示词的场景去学,对比在不同场景下使用提示词的效果。 工具:使用现成的提示词工具,包括 Meta Prompt、Al 角色定制等。 有效语句:学习大量经典论文中提出的提示词语句。 方法论:将有效语句及其背后的原理整合成稳定可控的方法。 学习 Stable Diffusion 的提示词: 是一个系统性的过程,需要理论知识和实践经验结合。 学习基本概念,包括了解工作原理、模型架构,理解提示词如何影响结果,掌握组成部分。 研究官方文档和教程。 学习常见术语和范例。 掌握关键技巧,如组合词条、控制生成权重、处理抽象概念等。 实践和反馈,对比结果并总结经验。 创建提示词库。 持续跟进前沿。 学习提示词运用的建议: 理解提示词的作用,其质量直接影响模型输出质量。 学习构建技巧,明确任务目标,提供足够背景信息和示例,使用清晰指令,明确特殊要求。 参考优秀案例,可在领域社区、Github 等资源中寻找。 实践、迭代、优化,多与语言模型互动,比较输出差异。 活用提示工程工具,如 Anthropic 的 Constitutional AI。 跟上前沿研究。
2025-01-29
coze的学习知识库
以下是关于 Coze 的学习知识库的相关内容: 一、引言 作者大圣是致力于使用 AI 技术将自己打造为超级个体的程序员。本文是关于使用 Coze 打造企业级知识库教程中数据库概念的细化,适合正在学习 Coze 且对数据库节点有困惑的人。在学习 AI Agent 过程中,有经典公式:AI Agent = LLM(大模型)+Planning(规划)+Memory(记忆)+Tools(工具),其中记忆离不开数据库组件。本文从非编程人士角度讲清数据库概念和基本使用,通过和 Excel 对比帮助理解,以更好利用 ChatGPT 等工具辅助学习。另外,作者正在规划一个关于 AI 时代应具备编程基础的系列,包括数据库、知识库、变量、JSON、API、操作系统与服务器、Docker 等内容。 二、大圣:胎教级教程:万字长文带你使用 Coze 打造企业级知识库 1. 2024.06.05 更新:为帮助非编程人士理解数据库概念,补充额外教程,如有疑惑可读。 2. 2024.06.08 更新:为帮助非编程人士理解知识库概念,补充额外教程,建议阅读。 3. 2024.06.10 更新:为帮助非编程人士理解变量概念,补充额外教程,。 4. 2024.06.12 更新:B站 对应的视频链接:https://www.bilibili.com/video/BV1YM4m167zP/?spm_id_from=333.999.0.0 。读完本文可收获 AI Agent 的概念及核心公式、字节初代 AI Agent 产品 Coze 的详细教程、使用一个知识库的例子及 Coze 的使用方法。 三、胎教级教程:万字长文带你理解 RAG 全流程 关于新知识学习,作者推荐 Claude + Coze 的方法。Claude 是目前最强的 AI 大模型,Coze 是一款 AI Agent 的衍生产品,其最大价值在于跟进 AI Agent 工具发展情况和做产品 Demo。在学习 RAG 过程中,作者首先通过 Claude 了解细节概念,再通过 Coze 搭建 Demo,并创建了 4 个 Bot,包括产品资料问答机器人(利用 Coze 的知识库能力演示知识库在企业中的应用)和 Query 改写助手学习 Bot。相关资料参考。
2025-01-31
从事20年的健康管理教练如何从0到1学习AI
以下是为从事 20 年健康管理教练的您提供的从 0 到 1 学习 AI 的建议: 1. 像优秀的医生和药物开发者那样学习:成为顶尖人才通常从多年的密集信息输入开始,通过正规学校教育和学徒实践,面对面地向最出色的实践者学习。 2. 构建模型生态系统:通过使用彼此堆叠的模型来训练 AI,而不是仅依赖大量数据和生成模型解决所有问题。例如,先训练生物学模型,再训练化学模型,然后添加特定于医疗保健或药物设计的数据点。 3. 参考他人的学习经验: 可以参考《雪梅 May 的 AI 学习日记》,其学习模式是输入→模仿→自发创造。您可以去 waytoAGI 社区发现自己感兴趣的 AI 领域,学习最新内容。 二师兄的经历也有一定参考价值,比如从获取安装包和教学视频迈出第一步,参与社群学习等。 4. 注重基础:预医学生从化学和生物学基础课程开始,设计新疗法的科学家也需经历多年相关学习。对于学习 AI 同样,要打好基础。 5. 保持良好的学习状态:有意愿和动力,能清醒地学进去东西。不必给自己太大压力,能学多少算多少。 6. 利用免费开源资源:很多学习资源是免费开源的,充分利用这些资源进行学习。
2025-01-30
我应该怎样开始学习AI
以下是新手开始学习 AI 的建议: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛(比如图像、音乐、视频等),根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 6. 对于中学生来说: 从编程语言入手学习,如 Python、JavaScript 等,学习编程语法、数据结构、算法等基础知识。 尝试使用 AI 工具和平台,如 ChatGPT、Midjourney 等,探索面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 学习 AI 基础知识,包括基本概念、发展历程、主要技术及在各领域的应用案例。 参与 AI 相关的实践项目,如参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动,尝试利用 AI 技术解决生活中的实际问题。 关注 AI 发展的前沿动态,关注权威媒体和学者,思考 AI 技术对未来社会的影响。 记住,学习 AI 是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,您将逐渐建立起自己的 AI 知识体系,并能够在这一领域取得成就。完整的学习路径建议参考「通往 AGI 之路」的布鲁姆分类法,设计自己的学习路径。
2025-01-30
0基础,如何开始学习ai
对于 0 基础学习 AI 的朋友,以下是一份详细的学习指南: 1. 了解 AI 基本概念: 建议阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,您能找到为初学者设计的课程,特别推荐李宏毅老师的课程。 还可以通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,您可以根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。 知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后也进行分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 对于中学生学习 AI,还有以下建议: 1. 从编程语言入手学习: 可以从 Python、JavaScript 等编程语言开始学习,学习编程语法、数据结构、算法等基础知识,为后续的 AI 学习打下基础。 2. 尝试使用 AI 工具和平台: 可以使用 ChatGPT、Midjourney 等 AI 生成工具,体验 AI 的应用场景。 探索一些面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. 学习 AI 基础知识: 了解 AI 的基本概念、发展历程、主要技术如机器学习、深度学习等。 学习 AI 在教育、医疗、金融等领域的应用案例。 4. 参与 AI 相关的实践项目: 可以参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动。 尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 5. 关注 AI 发展的前沿动态: 关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展。 思考 AI 技术对未来社会的影响,培养对 AI 的思考和判断能力。 总之,无论是 0 基础还是中学生,都可以从编程基础、工具体验、知识学习、实践项目等多个方面入手,全面系统地学习 AI 知识和技能,为未来的 AI 发展做好准备。但请注意,部分内容由 AI 大模型生成,请仔细甄别。
2025-01-30
小白如何学习AI
对于小白学习 AI,以下是一些建议: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,可根据自己的兴趣选择特定模块深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库中有很多大家实践后的作品、文章分享,欢迎实践后分享。 5. 体验 AI 产品: 与现有的 AI 产品如 ChatGPT、Kimi Chat、智谱、文心一言等聊天机器人互动,了解其工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 6. 持续学习和跟进: AI 是快速发展的领域,新的研究成果和技术不断涌现。关注 AI 领域的新闻、博客、论坛和社交媒体,保持对最新发展的了解。 考虑加入 AI 相关的社群和组织,参加研讨会、工作坊和会议,与其他 AI 爱好者和专业人士交流。 此外,您还可以参考《雪梅 May 的 AI 学习日记》,该日记适合纯 AI 小白。其学习模式是输入→模仿→自发创造,学习内容可根据个人兴趣在 waytoAGI 社区寻找最新的内容。学习时间较为灵活,且学习资源免费开源。
2025-01-30
系统学习agent构建
以下是一些关于系统学习 Agent 构建的内容: 一些 Agent 构建平台: Coze:新一代一站式 AI Bot 开发平台,适用于构建基于 AI 模型的各类问答 Bot,集成丰富插件工具拓展 Bot 能力边界。 Microsoft 的 Copilot Studio:主要功能包括外挂数据、定义流程、调用 API 和操作,以及将 Copilot 部署到各种渠道。 文心智能体:百度推出的基于文心大模型的智能体平台,支持开发者根据需求打造产品能力。 MindOS 的 Agent 平台:允许用户定义 Agent 的个性、动机、知识,以及访问第三方数据和服务或执行工作流。 斑头雁:2B 基于企业知识库构建专属 AI Agent 的平台,适用于客服、营销、销售等场景,提供多种成熟模板,功能强大且开箱即用。 钉钉 AI 超级助理:依托钉钉强大的场景和数据优势,提供环境感知和记忆功能,在处理高频工作场景表现出色。 搭建工作流驱动的 Agent 简单情况可分为 3 个步骤: 规划:制定任务的关键方法,总结任务目标与执行形式,将任务分解为可管理的子任务,确立逻辑顺序和依赖关系,设计每个子任务的执行方法。 实施:分步构建和测试 Agent 功能,在 Coze 上搭建工作流框架,设定每个节点的逻辑关系,详细配置子任务节点,并验证每个子任务的可用性。 完善:全面评估并优化 Agent 效果,整体试运行 Agent,识别功能和性能的卡点,通过反复测试和迭代,优化至达到预期水平。
2025-01-30