AI 已经在众多领域得到广泛应用,能为您提供多方面的帮助,主要包括以下几个方面:
此外,对于一些非专业人士,可能会觉得接触和使用 AI 工具存在一定困难,但亲自尝试后会发现其能带来很多便利。比如为长辈科普 AI 时,可能会遇到他们因各种原因对 AI 能做什么不太清楚的情况。
人工智能(AI)已经渗透到各行各业,并以各种形式改变着我们的生活。以下是一些人工智能的主要应用场景:1.医疗保健:医学影像分析:AI可以用于分析医学图像,例如X射线、CT扫描和MRI,以辅助诊断疾病。药物研发:AI可以用于加速药物研发过程,例如识别潜在的药物候选物和设计新的治疗方法。个性化医疗:AI可以用于分析患者数据,为每个患者提供个性化的治疗方案。机器人辅助手术:AI可以用于控制手术机器人,提高手术的精度和安全性。2.金融服务:风控和反欺诈:AI可以用于识别和阻止欺诈行为,降低金融机构的风险。信用评估:AI可以用于评估借款人的信用风险,帮助金融机构做出更好的贷款决策。投资分析:AI可以用于分析市场数据,帮助投资者做出更明智的投资决策。客户服务:AI可以用于提供24/7的客户服务,并回答客户的常见问题。3.零售和电子商务:产品推荐:AI可以用于分析客户数据,向每个客户推荐他们可能感兴趣的产品。搜索和个性化:AI可以用于改善搜索结果并为每个客户提供个性化的购物体验。动态定价:AI可以用于根据市场需求动态调整产品价格。聊天机器人:AI可以用于提供聊天机器人服务,回答客户的问题并解决他们的问题。4.制造业:预测性维护:AI可以用于预测机器故障,帮助工厂避免停机。质量控制:AI可以用于检测产品缺陷,提高产品质量。供应链管理:AI可以用于优化供应链,提高效率和降低成本。机器人自动化:AI可以用于控制工业机器人,提高生产效率。5.交通运输:
These two powerful opposing forces,the pervasive expectation of writing and the irreducible difficulty of doing it,create enormous pressure.This is why eminent professors often turn out to have resorted to plagiarism.The most striking thing to me about these cases is the pettiness of the thefts.The stuff they steal is usually the most mundane boilerplate—the sort of thing that anyone who was even halfway decent at writing could turn out with no effort at all.Which means they're not even halfway decent at writing.Till recently there was no convenient escape valve for the pressure created by these opposing forces.You could pay someone to write for you,like JFK,or plagiarize,like MLK,but if you couldn't buy or steal words,you had to write them yourself.And as a result nearly everyone who was expected to write had to learn how.Not anymore.AI has blown this world open.Almost all pressure to write has dissipated.You can have AI do it for you,both in school and at work.The result will be a world divided into writes and write-nots.There will still be some people who can write.Some of us like it.But the middle ground between those who are good at writing and those who can't write at all will disappear.Instead of good writers,ok writers,and people who can't write,there will just be good writers and people who can't write.Is that so bad?Isn't it common for skills to disappear when technology makes them obsolete?There aren't many blacksmiths left,and it doesn't seem to be a problem.Yes,it's bad.The reason is something I mentioned earlier:writing is thinking.In fact there's a kind of thinking that can only be done by writing.You can't make this point better than Leslie Lamport did:If you're thinking without writing,you only think you're thinking.
作者@杨元[heading1]一、缘起:普通人和AI有堵墙[content]在像我一样的年轻人眼里,AI看起来很繁荣、离我们很近,能切实地为我提升效率,创造“奇迹”但是对于“墙”外的许多人,它好像离得有点远————这些“许多人”里,包含了行业外的人、包含了没有科学🕸️的人、不愿初期付费的人、包含了我们的长辈写这篇分享的初衷是,五一趁着节假日回家看望爹妈时,我那“无线电”专业、当年手把手给我启蒙电脑网络协议和编程的爸爸提出了一个需求——“给我和你妈科普一下啥叫AI”,短视频里讲的不太靠谱。当我的父亲跟我说这句话的时候,我当真被震惊了一下:1.此前,我已经将WayToAGI的网址发送给了他,并向他大力推荐2.我已经为他配置好网络,注册好了谷歌的邮箱账号3.我的父亲是个持续学习的人,他还没退休,而他的工作和计算机、网络都有紧密的关系所以何至于此,他会问出这样一个在我看来分明已经解决过的问题?当然,这里面有很多原因,社会学的、个人习惯的、甚至是我和父亲交流模式上的。但也因此,我有些恍然地意识到,那些我们看来“有手就行”的AI工具初级尝试,其实已经拦住了很多人;而因为没有自己亲手的尝试,以至于他们对“AI到底能帮我做什么”都是基于猜想的,在快速碰壁后,就此打住了继续探索。WayToAGI的社区,里面共创和沉淀的知识已经足够地丰富、甚至很多已经足够地深刻,但其核心是“以练代学”,可这些“有手就行”的一些工具尝试,或许其实是拦住大家的第一道坎儿。