Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

AI到底是什么

Answer

AI 是一门令人兴奋的科学,它是指某种模仿人类思维,可以理解自然语言并输出自然语言的东西。

对于没有理工科背景的人来说,可以将其当成一个黑箱。AI 就像传统道教中的驱神役鬼拘灵遣将,通过特定的文字、仪轨程式来引用已有资源,驱使某种可以一定方式/程度理解人类文字的异类达成预设效果,且存在突破界限的可能。

AI 技术再怎么发展,其生态位仍是一种似人而非人的存在。

从任务角度看,最初计算机遵循明确的程序和算法进行数字运算。但对于像“根据照片判断一个人的年龄”这类无法明确编程的任务,因为我们不清楚大脑完成此任务的具体步骤,所以无法编写明确程序让计算机完成,而这类任务正是 AI 所感兴趣的。

在健身领域,AI 健身是利用人工智能技术辅助或改善健身训练和健康管理的方法,能根据用户情况提供定制化训练计划和建议。相关的 AI 工具如 Keep、Fiture、Fitness AI、Planfit 等。

Content generated by AI large model, please carefully verify (powered by aily)

References

拘灵遣将 | 不会写 Prompt(提示词)的道士不是好律师——关于律师如何写好提示词用好 AI 这件事

AI是什么?作为一个不具备理工科背景的文科生,要搞清楚“AI”其实是一件很困难的事情(什么Agents、AIGC、LLM,什么符号主义、什么语义规则傻傻分不清楚),所以最好的处理方式是就把AI当成一个黑箱,我们只需要知道AI是某种模仿人类思维可以理解自然语言并输出自然语言的东西就可以。至于AI如何去理解,其实不重要。于是我们可以发现驱动AI工具和传统道教的驱神役鬼拘灵遣将有奇妙的相似之处,都是通过特定的文字、仪轨程式来引用已有资源,驱使某种可以一定方式/程度理解人类文字的异类达成自己预设的效果,且皆需要面对工具可能突破界限(发疯)的情况。当然,不熟悉道教的朋友可以把这东西理解成某种可以理解人类文字但不是人的魔法精灵/器灵之类的东西——总之,AI的生态位就是一种似人而非人的存在。AI技术再爆炸一万倍,AI的生态位也还是一种似人而非人的存在。由此,我们可以从人类各个文明的传说中,从那些古老哲人们的智慧里寻找到当下和AI、神、精灵、魔鬼这种似人非人存在相处的原则:1.当你想让祂实现愿望时,基于祂的“非人”一面,你需要尽可能的通过语言文字(足够清晰的指令)压缩祂的自由度——(1)你不仅要清晰的告诉祂需要干什么,还需要清晰的告诉祂边界在哪里。(2)你不仅要清晰的告诉祂目标是什么,还需要清晰的告诉祂实现路径方法是哪一条。(3)你不仅要清晰的告诉祂实现路径,最好还直接给到祂所需的正确的知识。

人工智能简介和历史

译者:Miranda,原文见https://microsoft.github.io/AI-For-Beginners/lessons/1-Intro/README.md[heading1][课前测试](https://red-field-0a6ddfd03.1.azurestaticap[content]人工智能(Artificial Intelligence)是一门令人兴奋的科学,它研究我们如何使计算机表现出智能行为,例如做一些人类所擅长的事情。最初,查尔斯·巴贝奇(Charles Babbage)发明了计算机,用于按照一套明确定义的程序(即算法)来对数字进行运算。现代计算机虽然比19世纪提出的原始计算机模型要先进得多,但仍然遵循着相同的受控计算理念。因此,如果我们知道实现某些目标所需的每一个步骤及其顺序,就有可能编写出程序,使计算机按照我们的想法去做这些事。✅“根据照片判断一个人的年龄”是一件无法明确编程的任务,因为我们并不知道当我们在做这件事时,是如何经过某些清晰的步骤,从而在脑海中得到一个数字的。然而,对于有些任务,我们并不能知道明确的解法。例如从一个人的照片中来判断他/她的年龄。我们之所以能做这件事,是因为我们见过了很多不同年龄的人,但我们无法明确自己的大脑具体是通过哪些步骤来完成这项任务的,所以也无法编写明确的程序让计算机来完成。这种类型的任务正是人工智能(简称AI)感兴趣的。✅想一想,如果人工智能得以实现,哪些任务可以被交给计算机完成?考虑金融、医学和艺术领域,这些领域如今是如何从人工智能中受益的?

问:有哪些健身的 AI 产品?

AI健身是指利用人工智能(AI)技术来辅助或改善健身训练和健康管理的方法。这种方法利用AI算法和数据分析来个性化地指导用户进行锻炼、提供健康建议、监测运动进度和提供反馈。AI健身可以根据用户的健康状况、身体指标、运动目标和偏好,提供定制化的训练计划和建议,以帮助用户更有效地达到健康和健身目标。这种技术可以应用于健身应用程序、智能健身设备和在线健身培训等领域,为用户提供更智能、更个性化的健身体验。当涉及到健身的AI工具时,有几个不错的选择:1.Keep:Keep是中国最大的健身平台,为用户提供全面的健身解决方案,以帮助用户实现其健身目标。https://keep.com/2.Fiture:沸彻魔镜由核心AI技术打造,集硬件、丰富课程内容、明星教练和社区于一体。https://www.fiture.com/3.Fitness AI:利用人工智能进行锻炼,增强力量和速度。https://www.fitnessai.com/4.Planfit:健身房家庭训练与AI健身计划,AI教练是专门针对健身的生成式人工智能,使用800多万条文本数据和ChatGPT实时提供指导。https://planfit.ai/相似问题:请帮我推荐关于健身的AI内容由AI大模型生成,请仔细甄别。

Others are asking
如何用AI修改论文
以下是关于如何用 AI 修改论文的相关内容: 在论文写作领域,AI 技术的应用正迅速发展,能提供多方面的辅助,包括文献搜索、内容生成、语言润色、数据分析、论文结构和格式以及研究伦理和抄袭检测等。以下是一些常用的 AI 工具和平台: 文献管理和搜索: Zotero:结合 AI 技术,可自动提取文献信息,助您管理和整理参考文献。 Semantic Scholar:由 AI 驱动的学术搜索引擎,提供相关文献推荐和引用分析。 内容生成和辅助写作: Grammarly:通过 AI 技术提供文本校对、语法修正和写作风格建议,提高论文语言质量。 Quillbot:基于 AI 的重写和摘要工具,可精简和优化论文内容。 研究和数据分析: Google Colab:提供基于云的 Jupyter 笔记本环境,支持 AI 和机器学习研究,便于进行数据分析和可视化。 Knitro:用于数学建模和优化的软件,可进行复杂的数据分析和模型构建。 论文结构和格式: LaTeX:结合自动化和模板,高效处理论文格式和数学公式。 Overleaf:在线 LaTeX 编辑器,有丰富模板库和协作功能,简化论文编写过程。 研究伦理和抄袭检测: Turnitin:广泛使用的抄袭检测工具,确保论文原创性。 Crossref Similarity Check:通过与已发表作品比较,检测潜在抄袭问题。 如果您的医学课题需要 AI 给出修改意见,可以考虑以下专业工具: Scite.ai:为研究人员等打造的创新平台,提供引用声明搜索等工具,简化学术工作。 Scholarcy:可提取文档结构化数据,生成文章概要,包含关键概念等板块内容。 ChatGPT:强大的自然语言处理模型,能提供医学课题的修改意见。 此外,有作者在修改小说时的经验分享:首先将原文喂给 code interpreter 并保存为 excel 文件备用,然后让 GPT 读取文件并给出反馈。从情节合理与连贯性角度修改,细节修改时 Arthur 的结构化 prompt 效果较好,修改过程中要注意保存备份。一轮修改完成后可进行新一轮,修改重点会有所变化。最后还提到了未来的探索方向,包括琢磨 prompts 和设计 agent 框架等。 使用这些工具时,要结合自己的写作风格和需求,选择最合适的辅助工具。
2025-03-03
怎么学习AI基础知识
以下是学习 AI 基础知识的方法: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括人工智能的定义、主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 对于中学生学习 AI,建议如下: 1. 从编程语言入手学习: 可以从 Python、JavaScript 等编程语言开始学习,学习编程语法、数据结构、算法等基础知识,为后续的 AI 学习打下基础。 2. 尝试使用 AI 工具和平台: 可以使用 ChatGPT、Midjourney 等 AI 生成工具,体验 AI 的应用场景。 探索一些面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. 学习 AI 基础知识: 了解 AI 的基本概念、发展历程、主要技术如机器学习、深度学习等。 学习 AI 在教育、医疗、金融等领域的应用案例。 4. 参与 AI 相关的实践项目: 可以参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动。 尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 5. 关注 AI 发展的前沿动态: 关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展。 思考 AI 技术对未来社会的影响,培养对 AI 的思考和判断能力。 如果您不会代码但希望在 20 分钟上手 Python + AI,可以尝试了解以下内容作为基础: 1. AI 背景知识: 基础理论:了解人工智能、机器学习、深度学习的定义及其之间的关系。 历史发展:简要回顾 AI 的发展历程和重要里程碑。 2. 数学基础: 统计学基础:熟悉均值、中位数、方差等统计概念。 线性代数:了解向量、矩阵等线性代数基本概念。 概率论:基础的概率论知识,如条件概率、贝叶斯定理。 3. 算法和模型: 监督学习:了解常用算法,如线性回归、决策树、支持向量机(SVM)。 无监督学习:熟悉聚类、降维等算法。 强化学习:简介强化学习的基本概念。 4. 评估和调优: 性能评估:了解如何评估模型性能,包括交叉验证、精确度、召回率等。 模型调优:学习如何使用网格搜索等技术优化模型参数。 5. 神经网络基础: 网络结构:理解神经网络的基本结构,包括前馈网络、卷积神经网络(CNN)、循环神经网络(RNN)。 激活函数:了解常用的激活函数,如 ReLU、Sigmoid、Tanh。
2025-03-03
怎么用AI写论文
利用 AI 写论文可以按照以下步骤进行: 1. 确定课题主题:明确研究兴趣和目标,选择具有研究价值和创新性的主题。 2. 收集背景资料:使用学术搜索引擎和文献管理软件等 AI 工具搜集相关研究文献和资料。 3. 分析和总结信息:利用 AI 文本分析工具提取关键信息和主要观点。 4. 生成大纲:使用 AI 写作助手生成包括引言、文献综述、方法论、结果和讨论等部分的大纲。 5. 撰写文献综述:借助 AI 工具撰写文献综述部分,确保内容准确完整。 6. 构建方法论:根据研究需求,采用 AI 建议的方法和技术设计研究方法。 7. 数据分析:若课题涉及数据收集和分析,使用 AI 数据分析工具处理和解释数据。 8. 撰写和编辑:利用 AI 写作工具撰写课题各部分,并进行语法和风格检查。 9. 生成参考文献:使用 AI 文献管理工具生成正确的参考文献格式。 10. 审阅和修改:借助 AI 审阅工具检查课题的逻辑性和一致性,并根据反馈修改。 11. 提交前的检查:使用 AI 抄袭检测工具确保课题的原创性,并进行最后的格式调整。 在论文写作领域,常用的 AI 工具和平台有: 1. 文献管理和搜索: Zotero:结合 AI 技术,自动提取文献信息,帮助管理和整理参考文献。 Semantic Scholar:AI 驱动的学术搜索引擎,提供文献推荐和引用分析。 2. 内容生成和辅助写作: Grammarly:提供文本校对、语法修正和写作风格建议,提高语言质量。 Quillbot:基于 AI 的重写和摘要工具,精简和优化论文内容。 3. 研究和数据分析: Google Colab:提供基于云的 Jupyter 笔记本环境,支持 AI 和机器学习研究,便于数据分析和可视化。 Knitro:用于数学建模和优化,帮助进行复杂的数据分析和模型构建。 4. 论文结构和格式: LaTeX:结合自动化和模板,高效处理论文格式和数学公式。 Overleaf:在线 LaTeX 编辑器,提供丰富模板库和协作功能,简化编写过程。 5. 研究伦理和抄袭检测: Turnitin:广泛使用的抄袭检测工具,确保论文原创性。 Crossref Similarity Check:通过与已发表作品比较,检测潜在抄袭问题。 需要注意的是,AI 工具可以作为辅助,但不能完全替代研究者的专业判断和创造性思维。在使用 AI 进行论文写作时,应保持批判性思维,并确保研究的质量和学术诚信。同时,如果担心 AI 对孩子思考力产生负面影响,应正确引导使用方法。例如,将任务设置为让孩子提交与 AI 共同完成作文的聊天记录,重点评价孩子能否说清楚 AI 作文的优缺点及如何修改。
2025-03-03
现阶段AI应用软件有哪些好用的
以下是一些好用的现阶段 AI 应用软件: AI 摄影参数调整助手:使用图像识别、数据分析技术,常见于摄影 APP 中,能根据场景自动调整摄影参数,市场规模达数亿美元。 AI 音乐情感分析平台:运用机器学习、音频处理技术,有音乐情感分析软件,可分析音乐的情感表达,市场规模达数亿美元。 AI 家居智能照明系统:基于物联网技术、机器学习,如小米智能照明系统,实现家居照明的智能化控制,市场规模达数十亿美元。 AI 金融风险预警平台:采用数据分析、机器学习技术,有金融风险预警软件,能提前预警金融风险,市场规模达数十亿美元。 AI 旅游路线优化平台:借助数据分析、自然语言处理技术,如马蜂窝路线优化功能,可根据用户需求优化旅游路线,市场规模达数亿美元。 AI 儿童安全座椅推荐系统:通过数据分析、机器学习,如宝宝树安全座椅推荐,为家长推荐合适的儿童安全座椅,市场规模达数亿美元。 AI 汽车保养套餐推荐系统:利用数据分析、机器学习,如途虎养车保养推荐,根据车辆情况推荐保养套餐,市场规模达数十亿美元。 AI 物流快递柜管理系统:基于数据分析、物联网技术,如丰巢快递柜管理系统,优化快递柜使用效率,市场规模达数十亿美元。 AI 招聘面试模拟平台:运用自然语言处理、机器学习,如智联招聘面试模拟功能,帮助求职者进行面试模拟,市场规模达数亿美元。 AI 房地产装修设计平台:借助图像生成、机器学习,如酷家乐装修设计软件,为用户提供装修设计方案,市场规模达数十亿美元。 AI 游戏道具推荐系统:通过数据分析、机器学习,如游戏内商城推荐功能,根据玩家需求推荐游戏道具,市场规模达数亿美元。 AI 天气预报分时服务:采用数据分析、机器学习技术,如彩云天气分时预报,提供精准的分时天气预报,市场规模达数亿美元。 AI 医疗病历分析平台:利用数据分析、自然语言处理,如医渡云病历分析系统,分析医疗病历,辅助诊断,市场规模达数十亿美元。 AI 会议发言总结工具:借助自然语言处理、机器学习,如讯飞听见会议总结功能,自动总结会议发言内容,市场规模达数亿美元。 AI 书法作品临摹辅助工具:通过图像识别、数据分析,如书法临摹软件,帮助书法爱好者进行临摹,市场规模达数亿美元。
2025-03-03
现阶段AI应用有哪些
现阶段 AI 应用主要包括以下方面: 1. AI 视频生成: 专业创作者(艺术家、影视人等):能够为作品赋予独特风格和想象力,提供灵感,降低后期制作门槛和成本,目前主要集中在音乐 MV、短篇电影、动漫等方向。 自媒体、非专业创作者:解决视频剪辑痛点,如快速生成脚本分镜、视频,将文章高效转 PPT 再转视频,解决同一素材在不同平台分发的成本问题。 企业客户:为小企业、非盈利机构大幅缩减视频制作成本。 2. 交通领域: 自动驾驶:提高交通安全性和效率。 交通管理:优化交通信号灯和交通流量,缓解交通拥堵。 物流和配送:优化物流路线和配送计划,降低运输成本。 无人机送货:将货物快速送达偏远地区。 3. 其他领域: 教育:提供个性化学习体验。 农业:分析农田数据,提高农作物产量和质量。 娱乐:开发虚拟现实和增强现实体验。 能源:优化能源使用,提高能源效率。 此外,从使用场景来看,还包括改善大模型产品的使用体验、助力用户工作流、细分场景独立实用工具、AI 社区、Chatbot 等方向;从产品形态上来看,分为插件、辅助现有产品能力、深度结合 LLM 能力的独立网站&应用、AI 社区等。目前产品大多分布在 PC 端。
2025-03-03
我想通过ai换脸,把一张网图的照片变成我的脸,该怎么办
以下是将网图照片换成您的脸的一些方法和步骤: 1. 星流一站式 AI 设计工具: 选中图像进入扩展功能界面,自动提取面部信息。 上传想要替换到图像的图片。 参数方面:提示词框会自动根据图像进行填充,无需手动填写;重绘风格选择与放大图像相对应的风格,会提升换脸效果,其余参数默认即可。 2. 【SD】无需 Lora,一键换脸插件 Roop: 勾选相关项目,确保包含 Python 和 C++包。 更改到您想要安装的位置,点击右下角的安装。 安装时间较长,需耐心等待。 安装好后,打开 SD 文件目录下的相关文件夹,在地址栏输入“cmd”,然后回车。 在打开的 dos 界面里,粘贴“python m pip install insightface==0.7.3 user”代码,自动开始安装 insightface。 若此阶段出现错误,建议下载最新的秋叶 4.2 整合包(6 月 23 号更新),后台回复【SD】即可下载。 安装完成后,重新打开启动器,后台会继续下载一些模型,全程需保证科学上网。 启用 ROOP 插件,选择想要替换的人物照片,面部修复选择“GFPGAN”。右边的参数数值越低,人物会越像,但图像会很模糊;数值越高人物越不像,但图像会很清晰,可根据需求设置,如使用 0.5 测试。最下面还有放大算法,可使用一个模型放大图像,相当于高清修复。设置好后点击生成。若人脸部分像素偏低、有点模糊,可将图发送到“图生图”,开一个较小的重绘幅度。 需要注意的是,AI 换脸存在一定的法律风险。除上述诈骗、寻衅滋事、编造、传播虚假信息罪外,AI 换脸技术既然要对“人脸”进行更换,其民事侵权风险自不言而明,相对应地构成侮辱、诽谤罪及制作、贩卖、传播淫秽色情物品罪的案例亦会出现。就民事侵权而言,《民法典》第一千零一十九条明确规定,“任何组织或者个人不得以丑化、污损,或者利用信息技术手段伪造等方式侵害他人的肖像权。未经肖像权人同意,不得制作、使用、公开肖像权人的肖像,但是法律另有规定的除外。”因此,一旦换脸技术所生成之人脸系自然人的肖像,那么未经他人同意,使用他人肖像的行为当然侵犯了自然人的肖像权。在刑事犯罪方面,行为人使用他人肖像进行 AI 换脸旨在侮辱、诽谤、恶意丑化他人,并在网络上肆意传播,该行为就极有可能涉嫌刑法上的侮辱、诽谤罪。此外,现阶段还存在大量行为人利用 AI 换脸技术专门进行违法犯罪活动,其中较为典型的是诈骗罪和制作、复制、出版、贩卖、传播淫秽物品牟利罪或传播淫秽物品罪。
2025-03-03
deepseek到底是什么?打个比方
DeepSeek 是一个在 AI 领域受到关注的品牌。它在硅谷受到关注和追逐,早在 2024 年 5 月 DeepSeekV2 发布时,就以多头潜在注意力机制(MLA)架构的创新引发了小范围轰动。DeepSeek 不是“中国式创新”的产物,其秘方更具硅谷风格。 DeepSeek 是基于 AI 模型的产品,需要搭配具体模型,如 DeepSeek V3(类 GPT4o)和 DeepSeek R1(类 OpenAI o1)。它展示出媲美领先 AI 产品性能的模型,但成本较低,在全球主要市场的 App Store 登顶。在实际使用体验方面,在文字能力上表现突出,尤其在中文场景中高度符合日常、写作习惯,但在专业论文总结方面稍弱。数学能力经过优化表现不错,编程能力略逊于 GPT。 需要注意的是,将 DeepSeek 比喻成“AI 界的拼多多”是偏颇的,认为其秘方就是多快好省也是不全面的。
2025-03-03
我在一周前的文章[1]里说对 DeepSeek-R1 只需要说大白话,但在三天前的文章[2]里又用了看起来还挺复杂的结构化提示词。有伙伴问我到底咋回事。这就来解释下喽。
以下是关于 DeepSeekR1 提示词的相关信息: 历史更新: 字节跳动推出新技术 OmniHuman,利用单张图片和音频生成生动视频。 DeepSeek 的出现标志着算力效率拐点显现,其优化算法架构提升算力利用效率,AI 基础大模型参数量迎来拐点,2025 年是算法变革元年,其训练过程聚焦强化学习提升推理能力。 提示词方法论: 核心原理认知:包括多模态理解、动态上下文、任务适应性等 AI 特性定位,以及采用意图识别+内容生成双通道处理等系统响应机制。 基础指令框架:包括四要素模板、格式控制语法等。 进阶控制技巧:如思维链引导、知识库调用、多模态输出。 高级调试策略:包括模糊指令优化、迭代优化法。 行业应用案例:涵盖技术开发场景、商业分析场景。 异常处理方案:如处理信息幻觉、格式偏离、深度不足等情况。 效能监测指标:包括首次响应准确率、多轮对话效率、复杂任务分解等。 在 R1 时代,使用 AI 提示词关键在于提供足够背景信息,简单大白话有效但信息量不足难达理想结果,示例和框架可助理清思路,最终影响在于思考和表达,利用乔哈里视窗分析信息需求,避免过度指令化,让 AI 自由思考以激发更高创意和效果。
2025-02-07
到底什么是大家说的AI
AI 分为 ANI 和 AGI 。ANI 即 artificial narrow intelligence 弱人工智能,它只能做一件事,比如智能音箱、网站搜索、自动驾驶、工厂与农场的应用等。AGI 即 artificial general intelligence ,能做任何人类可以做的事。 简单地说,AI 是让计算机或机器能像人类一样思考和学习的技术。比如在小学课堂上,会以学生能理解的语言来解释,先和学生互动,听听他们口中的 AI ,再引出概念。 从专业术语角度,机械学习是学习输入输出,从 A 到 B 的映射,是让电脑在不被编程的情况下自己学习的研究领域。数据科学是分析数据集,从数据中获取结论与提示,输出结果往往是幻灯片、结论、PPT 、项目结果等。神经网络/深度学习则有输入层、输出层、中间层(隐藏层)。 数据集,又称为资料集、数据集合或资料集合,是一种由数据所组成的集合。通常以表格形式出现,每一列代表一个特定变量,每一行对应于某一成员的数据集的问题。数据分为结构化数据与非结构化数据,结构化数据可以放在巨大的表格中,非结构化数据如图片、视频、文本,机器处理起来更难。获取数据的方法有手动标注、观察行为、网络下载。使用数据时,如果开始搜集数据,可以马上将数据展示或者喂给某个 AI 团队。但数据不一定多就有用,有时数据中会出现不正确、缺少的数据,这就需要有效处理数据。
2025-02-01
到底有多强大
以下是关于不同 AI 相关内容强大之处的介绍: Sora:当不复制旧的,而是把新的、不可能的想法变成现实时,Sora 最为强大。它能帮助创意人员将想法变为现实,不仅擅长创造看起来真实的东西,创造完全超现实的东西的能力也令人兴奋。 LORA:在画风、人物、物品、动作姿态的固定方面表现强大,其文件承载的信息量远大于 Embedding,在还原真人物品时细节精度更高。使用时需注意搭配相应大模型和特定触发词。 Hypernetworks:主要针对画风训练,可像 LORA 一样加载使用。 Google 的 Gemini:是 Google DeepMind 团队开发的多模态模型,支持多种提示类型,能理解和处理几乎任何输入,结合不同类型信息并生成几乎任何输出,被称为 Google 迄今为止最强大、最全面的模型,是原生多模态大模型,从设计之初就支持多模态,能处理多种形式的数据。
2025-01-26
ai到底是什么
AI(人工智能)是一门令人兴奋的科学,它是指某种模仿人类思维,可以理解自然语言并输出自然语言的东西。 对于没有理工科背景的人来说,将 AI 当成一个黑箱来理解是一种可行的方式,即只需要知道它能通过特定的文字、仪轨程式来引用已有资源,驱使某种可以一定方式/程度理解人类文字的异类达成预设效果,且其生态位是一种似人而非人的存在。 从历史角度看,最初计算机由查尔斯·巴贝奇发明,用于按照明确的程序进行数字运算。现代计算机虽更先进,但仍遵循相同的受控计算理念。然而,对于像根据照片判断一个人的年龄这类任务,由于无法明确具体步骤,所以是人工智能感兴趣的领域。 在应用方面,AI 健身是利用人工智能技术辅助或改善健身训练和健康管理的方法,能为用户提供个性化的指导。例如 Keep、Fiture、Fitness AI、Planfit 等都是不错的 AI 健身工具。
2025-01-08
AI智能体在电商领域到底能做什么
AI 智能体在电商领域主要有以下应用: 1. 电商导购:以“什么值得买”智能体为例,当用户输入购买需求,如“我想买个笔记本电脑”,智能体会提取关键词,通过相关 API 检索商品信息,与内置提示词组装成上下文,请求大模型回答,提供更精准的商品推荐。 2. 工作流协作:通过多个智能体的组装,解决复杂场景的搜索问题。例如给新产品取名,定义多个智能体分别负责不同功能,如给出建议名字、检索是否同名等,同时需要调度中枢协调工作,决定是继续下一步还是回溯。 3. 决策支持:如在理赔提交审核中,将付款方规则转换为有向无环图,智能体遍历决策树,利用语言模型评估相关文件是否符合规则,并在复杂任务中选择最佳方法。 4. 品牌卖点提炼:实际搭建中,遵循营销管理流程保证输出合理性,根据电商业态调整单独智能体的提示词提升信息准确度,为营销团队提供更广阔思路和灵感。
2024-12-19