直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

ollama跟llama.cpp差异

回答

Ollama 和 llama.cpp 存在以下差异:

  1. 功能特点:
    • Ollama 是一个开源的大型语言模型服务,能方便地部署最新版本的 GPT 模型并通过接口使用,支持热加载模型文件,无需重新启动即可切换不同模型。
    • llama.cpp 是将 Facebook 的 LLaMA 模型在 C/C++ 中的实现。
  2. 部署和使用:
    • Ollama 的安装和使用相对简单,例如在 Mac 系统中,可通过以下两步完成:打开 ollama.com 下载应用并安装;在终端输入相应指令运行模型。
    • llama.cpp 编译时为利用 Metal 的 GPU 有特定命令,还需下载模型,且提供了 WebUI 供用户使用。
  3. 支持的模型:
    • Ollama 支持如 Google Gemma 等小型模型的本地部署。
    • llama.cpp 支持 LLaMA 模型。
  4. 性能表现:
    • Ollama 中 2b 版本反应速度快但互动话题有限,7b 版本输出内容质量相对高但可能有卡顿,对非英文语种反馈不稳定。
内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

[应用实例] 本地部署Google Gemma

作者:吵爷Google刚刚发布了家用版的小模型Gemma,分别为2b(20亿参数)和7b(70亿参数)版本。相对千亿参数的大模型,这种小模型可能不适合解决特别复杂的任务,但是从趋势上看应该是模型本地化提升基础操作效率的模板。类似之前国内发布的ChatGLM-6B。现在的部署环境比一年前要友好多了,首先提一下Ollama,Ollama是一个开源的大型语言模型服务,可以非常方便地部署最新版本的GPT模型并通过接口使用,支持热加载模型文件,无需重新启动即可切换不同的模型。除了Gemma,像小型的llama也支持本地部署。环境准备首先进入ollama.com,下载程序并安装(支持windows,linux和macos)查找cmd进入命令提示符,输入ollama -v检查版本,安装完成后版本应该显示0.1.26cls清空屏幕,接下来直接输入ollama run gemma运行模型(默认是2b),首次需要下载,需要等待一段时间,如果想用7b,运行ollama run gemma:7b完成以后就可以直接对话了,2个模型都安装以后,可以重复上面的指令切换。2b的反应速度非常快,但是能够互动的话题有限。7b我也试了下,能跑是能跑(我是3050显卡),但是会有明显的卡顿,输出内容的质量相对会高不少,但无论2b还是7b,对非英文语种的反馈都不是很稳定。2b测试7b测试另外模型里一些常用的内部指令/set显示设置界面可调整的设置项/show显示模型信息/load <model>加载一个已有模型/bye退出

如何在电脑上运行本地大模型?手把手教你从 hard 模式到 easy 模式

和第一个方案相比,Ollama的安装和使用,简直不要太简单,两步就搞定了步骤:1.打开Ollama https://ollama.com,下载应用并安装2.在Mac系统搜索terminal或终端,点击回车,弹出的那个简洁的框框就是。输入想要运行的大模型(例如:ollama run llama2),并回车。等待下载完成,即可输入内容,和llama2愉快的聊起来。当然,这个过程中,对于非技术同学最难的部分可能是「我不知道我的favorite terminal是啥」[heading3]超级简单模式:GPT4All[content]最简单的方案就是这个了,应该没有更简单的了,全程不用考虑「最喜欢的terminal是什么」GPT4All是一个用于运行大模型的浏览器,可安装、运行、管理本地大模型。步骤:1.打开GPT4All官网https://gpt4all.io,下载安装器,并按步骤完成安装。支持Windows、Mac、Linux2.打开安装好的GPT4All.app,选择或搜索任意一个大模型,即可下载并运行。在GPT4All官网有各个大模型的评测得分,选得分最高的下载,例如目前平均得分最高的是Nous-Hermes2。好了,现在可以愉快的在电脑上运行大模型了,从此「电脑」真正成为「电脑」了。是不是非常简单,欢迎分享你运行成功后的截图。如有疑问,欢迎加评论讨论。BGM:[New Boy](https://music.163.com/#/song?id=28996919)官网:waytoAGI.com知识库:[通往AGI之路](https://waytoagi.feishu.cn/wiki/QPe5w5g7UisbEkkow8XcDmOpn8e)我们的目标是让每个人因AI而强大

大模型入门指南

由于笔者实用的macOS系统,因此采用GGML量化后的模型,官方开源出来的模型大都以Python为主,效率可想而知,因此笔者一般会采用社区内的其他实现,比较有名的项目有:ggerganov/llama.cpp:Port of Facebook's LLaMA model in C/C++([7])ggerganov/whisper.cpp:Port of OpenAI's Whisper model in C/C++([8])[heading2]LLama[content]首先是编译,为了利用Metal的GPU,可以用如下命令编译:之后需要去Llama-2-7B-Chat-GGML([9])中下载模型,3G到7G不等,读者可以按需尝试即可。得到输出此外,llama.cpp还提供了WebUI供用户使用,首先启动server:它默认监听8080端口,打开浏览器就可以对话了

其他人在问
llama.cpp处理过的模型可以有多大程度的提升
在计算机科学领域,特别是在机器学习和人工智能方面,性能的提升可以有多种方式。对于 llama.cpp处理过的模型,可能的提升可以包括但不限于以下几个方面: 1. 模型精度提升:通过改进模型结构、调整超参数、增加训练数据量等方式,可以提高模型的预测准确性和泛化能力。这样的提升可以使得模型在实际应用中取得更好的效果。 2. 模型速度提升:通过优化模型的计算效率、减少模型的复杂度、使用更高效的算法等方式,可以提高模型的推理速度和训练速度。这样的提升可以使得模型在实时应用和大规模数据处理中更具竞争力。 3. 模型规模提升:通过增加模型的容量、引入更多的特征或上下文信息、使用集成学习等方式,可以提升模型的表达能力和适应性,使得模型可以处理更复杂的任务和更丰富的数据。 4. 模型可解释性提升:通过改进模型的可解释性、增加模型的解释性特征、使用可解释的模型结构等方式,可以提高模型对决策过程的透明度和可理解性,增强模型在实际应用中的可信度和可接受性。 5. 模型稳定性提升:通过改进模型的鲁棒性、增加模型的泛化能力、引入鲁棒的训练和评估方法等方式,可以提高模型在不同数据分布和环境条件下的稳定性和可靠性,减少模型在实际应用中出现的意外情况和错误。 这些提升可以单独或者组合起来实现,取决于具体的应用场景、数据特征、任务要求和资源限制等因素。通过不断改进和优化,llama.cpp处理过的模型可以在性能上取得更大程度的提升,从而更好地满足实际需求。
2024-04-18
ollama windows 安装
以下是 Ollama 在 Windows 上的安装步骤: 1. 前往 下载并安装 Ollama。 2. 安装完成后,打开 Powershell 运行相关命令。 3. 编辑 Win 版的 run_win.ps1 文件,将目录中的图片路径和触发词填写,运行即可。 4. 还可以参考以下教程: 张梦飞的【全网最细】从 LLM 大语言模型、知识库到微信机器人的全本地部署教程: 点击进入,根据电脑系统,下载 Ollama:https://ollama.com/download 。 下载完成后,双击打开,点击“Install” 。 安装完成后,将下方地址复制进浏览器中。如果出现下方字样,表示安装完成:http://127.0.0.1:11434/ 。 4SeasonYou 工作流副本: 首先,下载 ollama,网站: 。 其次,在网站中,复制代码。 然后,像建议一样打开 ComfyUi 根目录下的 custom_nodes\\ComfyUiOllamaYN 的文件路径,在上方的路径下输入 cmd ,进入到下方的命令行,右键即可粘贴刚才的代码,等待下载即可。
2024-11-17
本地运行Llama3需要的电脑是什么配置的?
本地运行 Llama3 所需电脑配置的相关信息如下: 1. 安装 Docker Desktop: 点击/复制到浏览器下载:https://docs.docker.com/desktop/install/windowsinstall/ 。 下载后,双击下载项目,出现相关界面点击 ok 开始加载文件。注意下载相对较快,完成后不要点击“close and restart”,以免导致 llama3 下载中断。等待终端的模型下载完成后再点击重启。 重启后,点击“Accept”,选择第一个,点击“Finish”。 然后会提示注册账号,若打不开网页,可能需要科学上网。按照正常流程注册账号并登录 Docker 即可。 2. 下载 Llama3 模型: 打开终端。如果是 Windows 电脑,点击 win+R,输入 cmd 点击回车;如果是 Mac 电脑,按下 Command(⌘)+ Space 键打开 Spotlight 搜索,输入“Terminal”或“终端”,然后从搜索结果中选择“终端”应用程序。 复制相关命令行,粘贴进入并回车,会开始自动下载,文件下载较慢,可同时进行安装 Docker 的步骤。 3. 下载 Open WebUI: 回到桌面,再打开一个新的终端窗口。如果是 Windows 电脑,点击 win+R,输入 cmd 点击回车;如果是 Mac 电脑,按下 Command(⌘)+ Space 键打开 Spotlight 搜索,输入“Terminal”或“终端”,然后从搜索结果中选择“终端”应用程序。 将相关命令输入,等待下载。 点击或复制相关地址进入浏览器,进行注册登录。 登入后,点击顶部的 Model,选择“llama3:8b”。 需要注意的是,模型的回复速度取决于您电脑的配置。另外,您还可以参考开源项目 。同时,有教程提到可以通过购买算力解决本地电脑配置不够的问题,但需要充值 50 元。
2024-11-14
llama3是什么?
Llama 3 是 Meta 发布的语言模型。以下是关于 Llama 3 的一些重要信息: 模型版本:包括 8B 和 70B 双模型。 数据集:比 Llama 2 的数据集大 7 倍以上。 性能特点:具有 128K token,更强的推理和编码能力,训练效率比 Llama 2 高 3 倍,已集成到 Meta AI。 能力表现:8B 的能力远超 Llama 2 70b。 模型架构:使用 128K 词库的标记化器,8B 和 70B 模型采用分组查询关注 以提升推理效率。 训练数据:超过 15T 词库的预训练,包含的代码数量是 Llama 2 的四倍,预训练数据集含 5%以上的非英语数据,覆盖 30 多种语言,并采用数据过滤管道。 使用方式:将支持 AWS、Databricks、Google Cloud 等平台,得到 AMD、AWS 等硬件平台支持,可在 Meta AI 官方助手上体验。 未来发展:未来几个月将推出新功能、更长上下文窗口、更多型号尺寸,性能将进一步提升,并将分享 Llama 3 研究论文。 此外,现在 llama370BInstruct 已经可以在刚刚推出的 Hugging Chat 上直接使用,网页为:https://huggingface.co/chat/ ,app 下载:https://apps.apple.com/us/app/huggingchat/id6476778843?l=zhHansCN 。还可以在 Amazon SageMaker 上部署 Llama 3 ,相关博客介绍了如何设置开发环境、硬件要求、部署步骤、运行推理并与模型聊天、进行基准测试以及清理等内容。目前 Llama 3 400B 还在训练中。
2024-11-14
ollama嵌入向量在模型后有什么用
嵌入向量在模型后的作用主要体现在以下方面: 1. 用于文档内容的表示和检索:将文档分成块,计算嵌入向量并存储在向量存储中,在测试时通过查询向量存储获取可能与任务相关的块,填充到提示中进行生成。 2. 提升模型的检索能力:在大语言模型应用程序中,向量存储成为检索相关上下文的主要方式,嵌入向量有助于更高效地获取相关信息。 3. 支持多语言和不同粒度的检索任务:例如像 bgem3 这样的向量模型,支持超过 100 种语言的语义表示及检索任务,能实现句子、段落、篇章、文档等不同粒度的检索。 在实际应用中,如在 LangChain 中,本地向量存储使用量较大,而在计算文本片段的嵌入时,OpenAI 占据主导地位,开源提供商如 Hugging Face 等也被较多使用。
2024-11-12
ollama下载链接
Ollama 的下载链接为:https://ollama.com/download 。 Ollama 具有以下特点: 1. 支持多种大型语言模型,包括通义千问、Llama 2、Mistral 和 Gemma 等,适用于不同应用场景。 2. 易于使用,适用于 macOS、Windows 和 Linux 系统,同时支持 CPU 和 GPU。 3. 提供模型库,用户可通过 https://ollama.com/library 查找并下载不同的模型,这些模型有不同参数和大小以满足不同需求和硬件条件。 4. 支持用户自定义模型,可通过简单步骤修改模型的温度参数等。 5. 提供 REST API 用于运行和管理模型,以及与其他应用程序的集成选项。 6. 社区贡献丰富,包括多种集成插件和界面,如 Web 和桌面应用、Telegram 机器人、Obsidian 插件等。 安装完之后,确保 ollama 后台服务已启动(在 macOS 上启动 ollama 应用程序即可,在 Linux 上可以通过 ollama serve 启动)。可以通过 ollama list 进行确认。还可通过 ollama 命令下载模型。
2024-11-07
如何通过ollama 搭建本地知识库
以下是通过 Ollama 搭建本地知识库的步骤: 1. 了解背景:本文思路来源于视频号博主黄益贺,旨在分享如何部署本地大模型及搭建个人知识库,让您了解相关核心技术及流程。 2. Ollama 简介:Ollama 是一个开源框架,用于简化本地运行大型语言模型的过程,是轻量级、可扩展的,提供简单 API 和预构建模型库,适合初学者和非技术人员,能推动大型语言模型的发展和应用。 3. 安装 Ollama:官方下载地址为 https://ollama.com/download ,安装完成后可通过访问特定链接判断是否安装成功。 4. 运行本地大模型:安装完成后,在命令行中运行相应命令,模型名称可通过查看,如选择 llama2 大模型,可根据机器配置选择合适参数的模型,运行时 Ollama 会自动下载大模型到本地。 此外,还有关于本地部署资讯问答机器人:Langchain + Ollama + RSSHub 实现 RAG 的相关内容,包括加载所需库和模块、从订阅源获取内容、为文档内容生成向量等步骤。
2024-10-12
Ollama是什么?
Ollama 是一个开源框架,具有以下特点和功能: 1. 专为在本地机器上便捷部署和运行大型语言模型(LLM)而设计,简化了部署过程,方便非专业用户管理和运行复杂模型。 2. 是一个轻量级、可扩展的框架,提供简单的 API 来创建、运行和管理模型,还有预构建模型库,降低了使用门槛,适合自然语言处理研究、产品开发以及初学者或非技术人员使用。 3. 支持多种大型语言模型,包括通义千问、Llama 2、Mistral 和 Gemma 等,适用于 macOS、Windows 和 Linux 系统,同时支持 CPU 和 GPU。 4. 提供模型库,用户可从中下载不同的模型,这些模型有不同的参数和大小,以满足不同需求和硬件条件。模型库可通过 https://ollama.com/library 查找。 5. 支持用户自定义模型,例如修改模型的温度参数来调整创造性和连贯性,或者设置特定的系统消息。 6. 提供 REST API,用于运行和管理模型,以及与其他应用程序的集成选项。 7. 社区贡献丰富,包括多种集成插件和界面,如 Web 和桌面应用、Telegram 机器人、Obsidian 插件等。 官方下载地址:https://ollama.com/download 。安装完成后,可通过 ollama list 确认,未下载模型时通常显示为空。可通过 ollama 命令下载模型。
2024-10-09
dify的部署和ollama联动
以下是关于 Dify 与 Ollama 联动部署的相关信息: Ollama 的特点和功能: 1. 支持多种大型语言模型,如通义千问、Llama 2、Mistral 和 Gemma 等,适用于不同应用场景。 2. 易于使用,适用于 macOS、Windows 和 Linux 系统,同时支持 CPU 和 GPU。 3. 提供模型库,用户可从中下载不同参数和大小的模型,通过 https://ollama.com/library 查找。 4. 支持自定义模型,可修改温度参数调整创造性和连贯性,或设置特定系统消息。 5. 提供 REST API 用于运行和管理模型,以及与其他应用程序的集成选项。 6. 社区贡献丰富,包括多种集成插件和界面,如 Web 和桌面应用、Telegram 机器人、Obsidian 插件等。 Ollama 的安装和使用: 1. 访问 https://ollama.com/download/ 下载安装。 2. 安装完后,确保 Ollama 后台服务已启动。在 Mac 上启动 Ollama 应用程序,在 Linux 上通过 ollama serve 启动。可通过 ollama list 确认。 3. 通过 ollama 命令下载模型。 Google Gemma 的本地部署: 1. 进入 ollama.com 下载程序并安装(支持 Windows、Linux 和 macOS)。 2. 在命令提示符中输入 ollama v 检查版本,安装完成后版本应为 0.1.26。 3. 输入 cls 清空屏幕,然后输入 ollama run gemma 运行模型(默认是 2b),首次需要下载。若想用 7b,运行 ollama run gemma:7b 。 4. 完成后可直接对话。2b 反应速度快但互动话题有限,7b 输出内容质量相对高但可能卡顿,对非英文语种反馈不稳定。 5. 常用内部指令:/set 显示设置界面可调整的设置项;/show 显示模型信息;/load <model> 加载已有模型;/bye 退出。 整体框架设计思路: 可先采取 Langchain + Ollama 的技术栈作为 demo 实现,后续也可考虑使用 dify、fastgpt 等更直观易用的 AI 开发平台。本次开发的运行环境是 Intel Mac,其他操作系统也可行。下载模型等可能需要梯子。 Langchain 简介: Langchain 是当前大模型应用开发的主流框架之一,提供一系列工具和接口,使与 LLM 交互变简单。其核心在于“链”概念,是模块化组件系统,包括 Model I/O、Retrieval、Chains、Agents、Memory 和 Callbacks 等组件,可灵活组合支持复杂应用逻辑。其生态系统还包括 LangSmith、LangGraph 和 LangServe 等工具,帮助开发者高效管理从原型到生产的各个阶段以优化 LLM 应用。
2024-10-08
a800 ,H100,a10,H800这4个显卡能力有啥差异
以下是 A800、H100、A10、H800 这 4 个显卡在能力上的一些差异: 在训练与推理方面: 对于大型模型的训练,许多模型在 NVIDIA H100 上最具成本效益,但获取在 NVIDIA H100 上运行的模型较难,且通常需要长期合作承诺。如今更多的选择是在 NVIDIA A100 上运行大多数模型训练,但对于大型集群仍需要长期承诺。 大型语言模型(LLM)的参数数量众多,通常需要分布到多个卡中,即使进行 LLM 推理,可能也需要 H100 或 A100。但较小的模型(例如 Stable Diffusion)需要的 VRAM 要少得多,初创公司也会使用 A10 等显卡。 在内存要求方面: 大型 LLM 的参数数量太多,任何单卡都无法容纳,需要类似于训练的多卡设置。 对于一些较小的模型,A10 等显卡可能就能够满足其内存需求。 需要注意的是,决定选择哪种 GPU 主要是一个技术决策,需要根据具体应用来确定最具成本效益的选择。
2024-10-16
你认为Agent和ChatBot聊天对话机器人的差异在哪?
Agent(智能体)和 ChatBot 聊天对话机器人存在以下差异: 任务执行方式:Agent 是执行特定任务的 AI 实体,拥有复杂的工作流程,可以迭代运行,模型本质上能够自我对话,无需人类驱动每一部分的交互;而 ChatBot 通常是用户提出问题后获得一个答案作为回应。 组成和功能:Agent 是大型语言模型(LLM)、记忆(Memory)、任务规划(Planning Skills)以及工具使用(Tool Use)的集合,例如在自动驾驶、家居自动化、游戏 AI、金融交易、客服聊天、机器人等领域发挥作用;而 ChatBot 相对功能较为单一。 处理能力和效率:像 Coze Agent 这样的多 Agent 模式采用分布式计算范式,将复杂任务分解为多个子任务并由独立的智能体并行处理,从而提高系统的处理能力和效率。 参考文章: https://logankilpatrick.medium.com/whataregptagentsadeepdiveintotheaiinterfaceofthefuture3c376dcb0824 https://lilianweng.github.io/posts/20230623agent/ https://waytoagi.feishu.cn/record/1sfvuej0sATQfbO6zbeEAWk02
2024-09-04
智谱跟其他厂商的差异和优势是什么
智谱与其他厂商的差异和优势主要体现在以下几个方面: 1. 模型研发:一年间推出了 4 代 GLM,一直是国内能力最好的模型之一。22 年就和清华一起自研了 GLM130B。 2. 技术来源:由清华大学计算机系技术成果转化而来,背后有清华大学研发团队的科研成果支持。 3. 产品设计:以 ChatGPT 为对标,努力打造类似的用户体验。 4. 智能体应用:是国内首批开放智能体应用的 AI 公司之一,在智能体开发和模型优化方面积累了丰富经验和技术。 5. 性能表现:在逻辑推理和处理复杂提示词方面表现出明显优势,在处理需要深度思考和分析的任务时表现出色。 6. 产品体系:合作研发了双语千亿级超大规模预训练模型 GLM130B,并构建了高精度通用知识图谱,形成数据与知识双轮驱动的认知引擎。基于此模型打造了 ChatGLM,还推出了认知大模型平台 Bigmodel.ai,包括 CodeGeeX 和 CogView 等产品,提供智能 API 服务。
2024-08-30
工具助手类ai角色和角色扮演类ai角色在撰写prompt时主要差异是什么
工具助手类 AI 角色和角色扮演类 AI 角色在撰写 prompt 时的主要差异在于: 工具助手类 AI 角色的 prompt 通常更注重明确和直接的指令,以确保其能够准确地执行任务。例如,在解决逻辑谜题时,需要清晰地描述问题和要求。 角色扮演类 AI 角色的 prompt 则需要明确其扮演的角色,这会从两方面改变其响应: 准确性:在某些情况下,如解数学题,能得到提高。 语气和举止:可以调整为与角色匹配的语气和举止。 在具体的应用中,如生成 AI 视频时,可以通过详细描述角色特征、位置关系、环境等,来获得更符合需求的角色形象。同时,对于特定的 AI 工具,如 Niji·journey 5,了解其输入要求和特点,如对二次元风格的偏好,以及通过强调特定关键词来引导生成特定效果,如角色三视图,也是撰写有效 prompt 的关键。
2024-07-03
coze国际版和国内版的差异
Coze 国际版和国内版的差异主要体现在以下几个方面: 模型支持:国内版目前只能支持使用“云雀大模型”作为对话引擎,而国际版可以支持使用“GPT 3.5/GPT 4”大模型作为对话引擎。 平台对接:国内版可以直接对接发布到微信、飞书等主流平台,国际版可以直接对接到 Facebook Messenger、Slack、Telegram 等主流平台上。 费用:Coze 里面所有的功能都是免费的,不需要任何费用。 功能:免费功能之余还涵盖丰富主流第三方插件、知识库、数据库、工作流设计、预置 AI Bot、性能监控与优化等功能。 适用人群:Coze 是一个非常适合小白的平台,不需要任何编程基础,只需要会使用电脑就可以了。 手机端:Coze 还有自己的手机端,可以方便用户通过手机端 APP 来分享自己的 AI 应用,大大提高用户的使用体验和产品裂变的可能性。
2024-06-21