Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

ai agent和workfolw的差异

Answer

AI Agent 和 Workflow 的主要差异如下:

  • 任务编排方式:AutoGPT 的任务由大模型自动编排,而 Workflow 中的子任务是人为编排的。
  • 带来的优化:
    • 流程中可加入人类 Knowhow,弥补模型知识的不足。
    • 专家测试试跑,减少生产环境中的无效反思,提升 Agent 的表现。
    • 引入图的概念,灵活组织节点,连接各类工具,包括套工具、套其他 Agent、写代码用硬逻辑处理、接大模型进行判断等,极大地提高了灵活性和可控性,提升了 Agent 能力的上限。
  • 解决的问题:Agentic Workflow 可以从提升效率、提高质量、节省时间的角度思考,通过将复杂任务分解为小步骤,融入更多人类参与的规划与定义,减少对 Prompt Engineering 和模型推理能力的依赖,提高 LLM 应用面向复杂任务的性能。
  • 涉及的概念:
    • 记忆:分为短期记忆和长期记忆,短期记忆将上下文学习视为利用模型的短期记忆学习,长期记忆提供长期存储和召回信息的能力。
    • 工具:学会调用外部不同类型 API 获取模型缺少的额外信息、代码执行能力、访问专有信息源等。
    • 动作:大模型根据问句、上下文规划、各类工具决策出最终执行的动作。
  • 人机协同关系:生成式 AI 的人机协同分为 Embedding(嵌入式)、Copilot(副驾驶)、Agent(智能代理)3 种模式,不同模式下人与 AI 的协作流程有所差异。
    • Embedding 模式:人类完成大多数工作。
    • Copilot 模式:人类和 AI 协同工作。
    • Agents 模式:AI 完成大多数工作。
  • 工作流变革:使用 Multiagent Collaboration 的方法,让不同角色的 Agent 按照任务要求自主规划选择工具、流程进行协作完成任务。
  • 信息处理逻辑:抽象化拆解大模型的底层能力,如翻译、识别、提取、格式化等,围绕“输入”“处理”“输出”“反馈”构建最底层的信息处理逻辑。
  • 对获取信息方式的重塑:搜索引擎和基于大模型的聊天机器人在解决问题方面目标一致,ChatGPT 的发布被认为将对传统搜索引擎带来颠覆。
Content generated by AI large model, please carefully verify (powered by aily)

References

AI Agent 产品经理血泪史(二)-欲知方圆,则必规矩【Workflow篇】

上图分别是Coze和Dify的workflow可视化编排页面(框架:React Flow),不得不说Coze的确不是最早做编排的,但是集各家之所长,在用户体验上做的的确得人心。再回过头对比一下上节中AutoGPT的实现,我们可能就发现了这个差异:AutoGPT的任务是大模型编排出来的,我们可以理解为自动编排;而Workflow里面的子任务,是我们人为编排的,我们就称为手动编排吧。由此带来的优化也非常明显:1.在流程中加入人类Knowhow,补足模型知识的不足;2.专家测试试跑,减少生产环境中的反复无效反思,至少不会让用户觉得你的Agent真蠢;3.引入图的概念,灵活组织节点,连接各类工具(让你的Agent看起来很牛逼)其实加入了图的概念之后,workflow的天花板也就变得非常高了。因为你可以在这个流程中去任意增加节点,增加各种类型的节点,不仅能套工具,还能套其它agent,你也可以写代码用硬逻辑去处理,你也可以接大模型,让它代替人类进进行判断。能力的上限,很大概率就是你想象力的上限。灵活和可控,把Agent能力的天花板往上顶了一大截。这就是workflow的功劳。我之前评价一个Agent平台好不好用:1看基座模型的function calling能力,2看workflow的灵活性,3看平台创作者的workflow写的牛逼不牛逼哈哈1、2看的是技术能力,其实也没啥门槛

Inhai: Agentic Workflow:AI 重塑了我的工作流

分为短期记忆和长期记忆。其中短期记忆是指的将所有的上下文学习看成是利用模型的短期记忆来学习;而长期记忆是提供了长期存储和召回信息的能力,它们通常通过利用外部的向量存储和快速检索来存储和召回信息。Tools(工具)通过学会调用外部不同类型API来获取模型(通常在预训练后很难修改)中缺少的额外信息,代码执行能力,访问专有信息源等(例如获取此时此刻的天气、联网网搜索等)Action(动作)根据上述大模型结合问句(Query)、上下文的规划(Context)、各类工具,最终大模型才能决策出最终需要执行的动作是什么。Agentic Workflow解决什么问题?我认为是可以从从提升效率、提高质量、节省时间的角度上进行思考。好比一台“印钞机”,按照指定好的流程重复着机械性的活动,但是它在源源不断的产生价值。Productivity(效率)=产生价值的速率Agentic Workflow通过将一个复杂的任务分解成较小的步骤,在整个过程中中融入了更多人类参与到流程中的规划与定义。它减少了对Prompt Engineering和模型推理能力的依赖,提高了LLM应用面向复杂任务的性能,更丰富、更精确。下面是Coze(扣子)平台上的工作流编排器的示例,这个话其实是一个抽卡游戏的流程,你可以看到在整个工作流中间会有很多节点前后之间有节点以及连线,然后每个节点之间它是通过不同的定义,比如说图片处理工具,或者说是通过多模态模型进行图片理解工具等等其他各种各样的工具组合而成。

Inhai: Agentic Workflow:AI 重塑了我的工作流

AI与人的协同关系生成式AI的人机协同分为3种产品设计模式:Embedding(嵌入式)、Copilot(副驾驶)、Agent(智能代理),在这3种模式下,人与AI的协作流程也是有所差异。Embedding模式:人类完成大多数工作。Copilot模式:人类和AI协同工作。Agents模式:AI完成大多数工作。Agentic Workflow驱动角色工作流变革使用Multiagent Collaboration的方法,让不同角色的Agent按照根据任务要求自主规划选择工具、流程进行协作完成一件任务。我作为一个产品经理角色,我的诉求很简单,需要完成某一个产品功能设计,这个时候通过Agents拆解成多个独立的任务,然后遵循不同的工作流,最后给我生成一份在大体上符合我期望的输出结果,我再修修改改就能够达到可用的阶段了。所以,我从原子能力层重新思考,面对这个快速变化的时代,我该如何去重塑我自己的工作流,以不变应万变呢?我抽象化拆解了大模型的一些底层能力,例如:翻译、识别、提取、格式化等等,其实所有的一些都会围绕几个词“输入”、“处理”、“输出”、“反馈”。“输入”、“处理”、“输出”、“反馈”构建了我最底层的信息处理逻辑,我把它比作四个齿轮,齿轮之间通过不同的衔接工具逐步推动运转,从需求作为输入、结果作为输出,围绕着信息加速,不断驱动我向前。重塑获取信息的方式搜索引擎作为互联网基础设施,同时也是互联网的入口,对于用户而言,从解决问题出发,搜索引擎和基于大模型的聊天机器人的目标从根本上是一致的。自2022年底ChatGPT发布,其通过问答形式被认为将对传统搜索引擎带来颠覆。

Others are asking
一句话阐述ai agent的原理。
AI Agent 的原理主要包括以下几个方面: 1. 其核心通常是大型语言模型(LLM)或大模型。 2. 为 LLM 增加了工具、记忆、行动、规划这四个能力。 工具:如长期记忆,相当于给大模型一个数据库工具来记录重要信息。 记忆:提供长期记忆能力。 行动:将目标进行每一步的拆解,并输出不同的固定格式 action 指令给工具。 规划:在大模型的 prompt 层做逻辑处理,如目标拆解。 3. 目前行业里主要用到的是 langchain 框架,它通过代码或 prompt 的形式将 LLM 与 LLM 之间以及 LLM 与工具之间进行串接。 4. 心灵社会理论认为,智能是由许多简单的 Agent(分等级、分功能的计算单元)共同工作和相互作用的结果。这些 Agent 在不同层次上执行不同的功能,通过协作实现复杂的智能行为。 多重层次:从低层次的感知和反应到高层次的规划和决策,每个层次由多个 Agent 负责。 功能模块:每个 Agent 类似于功能模块,专门处理特定类型的信息或执行特定任务。 分布式智能:智能通过多个相互关联的 Agent 共同实现,提高系统的灵活性和鲁棒性。 5. AI Agent 包括 Chain(步骤,可接受输入变量并产生输出变量)、Router(通过判定让 Agent 走向不同的 Chain)、Tool(工具调用)等概念。同时,还需要 Responser Agent(主 agent,用于回复用户)、Background Agent(背景 agent,用于推进角色当前状态)、Daily Agent(每日 agent,用于生成剧本等)等不同类型的 Agent 协同工作。
2025-03-18
agent
智能体(Agent)在人工智能和计算机科学领域是一个重要概念,指能够感知环境并采取行动以实现特定目标的实体,既可以是软件程序,也可以是硬件设备。 在 LLM 支持的自主 Agent 系统中,LLM 充当 Agents 的大脑,并具有以下关键组成部分: 1. 规划:包括子目标和分解,将大型任务分解为更小、可管理的子目标,以有效处理复杂任务。 2. 反思和完善:能够对过去的行为进行自我批评和反思,从错误中吸取教训,完善未来步骤,提高最终结果质量。 3. 记忆:包含短期记忆,用于所有的上下文学习;长期记忆,通过利用外部向量存储和快速检索,为 Agents 提供长时间保留和回忆(无限)信息的能力。 4. 工具使用:Agents 学习调用外部 API 来获取模型权重中缺失的额外信息,包括当前信息、代码执行能力、对专有信息源的访问等。 以下是一些关于智能体 Agent 的相关目录: 1. 2. 3. 4. 5. 6. 从产品角度思考 Agent 设计: 1. Agent 可以是一个历史新闻探索向导。 身份:历史新闻探索向导 性格:知识渊博、温暖亲切、富有同情心 角色:主导新闻解析和历史背景分析 为使角色更生动,可为其设计简短背景故事,如曾是一位历史学家,对重大历史事件了如指掌,充满热情,愿意分享知识。 2. 写好角色个性的方法: 角色背景和身份:编写背景故事,明确起源、经历和动机。 性格和语气:定义性格特点,如友好、幽默、严肃或神秘;确定说话方式和风格。 角色互动方式:设计对话风格,从基本问答到深入讨论。 角色技能:明确核心功能,如提供新闻解析、历史背景分析或心理分析;增加附加功能以提高吸引力和实用性。 正如《》所写:个性化定制的“虚拟伴侣”能得到用户认可,因为精准击中许多年轻人的孤独和焦虑,背后是年轻人渴望被理解、沟通和交流。美国心理学家 Robert Jeffrey Sternberg 提出了“爱情三角理论”,认为爱情包含“激情”“亲密”和“承诺”三个要素。激情是生理上或情绪上的唤醒,例如对某人有强烈的性或浪漫的感觉;亲密是一种相互依恋的感觉,通过相互联结带来的喜爱和相互沟通分享自己的所见所闻、喜怒哀乐来体现;承诺是决定建立长期稳定关系,融入对方生活,形成互助互惠的关系,代表着一种长相厮守的责任。
2025-03-18
AI Agent的具体应用场景,特别是职场办公场景
AI Agent 的具体应用场景如下: 1. 在职场办公场景中,主要应用场景包括研究总结和客户服务。 2. 个性化方面,随着用户的使用越来越了解用户习惯和想法,从而作出喜好预测。例如 Dot App 在对话中了解用户喜好,随后为用户推荐新的咖啡店。 3. 自主完成任务方面,如 Auto GPT,用户输入一个目标后,可自主执行任务、递归地开发和调试代码。 4. 多 Agent 协作方面,如斯坦福大学的 SmallVille(小镇)项目,25 个人工智能体居住在一个沙盒虚拟城镇中通过复杂的社交互动来执行他们的日常生活;Fixie AI 在收到用户请求后启动多个负责不同模块的 Agent 进行数据查询和传递,最终生成邮件内容给客户回复;博主林亦 LYi 的《AI 炒股?我开了一家员工全是 AI 的公司,自动帮我炒股》就在某种程度上实现了多 Agent 协作的能力。 5. 在企业服务方面,Brix 面向北美和欧洲企业,提供全球雇佣的 AI 驱动解决方案。通过 Hiring Agent,Brix 触达全球约 2000 万以上的人才,自动完成候选人筛选、简历分析和面试流程,帮助企业快速组建高效团队。通过 Working Agent 支持远程团队的智能化管理,为企业构建 100 至 500 人规模的全球化组织提供一站式解决方案。 6. 时来智能通过自研的 AI Agent 以及强化学习等技术,为线下餐饮服务门店提供全自动管理私域流量营销运营的解决方案。基于垂直场景数据训练的 AI 营销模型可以针对不同消费者实时生成并推送个性化的营销折扣方案,从而在优化营销成本的同时显著提升营销转化效果。 目前,AI Agent 应用大多集中在 2B 场景,面向个人消费者的产品少之又少。一方面是高度智能化的 Agent 能力需要打磨,概念落地还有较长一段距离;一方面是 AI 和娱乐消费诉求的结合还几乎没有,其主要带来的是生产方式变革和效率变革。个人消费者方向,目前只看到“私人助理”场景。
2025-03-17
agent
智能体(Agent)在人工智能和计算机科学领域是一个重要概念,指能够感知环境并采取行动以实现特定目标的实体,既可以是软件程序,也可以是硬件设备。 在 LLM 支持的自主 Agent 系统中,LLM 充当 Agents 的大脑,并辅以几个关键组成部分: 1. 规划:包括子目标和分解,将大型任务分解为更小的、可管理的子目标,以有效处理复杂任务。 2. 反思和完善:可以对过去的行为进行自我批评和自我反思,从错误中吸取教训,并针对未来的步骤进行完善,提高最终结果的质量。 3. 记忆:包含短期记忆,所有的上下文学习都是利用模型的短期记忆来学习;长期记忆,为 Agents 提供长时间保留和回忆(无限)信息的能力,通常通过利用外部向量存储和快速检索来实现。 4. 工具使用:Agents 学习调用外部 API 来获取模型权重中缺失的额外信息,包括当前信息、代码执行能力、对专有信息源的访问等。 以下是一些关于智能体 Agent 的相关目录: 1. 2. 3. 4. 5. 6. 从产品角度思考 Agent 设计: 1. Who:Agent 是谁?性格是什么?我们的 Agent 可以是一个历史新闻探索向导,其身份为历史新闻探索向导,性格知识渊博、温暖亲切、富有同情心,角色是主导新闻解析和历史背景分析。为使角色更加生动,可为 Agent 设计简短的背景故事,比如曾是一位历史学家,对世界上的重大历史事件了如指掌,充满热情,愿意分享知识。 2. 怎么写好角色个性: 角色背景和身份:编写背景故事,明确起源、经历和动机。 性格和语气:定义性格特点,如友好、幽默、严肃或神秘;确定说话方式和风格。 角色互动方式:设计对话风格,从基本问答到深入讨论。 角色技能:明确核心功能,如提供新闻解析、历史背景分析或心理分析;增加附加功能以提高吸引力和实用性。 正如《》所写:个性化定制的“虚拟伴侣”能得到用户的认可,这是因为精准地击中了许多年轻人无处可藏的孤独和焦虑,背后是年轻人渴望被理解、沟通和交流。美国心理学家 Robert Jeffrey Sternberg 提出了“爱情三角理论”,认为爱情包含“激情”“亲密”和“承诺”三个要素。激情是生理上或情绪上的唤醒,例如对某人有强烈的性或浪漫的感觉;亲密是一种相互依恋的感觉,通过相互联结带来的喜爱和相互沟通分享自己的所见所闻、喜怒哀乐来体现;承诺是决定建立长期稳定关系,融入对方生活,形成互助互惠的关系,代表着一种长相厮守的责任。
2025-03-17
ToB行业有什么关于AI Agent的应用场景
在 ToB 行业,AI Agent 有以下应用场景: 1. 人力资源领域:如 Brix 面向北美和欧洲企业,提供全球雇佣的 AI 驱动解决方案。通过 Hiring Agent,触达全球约 2000 万以上的人才,自动完成候选人筛选、简历分析和面试流程,帮助企业快速组建高效团队。通过 Working Agent 支持远程团队的智能化管理,为企业构建 100 至 500 人规模的全球化组织提供一站式解决方案。 2. 餐饮营销领域:时来智能通过自研的 AI Agent 以及强化学习等技术,为线下餐饮服务门店提供全自动管理私域流量营销运营的解决方案。基于垂直场景数据训练的 AI 营销模型可以针对不同消费者实时生成并推送个性化的营销折扣方案,从而在优化营销成本的同时显著提升营销转化效果,能帮助门店提升 50%100%的营销转化效果,以及相应提升平均 1520%的营业额。 3. 销售和供应链管理:嵌入企业流程,提升整体运营效率。 此外,AI Agent 具有以下特点: 1. 个性化:随着用户的使用越来越了解用户习惯和想法,从而作出喜好预测。例如 Dot App 在对话中了解用户喜好,随后为用户推荐新的咖啡店。 2. 自主完成任务:如 Auto GPT,用户输入一个目标后,可自主执行任务、递归地开发和调试代码。 3. 多 Agent 协作:例如斯坦福大学的 SmallVille(小镇)项目,25 个人工智能体居住在一个沙盒虚拟城镇中通过复杂的社交互动来执行他们的日常生活;Fixie AI 在收到用户请求后启动多个负责不同模块的 Agent 进行数据查询和传递,最终生成邮件内容给客户回复。 以下是一些 Agent 构建平台: 1. Coze:新一代的一站式 AI Bot 开发平台,适用于构建基于 AI 模型的各类问答 Bot,集成丰富插件工具拓展 Bot 能力边界。 2. Microsoft 的 Copilot Studio:主要功能包括外挂数据、定义流程、调用 API 和操作,以及将 Copilot 部署到各种渠道。 3. 文心智能体:百度推出的基于文心大模型的智能体(Agent)平台,支持开发者根据自身需求打造大模型时代的产品能力。 4. MindOS 的 Agent 平台:允许用户定义 Agent 的个性、动机、知识,以及访问第三方数据和服务或执行设计良好的工作流。 5. 斑头雁:2B 基于企业知识库构建专属 AI Agent 的平台,适用于客服、营销、销售等多种场景,提供多种成熟模板,功能强大且开箱即用。 6. 钉钉 AI 超级助理:依托于钉钉强大的场景和数据优势,提供更深入的环境感知和记忆功能,在处理高频工作场景如销售、客服、行程安排等方面表现出色。
2025-03-17
multi agents讲解
多智能体(MultiAgent)是由多个自主、独立的智能体(Agent)组成的系统。每个智能体都能感知环境、决策并执行任务,且它们之间能信息共享、任务协调与协同行动以实现整体目标。 随着大型语言模型(LLM)的出现,以 LLM 为核心构建的 Agent 系统受广泛关注。目前常见框架集中在单 Agent 场景,其核心是 LLM 与工具协同配合,可能需与用户多轮交互。而多 Agent 场景为不同 Agent 分配角色,通过协作完成复杂任务,与用户交互可能减少。 构建多 Agent 框架主要组成部分包括: 1. 环境:所有 Agent 处于同一环境,包含全局状态信息,Agent 与环境有信息交互与更新。 2. 阶段:采用 SOP 思想将复杂任务分解为多个子任务。 3. 控制器:可以是 LLM 或预先定义好的规则,负责环境在不同 Agent 和阶段间切换。 4. 记忆:因 Agent 数量增多,消息数量及每条消息的记录字段增加。 此外,吴恩达最新演讲提到四种 Agent 设计范式,Reflection 和 Tool Use 相对经典且广泛使用,Planning 和 Multiagent 较新颖有前景。Reflection 类似于 AI 自我纠错和迭代,如让 AI 写代码并自我检查修改。Tool Use 指大语言模型调用插件拓展能力。在一些场景中,Reflection 可用两个 Agent,一个写代码,一个 Debug。
2025-03-14
ai婚纱照
以下是为您整理的关于“ai 婚纱照”的相关信息: 摊位方面:有提供 AI 肖像及写真(包括婚纱写真)的摊位,摊位区域为 D,编号为 46,类型为写真。 AI 绘画方面:有多种关于婚纱系的绘画描述,如“haute couture,high fashion,dark blue wedding dress,stardust,stars,glimmer,wedding,dramatic,ultra realistic,volumetric,atmospheric lighting,unreal engine,artgerm,ultra resolution,8k,—ar 9:16uplight”等。 还有开源项目作者 ailm 在 ComfyUI 上搭建的可接入飞书的 AI 女友麦洛薇(mylover),实现了稳定人设、无限上下文、永久记忆、无缝联动 SD 绘图等功能。
2025-03-18
AI时代下人才的发展
在 AI 时代,人才的发展具有以下重要方面: 跨学科思维与知识整合能力: AI 善于单领域的深度计算,但跨领域的综合创新仍是人类的优势。能够将不同学科的知识串联,进行类比、迁移和融合,是产生创新思路的源泉之一。未来复杂问题往往涉及多方面因素,仅靠单一领域视角难以解决。人类大脑在跨域联想方面远胜机器,能把看似无关的点联系起来,这正是创造力的体现。 要培养跨学科思维,首先要建立广博的知识面,对主要学科门类有基本了解。其次要刻意练习融会贯通,面对问题时尝试多学科视角。学校和培训应鼓励跨学科项目、通识教育。可以采取“T 字型”发展,一方面在主攻领域深耕,另一方面广泛涉猎相关领域。培养该能力还需提高系统思考和抽象概括能力。长远看,这种跨界整合能力将非常抢手,因为创造性突破往往发生在学科交叉处。 适应 AI 时代的关键技能: 技术专业人士需要发展 AI 难以替代的技能,包括团队建设、跨文化交流、创新解决方案的设计等。AI 虽然可以输出代码,但无法建立团队、跨越文化界限交流或激发团队创造力。对于从事可能被 AI 取代风险工作的技术工作者,需要重新思考职业生涯规划,可能意味着学习新技能或转向更需要人类特质的工作领域。 总的来说,生成式人工智能正在重塑技术就业市场的未来,既带来挑战也提供机遇。关键在于理解并适应这一变化,发展 AI 无法替代的技能,并在新的技术生态中找到自己的位置。同时要注重人类的创造力和创新能力。
2025-03-18
AI如何助力职业发展
AI 可以从以下几个方面助力职业发展: 1. 职业规划: 职业趋势分析:基于最新市场数据和行业报告,协助分析自身专业或职业的前景,了解未来趋势。 技能评估与提升:通过测评工具评估当前职业兴趣,提供针对性学习资源和课程建议,提升专业技能。 职业匹配与推荐:根据兴趣、技能和目标,推荐适合的职业路径和职位,提供个性化建议。 职业发展规划:结合个人情况和市场需求,制定详细的短、中、长期职业发展计划,帮助在 AI 时代找到职业定位。 2. 成为“超级个体”: 效率提升与技能拓展:个人借助 AI 工具学会新技能,参与跨职能工作,成为“全能型人才”。 专注深耕专业技能:AI 接管浅层、重复工作,让人有更多时间修炼深层次专业技能。 提高绩效与解锁可能性:掌握 AI 辅助技能,不仅提高当下绩效,还为自己创造更多发展机会。 放大个人价值:在效率革命推动下,个人利用 AI 成倍放大时间和精力价值,如个人创业者完成全链条工作,教师扩大授课规模,科研人员产出更多数据等。 3. 技术应用与转型: 企业运营:将 AI 前沿技术应用于企业运营,帮助企业完成数字化转型,优化运营效率。 个人成长:协助个人利用 AI 重构知识体系,实现个人成长,在 AI 时代轻松前行。
2025-03-18
关于ai输入法
以下是关于 AI 输入法的相关信息: 在 ShowMeAI 周刊 No.14 中提到,最早注意到 AI Keyboard(AI 输入法)是通过 a16z 在 2024 年 8 月发布的榜单。从 11 月末开始,AI 输入法出现得越来越频繁。 FaceMoji 是一款输入法,其 AI 特性包括根据上下文预测 emoji、跨语言实时翻译、智能对话、GIF 智能搜索、智能纠错等,同时具备常规输入法的功能,如自定义皮肤、海量 emoji 和颜文字库等。 Bobble AI 的 AI 功能更有新意,除根据聊天内容推荐 emoji 外,还能创作和推荐个性化的表情包(贴纸),支持智能回复、翻译、总结等,讲笑话是其官方重点强调的功能之一,也支持其他常规功能。 在 AI 智库的月度榜单(10 月)中,百度输入法、MaxAI.me、AnyDoor 等产品在覆盖力方面有不同的表现。
2025-03-18
推理类模型,以deepseek为代表,与此前的聊天型ai,比如chatgpt3.5,有什么差异
推理类模型如 DeepSeek 与聊天型 AI 如 ChatGPT3.5 存在以下差异: 1. 内部机制:对于大语言模型,输入的话会被表示为高维时间序列,模型根据输入求解并表示为回答。在大模型内部,是根据“最大化效用”或“最小化损失”计算,其回答具有逻辑性,像有自己的思考。 2. 多模态能力:ChatGPT3.5 是纯语言模型,新一代 GPT 将是多模态模型,能把感官数据与思维时间序列一起作为状态,并装载在人形机器人中,不仅能对话,还能根据看到、听到的事进行判断,甚至想象画面。 3. 超越人类的可能性:有人假设人按最大化“快乐函数”行动,只要“效用函数”足够复杂,AI 可完全定义人,甚至超越人类。如在“短期快乐”与“长期快乐”的取舍上,人类难以找到最优点,而 AI 可通过硬件算力和强化学习算法实现,像 AlphaGo 击败世界冠军,在复杂任务上超越人类。 4. 应用领域:文字类的总结、润色、创意是大语言模型 AI 的舒适区,如从 ChatGPT3.5 问世到 ChatGPT4 提升,再到 Claude 3.5 sonnet 在文学创作领域取得成绩,只要有足够信息输入和合理提示词引导,文案编写可水到渠成。
2025-03-18
ai作图网站复杂吗?
AI 作图网站的使用复杂程度因人而异。一些网站可能具有较为简单直观的界面和操作流程,而另一些可能相对复杂。 例如,ILLUMINARTY 网站通过对大量图片数据的抓取和分析来鉴别图片是否为 AI 生成,但在测试中可能存在误判。 同时,还有一些专门用于绘制示意图的网站,如 Creately、Whimsical 和 Miro 等。Creately 是在线绘图和协作平台,适合绘制多种图表,具有智能绘图、丰富模板库和实时协作等功能。Whimsical 专注于用户体验和快速绘图,界面直观易上手。Miro 是在线白板平台,结合 AI 功能适用于团队协作和各种示意图绘制,具有无缝协作、丰富模板和工具以及与其他项目管理工具集成等功能。使用这些网站绘制示意图的一般步骤包括选择工具、创建账户、选择模板、添加内容、协作和分享等。 对于 Tusiart 这类工具,文生图的操作流程包括确定主题、选择基础模型 Checkpoint(如麦橘、墨幽的系列模型)、选择 lora、设置 VAE(如 840000)、编写 Prompt 提示词和负向提示词 Negative Prompt(均用英文)、选择采样算法(如 DPM++2M Karras)、确定采样次数(如 30 40 次)以及设置尺寸等。
2025-03-18
我想整理现在国内和国外的大语言模型产品并需要你整理差异还有时间轴
以下是对国内外大语言模型产品的整理及差异: 国内大语言模型: 通用模型:如文心一言、讯飞星火等,能够处理自然语言。 垂直模型:专注于特定领域,如小语种交流、临床医学、AI 蛋白质结构预测等。 具有代表性的项目:“悟道・天鹰”(北京智源人工智能研究院)是首个具备中英文双语知识、支持商用许可协议、国内数据合规需求的开源语言大模型;文心一言(百度)可用以文学创作、商业文案创作、数理逻辑推算、中文理解、多模态生成。 国外大语言模型: 具有代表性的项目:GPT4(OpenAI)是目前最先进的自然语言生成模型,可用于回答问题、撰写文章等;Gemini Ultra(Google)是多模态人工智能模型,采用神经网络架构,对标 GPT4,可用于回答问题、生成代码、处理文本等;Claude 3 Opus(Anthropic)是多模态模型,能处理超过 1 百万 token 的输入,具有实时聊天、数据处理、分析预测等功能,实现了接近完美的召回率。 时间轴方面: 国内:去年 7 月大模型百花齐放。 国外:相关模型也在不断发展和更新。 在工作原理上,大语言模型通常包括训练数据、算力、模型参数等要素。在训练数据一致的情况下,模型参数越大能力越强。Transformer 架构是大语言模型训练的常见架构,具备自我注意力机制能理解上下文和文本关联。同时,大模型可能存在幻觉,即因错误数据导致给出错误答案,优质数据集对其很重要。此外,Prompt 分为 system prompt、user prompt 和 assistant prompt,写好 Prompt 的法则包括清晰说明、指定角色、使用分隔符、提供样本等。还可以基于通用大模型进行 Fine tuning 微调,以适应特定领域的需求。
2025-03-07
我的工作是财务会计,经常需要对账,输入是2个Excel表格,但格式内容都有不少差异,哪些大模型或者工具可以帮我快速完成这个工作?
以下是一些可能有助于您快速完成对账工作的大模型或工具: 1. Coze 记账管家:它能通过大语言模型将用户输入的非结构化数据转变为结构化数据存入数据库。工作流程包括定义提示词,让大模型拆解并识别记账事项、发生时间、变动金额等,然后将这些数据存入数据库。 2. GLM4AllTools:可用于统计平台月度账单,例如您可以从平台导出月度明细数据,上传账单给沙盒,让模型统计账单数据和用量,还能分析账单数据波动。 3. 生成式 AI:在金融服务领域,它能帮助改进内部流程,如预测编写 Excel、SQL 和 BI 工具中的公式和查询,自动创建报告的文本、图表、图形等内容,为会计和税务团队提供税法和扣除项的可能答案,以及帮助采购和应付账款团队自动生成和调整合同、采购订单和发票等。
2025-02-15
coze中的工作流 智能体 应用 bot 分别有什么特点差异共同点,作为新手小白应该如何逐步上手
Coze 中的工作流、智能体、应用 Bot 具有以下特点、差异和共同点: 特点: 工作流:包括图像工作流,可进行图像流分类(如智能生成、智能编辑、基础编辑),按照构架配置工作流,调试效果等。 智能体:设定角色,对工作流有详细描述和调用规则,能实现从简单到复杂的不同流程自动化。 Bot:有不同的运作模式(单智能体模式和多智能体模式),可选择模型,配置技能(如插件、工作流、图像流和触发器等),还有知识区域和记忆区域。 差异: 工作流侧重于具体的任务流程配置和图像处理方面。 智能体更注重角色设定和工作流的调用规则。 Bot 则在运作模式、模型选择和技能配置上有独特之处。 共同点: 都与 Coze 平台相关,相互配合以实现各种功能。 对于新手小白逐步上手的建议: 先了解 Coze 平台的基本操作和界面。 从简单的图像工作流开始尝试,熟悉工作流的创建和配置流程。 逐步学习智能体的设定和工作流的调用规则。 再深入研究 Bot 的模式选择、模型选择和技能配置。 参考平台提供的示例和教程,多进行实践和调试。
2024-12-31
以下是大致可以采用的步骤来实现这样一个能自动在大语言模型网站生成不同场景机器人图片的程序(以下以Python语言示例,不过不同平台具体实现会有差异且需遵循对应网站的使用规则和接口规范): ### 1. 选择合适的大语言模型网站及确认其API(应用程序编程接口)情况 不同大语言模型网站对于图片生成通常会提供相应的API来允许外部程序与之交互,比如部分知名的AI绘画相关平台。你需要先确定要使用哪些网站,然后去注册开发者账号等,获取对应的API Key以及详细的API文档,了解如何通过代码向其发起图
以下是为您整合的相关内容: Ollama 框架: 1. 支持多种大型语言模型,如通义千问、Llama 2、Mistral 和 Gemma 等,适用于不同应用场景。 2. 易于使用,适用于 macOS、Windows 和 Linux 系统,支持 cpu 和 gpu,用户能轻松在本地环境启动和运行大模型。 3. 提供模型库,用户可从中下载不同模型,这些模型有不同参数和大小以满足不同需求和硬件条件,可通过 https://ollama.com/library 查找。 4. 支持用户自定义模型,例如修改模型的温度参数来调整创造性和连贯性,或者设置特定的系统消息。 5. 提供 REST API 用于运行和管理模型,以及与其他应用程序的集成选项。 6. 社区贡献丰富,包括多种集成插件和界面,如 Web 和桌面应用、Telegram 机器人、Obsidian 插件等。 7. 安装:访问 https://ollama.com/download/ 进行下载安装。安装完后,确保 ollama 后台服务已启动(在 mac 上启动 ollama 应用程序,在 linux 上通过 ollama serve 启动),可通过 ollama list 确认。 基于 COW 框架的 ChatBot 实现步骤: 1. COW 是基于大模型搭建的 Chat 机器人框架,将多模型塞进自己的微信里实现方案。 2. 基于张梦飞同学的教程: 。 3. 实现内容: 打造属于自己的 ChatBot(文本对话、文件总结、链接访问、联网搜索、图片识别、AI 画图等)。 常用开源插件的安装应用。 4. 正式开始前需知: ChatBot 相较于在各大模型网页端使用区别:本实现思路需要接入大模型 API 的方式实现(API 单独付费)。 风险与注意事项: 微信端因非常规使用,有封号危险,不建议主力微信号接入。 只探讨操作步骤,请依法合规使用。 大模型生成的内容注意甄别,确保所有操作均符合相关法律法规要求。 禁止用于任何非法目的。 处理敏感或个人隐私数据时注意脱敏,以防滥用或泄露。 5. 多平台接入:微信、企业微信、公众号、飞书、钉钉等。 6. 多模型选择:GPT3.5/GPT4.0/Claude/文心一言/讯飞星火/通义千问/Gemini/GLM4/LinkAI 等。 7. 多消息类型支持:能处理文本、语音和图片,以及基于自有知识库进行定制的企业智能客服功能。 8. 多部署方法:本地运行、服务器运行、Docker 的方式。
2024-12-29
ollama跟llama.cpp差异
Ollama 和 llama.cpp 存在以下差异: 1. 功能特点: Ollama 是一个开源的大型语言模型服务,能方便地部署最新版本的 GPT 模型并通过接口使用,支持热加载模型文件,无需重新启动即可切换不同模型。 llama.cpp 是将 Facebook 的 LLaMA 模型在 C/C++ 中的实现。 2. 部署和使用: Ollama 的安装和使用相对简单,例如在 Mac 系统中,可通过以下两步完成:打开 ollama.com 下载应用并安装;在终端输入相应指令运行模型。 llama.cpp 编译时为利用 Metal 的 GPU 有特定命令,还需下载模型,且提供了 WebUI 供用户使用。 3. 支持的模型: Ollama 支持如 Google Gemma 等小型模型的本地部署。 llama.cpp 支持 LLaMA 模型。 4. 性能表现: Ollama 中 2b 版本反应速度快但互动话题有限,7b 版本输出内容质量相对高但可能有卡顿,对非英文语种反馈不稳定。
2024-12-09