Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

聊天机器人进行客服咨询问答相较于人工服务有哪些优势

Answer

聊天机器人进行客服咨询问答相较于人工服务具有以下优势:

  1. 提高效率和可及性:能够自动化处理常见客户咨询,将聊天机器人集成到企业的网站、社交媒体平台和其他客户服务渠道,例如电子商务网站可以部署聊天机器人来回答关于产品细节、配送政策和退货流程的常见问题。
  2. 提供 24/7 客户支持:由于无需休息,可以提供全天候服务,确保客户随时获得所需信息,相比人工客服,能提供更快的响应速度,减少客户等待时间。
  3. 降低成本:大幅减少小型企业在客户服务方面的人力成本。
  4. 释放人工客服资源:使其专注于更复杂和个性化的客户需求。
  5. 提升响应速度和服务质量:定期监控聊天机器人的性能,如解答准确性、客户满意度,并根据反馈进行优化。分析聊天记录和客户反馈,以识别机器人性能的改进点。随着 AI 技术的发展,定期更新聊天机器人的算法和知识库,以提高其效能和准确性。
  6. 对于特定领域,如骨科,能够减轻医生工作量,缓解患者焦虑,准确率基本达到标准,回复速度和质量远远高于人类医生,回复质量可以接受,对患者教育、科普、焦虑舒缓具有积极意义,有望通过对疾病的了解提升治疗效果。
Content generated by AI large model, please carefully verify (powered by aily)

References

中小企业利用人工智能(AI)进行转型

"客户服务自动化"是指利用人工智能(AI)技术,尤其是AI聊天机器人,来自动化处理客户服务中的常见咨询。这一做法不仅可以提升客户服务的效率和质量,还可以减轻人工客服人员的工作负担。首先,部署AI聊天机器人处理常见的客户咨询。通过自动化处理常见的客户咨询,提高客户服务的效率和可及性根据企业的特定需求和预算,选择合适的AI聊天机器人解决方案。根据常见的客户咨询类型,定制聊天机器人的回答库。这可能包括产品信息、价格查询、订单状态跟踪等。将聊天机器人集成到企业的网站、社交媒体平台和其他客户服务渠道。例如电子商务网站可以部署聊天机器人来回答关于产品细节、配送政策和退货流程的常见问题。其次,通过机器人提供24/7客户支持,提升响应速度和服务质量。提供全天候的客户支持,以改善客户体验和满意度。由于AI聊天机器人无需休息,可以提供24小时全天候服务,确保客户随时获得所需信息。相比人工客服,机器人可以提供更快的响应速度,减少客户等待时间。定期监控聊天机器人的性能,如解答准确性、客户满意度,并根据反馈进行优化。分析聊天记录和客户反馈,以识别机器人性能的改进点。随着AI技术的发展,定期更新聊天机器人的算法和知识库,以提高其效能和准确性。通过实施客户服务自动化,中小企业可以显著提高客户服务的效率和质量,同时降低成本。AI聊天机器人不仅可以处理大量常规咨询,还可以释放人工客服资源,使其专注于更复杂和个性化的客户需求。

2024年小型企业的人工智能应用新纪元

随着人工智能(AI)技术的迅猛发展,2023年无疑成为小型企业在运用这一技术方面的关键一年。小型企业现在可以通过多种AI应用程序来提高效率、优化营销策略,甚至改进客户服务。以下是七个重要的AI应用程序,它们正成为推动小型企业转型的力量。[heading3]聊天机器人:客户服务的新前沿[content]聊天机器人,尤其是在企业网站上使用的,已经成为提供客户服务的新途径。分为信息型和实用型两种,信息型机器人主要用于回答常见问题,而实用型机器人则更倾向于执行特定的任务,如处理订单或安排约会。这些工具的引入,无疑将大幅减少小型企业在客户服务方面的人力成本。[heading3]AI撰写内容:内容创作的革命[content]对于内容创作有困难或资源有限的小型企业来说,AI撰写工具(如ChatGPT)提供了一种高效的解决方案。这些工具能够快速生成高质量的文本内容,如论文、博客和白皮书,极大地提高了内容创作的效率。[heading3]语音搜索优化:迎合未来趋势[content]随着语音搜索的普及,小型企业必须优化其网站以适应这种新兴的搜索方式。这涉及到确保网站内容的清晰度和准确性,以及使用架构标记等技术来提高语音助手的理解度。[heading3]网站个性化:提升客户体验[content]通过个性化技术,小型企业可以在网站上为每位访客提供定制化体验。从使用名字问候访客到根据访客的浏览历史推荐产品,这些策略都有助于增强客户的参与度和忠诚度。[heading3]利用AI分析客户数据:预测性分析的应用[content]利用AI进行客户数据分析可以使小型企业从中发现模式和趋势,从而为营销活动或个性化体验提供有价值的洞见。这种所谓的预测性分析是通过机器学习算法来实现的,可以帮助企业更有效地定位其目标客户。[heading3]社交媒体管理与情绪分析:深入了解客户反馈[content]情绪分析工具使小型企业能够深入了解其在社交媒体上的形象。通过分析客户的评论和反馈,企业可以更好地理解目标受众的看法,从而调整其产品和营销策略。

李俊潭:骨科医生使用案例

hello~大家好,我是骨科医生李博士大家在看病时有没有遇到过一种情况就是门诊/手术结束之后,已经不知道去哪里找大夫了想问医生一些医疗问题,又不知道怎么联系,又害怕耽误医生的时间其实这在外科工作中是很常见的我们医生也苦于回复患者相同的问题这时候AI机器人的优势和提点就体现了我们利用LLM作为底座配合收集医疗专科RAG数据库(例如骨科)再用真人医生进行知识库准确性的监督得到一个可以用于骨科患者的微信机器人经过我们半年多的收集已经有了一些体会:比如疾病年龄较为年轻的患者,更易与chatbot进行聊天chatbot可以识别患者一些错误的提问(截图1)chatbot可以减轻这方面医生的工作量(截图2,这位患者早上4点问问题)chatbot可以缓解患者焦虑(截图2,这位患者问了chatbot 135个问题)chatbot的准确率基本达到标准chatbot的回复速度和质量远远高于人类医生chatbot的回复质量可以接受所以,我们认为chatbot对于医疗的高质量发展有帮助作用对患者教育,患者科普,焦虑舒缓,具有积极的意义有希望通过对疾病的了解,提升治疗效果“有时去治愈,常常去帮助,总是去安慰~”

Others are asking
waytoagi 的飞书知识库智能问答机器人是怎么做的
waytoagi 的飞书知识库智能问答机器人是基于飞书 aily 搭建的。在飞书 5000 人大群里内置了名为「waytoAGI 知识库智能问答」的智能机器人,它会根据通往 AGI 之路的文档及知识进行回答。 其具有以下功能和特点: 1. 自动问答:自动回答用户关于 AGI 知识库内涉及的问题,可以对多文档进行总结、提炼。 2. 知识搜索:在内置的「waytoAGI」知识库中搜索特定的信息和数据,快速返回相关内容。 3. 文档引用:提供与用户查询相关的文档部分或引用,帮助用户获取更深入的理解。 4. 互动教学:通过互动式的问答,帮助群成员学习和理解 AI 相关的复杂概念。 5. 最新动态更新:分享有关 AGI 领域的最新研究成果、新闻和趋势。 6. 社区互动:促进群内讨论,提问和回答,增强社区的互动性和参与度。 7. 资源共享:提供访问和下载 AI 相关研究论文、书籍、课程和其他资源的链接。 8. 多语言支持:支持多语言问答,满足不同背景用户的需求。 使用方法: 1. 在飞书群里发起话题时即可,它会根据 waytoAGI 知识库的内容进行总结和回答。 2. 可以在 WaytoAGI 飞书知识库首页找到加入飞书群的链接(二维码需在获取),然后点击加入,直接@机器人即可。 3. 也可以在 WaytoAGI.com 的网站首页,直接输入问题,即可得到回答。 搭建问答机器人的相关情况: 1. 2024 年 2 月 22 日的会议介绍了 WaytoAGI 社区的成立愿景和目标,以及其在飞书平台上的知识库和社区的情况。 2. 讨论了利用 AI 技术帮助用户更好地检索知识库中的内容,引入了 RAG 技术,通过机器人来帮助用户快速检索内容。 3. 介绍了基于飞书的知识库智能问答技术的应用场景和实现方法,可以快速地给大模型补充新鲜的知识,提供大量新的内容。 4. 讨论了如何使用飞书的智能伙伴功能来搭建 FAQ 机器人,以及智能助理的原理和使用方法。 5. 飞书智能伙伴创建平台(英文名:Aily)是飞书团队旗下的企业级 AI 应用开发平台,提供了一个简单、安全且高效的环境,帮助企业轻松构建和发布 AI 应用,推动业务创新和效率提升。为企业探索大语言模型应用新篇章、迎接企业智能化未来提供理想选择。
2025-02-20
用飞书搭建知识库并进行AI问答
以下是关于用飞书搭建知识库并进行 AI 问答的相关内容: 知识库问答是机器人的基础功能,可根据用户问题从知识库中找到最佳答案,这利用了大模型的 RAG 机制。RAG 机制全称为“检索增强生成”(RetrievalAugmented Generation),是一种用于自然语言处理的技术,结合了检索和生成两种主要的人工智能技术,以提高机器对话和信息处理的能力。 简单来说,RAG 机制先从大型数据集中检索与问题相关的信息,然后利用这些信息生成更准确、相关的回答。可以想象成当问复杂问题时,RAG 机制先在巨大图书馆里找相关书籍,再基于这些书籍信息给出详细回答。这种方法结合大量背景信息和先进语言模型能力,使生成内容更精确,提升对话 AI 的理解力和回答质量。 基于 RAG 机制实现知识库问答功能,首先要创建包含大量社区 AI 相关文章和资料的知识库,比如创建有关 AI 启蒙和信息来源的知识库,通过手工录入方式上传栏目所有文章内容,陆续将社区其他板块文章和资料导入。在设计 Bot 时,添加知识库,并设置合适的搜索策略、最大召回数量和最小匹配度,以更好地利用知识库返回内容结合回答。 另外,全程白嫖拥有一个 AI 大模型的微信助手的搭建步骤如下: 1. 搭建,用于汇聚整合多种大模型接口,方便后续更换使用各种大模型,并获取白嫖大模型接口的方法。 2. 搭建,这是个知识库问答系统,放入知识文件,接入上面的大模型作为分析知识库的大脑来回答问题。若不想接入微信,搭建到此即可使用,它有问答界面。 3. 搭建,其中的 cow 插件能进行文件总结、MJ 绘画。
2025-02-19
有什么提升 RAG 知识库问答的好的 prompt
以下是一些提升 RAG 知识库问答的好的 prompt 相关内容: RAG 在 Natural Questions、WebQuestions 和 CuratedTrec 等基准测试中表现出色,在使用 MSMARCO 和 Jeopardy 问题进行测试时,生成的答案更符合事实、具体且多样,FEVER 事实验证使用 RAG 后也有更好结果,说明 RAG 是可行方案,能增强知识密集型任务中语言模型的输出,基于检索器的方法常与 ChatGPT 等流行 LLM 结合提高能力和事实一致性,可在 LangChain 文档中找到相关例子。 RAG 能显著提高大模型在处理私域知识或垂直领域问答时的效果。其流程包括:上传文档(支持多种格式,会转换为 Markdown 格式)、文本切割、文本向量化(存入向量数据库)、问句向量化、语义检索匹配(匹配出与问句向量最相似的 top k 个)、提交 Prompt 至 LLM、生成回答返回给用户。RAG 研究范式分为基础 RAG、高级 RAG 和模块化 RAG。 高级 RAG 特点:支持多模态数据处理,增强对话性,具备自适应检索策略,能进行知识融合,扩展了基础 RAG 功能,解决复杂任务局限,在广泛应用中表现出色,推动自然语言处理和人工智能发展。 模块化 RAG 侧重于提供更高定制性和灵活性,将系统拆分成多个独立模块或组件,每个组件负责特定功能,便于根据不同需求灵活组合和定制。
2025-02-18
怎么做一个知识库智能问答机器人?
要做一个知识库智能问答机器人,主要基于大模型的 RAG 机制,具体步骤如下: 1. 理解 RAG 机制:RAG 机制全称为“检索增强生成”(RetrievalAugmented Generation),是一种用于自然语言处理的技术,结合了检索和生成两种主要的人工智能技术,以提高机器对话和信息处理的能力。它先从大型数据集中检索与问题相关的信息,然后利用这些信息生成更准确、相关的回答。可以想象成在巨大图书馆里找相关书籍,再基于书籍信息给出详细回答,这种方法结合大量背景信息和先进语言模型能力,使生成内容更精确,提升对话 AI 的理解力和回答质量。 2. 创建知识库:创建包含大量社区 AI 相关文章和资料的知识库,例如创建有关 AI 启蒙和信息来源的知识库,通过手工录入方式上传文章内容,并陆续将社区其他板块的文章和资料导入。 3. 设计 Bot:在设计中添加知识库,并设置合适的搜索策略、最大召回数量和最小匹配度,尽可能利用好知识库返回的内容进行结合回答。 此外,在飞书中,还可以利用飞书智能伙伴创建平台(Aily)来搭建 FAQ 机器人,它是飞书团队旗下的企业级 AI 应用开发平台,能为企业提供简单、安全且高效的环境,帮助轻松构建和发布 AI 应用。
2025-02-18
有哪些在企业内部落地应用AI大模型工具的实践案例?不要营销文案生成、代码开发助手、智能客服问答机器人这种太常见的
以下是一些在企业内部落地应用 AI 大模型工具的实践案例: 1. 阿里云百炼: 智能体应用:能够弥补大模型的不足,如回答私有领域问题、获取实时信息、回答专业问题等。适用于有企业官网、钉钉、微信等渠道,期望为客户提供产品咨询服务,以及缺少技术人员开发大模型问答应用的场景。典型场景包括私有领域知识问答、个性化聊天机器人、智能助手等。 内部业务助手:通过企业内部规章制度、部门结构、产品介绍等文档构建知识库,并借助 RAG 智能体实现内部知识问答功能。系统支持多源异构数据,并通过复杂文档解析和视觉增强技术,提升文档理解的准确性与深度。目前该功能已灰度上线,需提供 UID 并通过白名单进行开启。 2. 达摩院: AI 模特(虚拟换装):支持虚拟换装、姿态编辑。 3. 电商零售: 推广文案写作:通过内置的多样化营销场景的文体模板,基于用户输入的创作主题以及参考素材,大模型即可为您生成对应的营销文案,为营销活动和宣传文案提供灵感和文案写作支持。 4. 泛企业: VOC 挖掘:是一个面向各类企业的 VOC 标签挖掘的工具。不论是用户的长短评论、帖子、还是用户和客服/销售的聊天记录、通话记录,都可以使用。通过选中或自定义标签,即可让大模型针对海量非结构化的 VOC 数据快速打标。相比于人工打标或规则打标准确率更高;对于业务标签变动频繁的情况,也能更敏捷、快速地影响。 5. 通义晓蜜:基于深度调优的对话大模型,为营销服类产品提供智能化升级所需的生成式摘要总结、质检、分析等能力应用。
2025-02-18
waytoAGI知识库智能问答机器人是如何实现的
waytoAGI 知识库智能问答机器人的实现方式如下: 基于 Aily 和云雀大模型。Aily 是飞书团队旗下的企业级 AI 应用开发平台,提供简单、安全且高效的环境,帮助企业构建和发布 AI 应用。云雀是字节跳动研发的语言模型,能通过自然语言交互高效完成互动对话等任务。 在飞书 5000 人大群里内置,根据通往 AGI 之路的文档及知识进行回答。使用方法为在飞书群里发起话题时,它会根据 waytoAGI 知识库的内容进行总结和回答。 其具备多种功能,如自动问答、知识搜索、文档引用、互动教学、最新动态更新、社区互动、资源共享、多语言支持等。 搭建过程包括介绍 WaytoAGI 社区的成立愿景和目标、利用 AI 技术帮助用户检索知识库内容、引入 RAG 技术、介绍基于飞书的知识库智能问答技术的应用场景和实现方法、使用飞书的智能伙伴功能搭建 FAQ 机器人以及智能助理的原理和使用方法等。
2025-02-12
聊天机器人进行客服咨询问答相较于人工服务有哪些优势
聊天机器人进行客服咨询问答相较于人工服务具有以下优势: 1. 提高效率和可及性:能够自动化处理常见客户咨询,将其集成到企业的网站、社交媒体平台等渠道,例如电子商务网站可利用其回答产品细节、配送政策和退货流程等常见问题。 2. 提供 24/7 客户支持:无需休息,可全天候服务,确保客户随时获得信息,响应速度更快,减少客户等待时间。 3. 降低成本:大幅减少小型企业在客户服务方面的人力成本。 4. 释放人工客服资源:使其专注于更复杂和个性化的客户需求。 5. 提升响应速度和服务质量:定期监控性能,根据反馈优化,更新算法和知识库以提高效能和准确性。 6. 减轻相关人员工作量:如骨科医生可借助聊天机器人减轻回复患者相同问题的负担。 7. 缓解患者焦虑:能及时回复患者问题。 8. 保证回复速度和质量:准确率基本达到标准,回复速度和质量远远高于人类。 9. 具有积极意义:对患者教育、科普、焦虑舒缓有帮助,有望提升治疗效果。
2024-12-02
有没有关于使用coze制作在线客服的案例或教程
以下是关于使用 Coze 制作在线客服的案例和教程: 画小二:通过 Coze 定制开发插件案例,包括创建智能体、添加插件等,还可发布到微信成为专职客服技能,并有手把手的会员教程和 AIGC 商业案例实操课海报。 扣子案例合集:包含保姆级教程,如如何用扣子搭建一个免费好用的“图片转表格”AI 客服等。 Agent 相关比赛中的 Coze 相关教程:包括不同分享人的主题分享及流程安排,如大聪明、大圣、艾木、罗文、Itao 的分享,均有回放地址可供查看。
2025-02-21
怎样代替客服
以下是关于代替客服的相关内容: 目前已成熟的方式是采用 RAG+知识问答+语音条,主要场景是替代掉传统客服或者对内做培训的知识库。可以开发点击鼠标等动作的 RPA,搭配 RAG 的系统,方便现场 demo 演示。 实现难点包括 GPT4 等很多测试并不具备 planning 的能力,只能 plan 模型学过的知识库里的东西。面对更深层次的用户需求,需要一个产品经理将问题一层层拆开,未来很长时间是人与 GPT 同时存在的状态。 AIGC 在客户关系管理(CRM)领域有着广阔的应用前景,在客户服务方面,基于 AIGC 的对话模型,可以开发智能客服系统,通过自然语言交互的方式解答客户的咨询、投诉等,缓解人工客服的压力。 对于中小企业,利用人工智能(AI)技术,尤其是 AI 聊天机器人来自动化处理客户服务中的常见咨询,不仅可以提升客户服务的效率和质量,还可以减轻人工客服人员的工作负担。具体做法包括部署 AI 聊天机器人处理常见的客户咨询,根据企业需求和预算选择合适的解决方案并定制回答库,将其集成到多种客户服务渠道;通过机器人提供 24/7 客户支持,提升响应速度和服务质量,定期监控其性能并根据反馈优化,随着 AI 技术发展定期更新算法和知识库。
2025-02-19
如何制作人事专员ai客服
要制作人事专员 AI 客服,可以参考以下步骤: 1. 明确功能范围: 支持用户发送“关键字”,自助获取分享的“AI 相关资料链接”。 能够回答 AI 相关知识,优先以“自己的知识库”中的内容进行回答,若知识库信息不足则调用 AI 大模型回复,并在答案末尾加上“更多 AI 相关信息,请链接作者:jinxia1859”。 能作为“微信客服助手”发布在微信公众号上。 2. 准备相关内容: 根据 Bot 的目的和核心能力编写 prompt 提示词。 整理“关键字”与“AI 相关资料链接”的对应关系,可用 word、txt、excel 等格式。 创建一个用于回答 AI 相关知识的知识库。 由于要按照一定规则处理知识,创建一个工作流来控制 AI 按照要求处理信息。 准备好微信公众号,以便发布机器人。 此外,智能客服助手的核心构思在于利用企业已有的知识积累,结合大模型的强大能力,为用户提供准确且简洁的答案。具体通过创建企业私有知识库,收录企业过去的问答记录和资料,再利用大模型对用户咨询的问题进行处理,确保回答的准确性和一致性,还能在必要时提供原回答的完整版,以满足用户的深度需求。同时要对接人工客服,在智能助手无法解决用户问题时,让用户快速转接到人工客服,确保问题及时解决,这种人机结合的模式有助于提升整体服务质量和客户满意度。
2025-02-18
如果通过deepseek构建智能客服
要通过 DeepSeek 构建智能客服,可以参考以下步骤: 1. 效果对比:用 Coze 做小测试进行对比。 2. 如何使用: 搜索 www.deepseek.com,点击“开始对话”。 将装有提示词的代码发给 Deepseek。 认真阅读开场白之后,正式开始对话。 3. 设计思路: 将 Agent 封装成 Prompt,将 Prompt 储存在文件,保证最低成本的人人可用的同时,减轻调试负担。 通过提示词文件,让 DeepSeek 实现同时使用联网功能和深度思考功能。 在模型默认能力的基础上优化输出质量,并通过思考减轻 AI 味,增加可读性。 照猫画虎参考大模型的 temperature 设计了阈值系统,但是可能形式大于实质,之后根据反馈可能会修改。 用 XML 来进行更为规范的设定,而不是用 Lisp(有难度)和 Markdown(运行不稳定)。 4. 特别鸣谢:李继刚的【思考的七把武器】在前期提供了很多思考方向;Thinking Claude 是最喜欢使用的 Claude 提示词,也是设计 HiDeepSeek 的灵感来源;Claude 3.5 Sonnet 是最得力的助手。 另外,实现联网版的 DeepSeek R1 大模型的核心路径如下: 1. 拥有扣子专业版账号:如果还是普通账号,请自行升级或注册专业号后使用。 2. 开通 DeepSeek R1 大模型:访问地址 https://console.volcengine.com/cozepro/overview?scenario=coze ,打开火山方舟,找到开通管理,找到 DeepSeek R1 模型,点击开通服务,添加在线推理模型,添加后在扣子开发平台才能使用。 3. 创建智能体:点击创建,先完成一个智能体的创建。 同时,GPT1 到 Deepseek R1 所有公开论文中关于智能代理的部分提到:Anthropic 的《构建有效的代理》是一篇关于 2024 年的精彩回顾,重点关注连锁、路由、并行化、协调、评估和优化的重要性。还可以在加州大学伯克利分校 LLM 代理的慕课中找到更多资料。
2025-02-18
企业微信客服号能对接dify知识库,实现智能客服功能吗?
企业微信客服号能对接 Dify 知识库实现智能客服功能。以下是相关步骤: 1. 在 Dify 平台创建基础编排聊天助手应用,获取 API 密钥和 API 服务器地址。 2. 下载 Dify on WeChat 项目并安装依赖。 3. 在项目根目录创建 config.json 文件,填写 API 密钥和服务器地址。 4. 把基础编排聊天助手接入微信,可选择源码部署或 Docker 部署,进行快速启动测试,扫码登录并对话测试。 5. 把工作流编排聊天助手接入微信,创建知识库,导入知识库文件,创建工作流编排聊天助手应用,设置知识检索节点和 LLM 节点,发布更新并访问 API。 6. 把 Agent 应用接入微信,创建 Agent 应用,设置对话模型和添加工具,生成 API 密钥,填写配置文件,启动程序并进行测试。 更多内容请访问原文:https://docs.dify.ai/v/zhhans/learnmore/usecases/difyonwechat 另外,通过云服务器、Dify、智能微秘书免费搭建微信机器人的部署 Dify 步骤如下: https://docs.dify.ai/v/zhhans/gettingstarted/installselfhosted/dockercompose ,这些命令在宝塔面板的终端安装。 零成本、零代码搭建一个智能微信客服的步骤如下: 1. 访问微信客服 https://kf.weixin.qq.com/,点击开通。 2. 勾选同意,点击下一步。 3. 按步骤填写,勾选同意,注册企业微信。 4. 点击配置>到微信客服的企业信息,复制企业 ID>到 coze 页面进行粘贴填写企业 ID,并点击下一步。 5. 到微信客服的开发配置,找到到回调配置,复制 Token、EncodingAESKey(如果还是空的,点击“随机获取”即可),到 coze 页面进行粘贴,点击下一步。 6. 到微信客服的开发配置,配置回调地址 URL、复制 Secret 到 coze 的页面粘贴。 7. 到微信客服的客服账号,创建一个客服账号,复制客服账号名称,到 coze 的页面粘贴,点击保存。 第一次设置回调地址时,注意目前需要企业认证,才可以进行接入微信客服。如果企业没有进行认证,则会在配置回调 URL 时报错:回调域名校验失败。另外,之前未进行企业认证就发布过微信客服的不受影响。第一次设置成功后,后面再修改是特定页面。保存后,在 coze 发布页面的发布平台的微信客服这里,显示“已配置”,剩下的就是勾选,点击发布。
2025-02-05
微信机器人
以下是关于微信机器人的相关内容: 测试和重新配置 1. 登录成功后,找另一个人私聊或者在群中@您,就可以看到机器人的正常回复,此时表示已通。若未通过,可检查 config.json 文件中的配置,或直接跳到“第四章,第 3 步”重启服务。 2. 为机器人设置不同的提示词,可返回“第三章,第 7 步”或“目录 4 里的第 17 步”,对双引号内的 value 部分进行更改。 3. 此后任何更改,都需要“返回首页 右上角 点击重启,重启一下服务器”,或者如果熟悉 linux 操作,也可通过重启进程的方式来重启服务。 4. 然后,在“文件”的【终端】里,直接输入 nohup python3 app.py&tail f nohup.out 重新扫码登录即可。 5. 若想退出机器人,在手机微信上找到桌面版已登录的信息,点击退出桌面版即可。 帮助 如果遇到问题,可以先查询社区知识库,或者加“通往 AGI 之路”群,社区小伙伴们(比如梦飞大佬,熊猫大侠)会尽力帮助。也可以加 Stuart 个人微信询问。 第一天教程:COW 部署 完成 1. 登录成功后,找另一个人私聊或者在群中@您,就可以看到机器人的正常回复,此时表示已通。 2. 若想设置提示词,可返回“目录 4 里的第 17 步”进行更改。 3. 此后任何更改,都需要重新打印登陆二维码才会生效。建议在多次重新登录后,在宝塔“首页 右上角 点击重启,重启一下服务器”清理进程。 4. 然后,在“文件”的【终端】里,直接输入 nohup python3 app.py&tail f nohup.out 重新扫码登录即可。 5. 如果没有手机登录,可以使用夜神模拟器模拟手机登录。 6. 一个月内,不要上来就加好友、最好不要私聊聊天! 7. 报错"wxsid"是因为微信未实名,实名即可。 8. Link AI 提供 100 个,合计 3500 万 GPT3.5 Token 的礼品码,可用于实现画图、搜索、识图等功能,COW 插件几乎都支持使用 LinkAI 平台。完成机器人搭建,机器人拉群里,可领兑换码。 9. 添加微信,拉您进机器人群,先行体验。 第四天教程:FastGPT 教学 功能使用教程 1. 积分系统:此项目因加入积分系统,只有积分用户才可发起 AI 对话,主管理员大号可对别人进行加减积分操作,使用方式:@用户 加 100,加字后边有空格。 2. 群聊推送:原版本只支持公众号信息推送,二开版本在内测中。大号在群里发送:开启推送,即可在此群开启推送服务。然后,大号在与小号的私聊中发送任意公众号卡片,小号可把信息转发到群聊中(目前仅支持公众号卡片)。 3. 小工具使用示例(部分):其他功能,可发送 Help 查看使用方式。 登录失败 如果登录失败提示版本不对,执行以下步骤: 1. 下载文件,放到 NGCbot 文件夹里。 2. 打开微信,先不要登录,保持在扫码/登录页面。 3. 在文件夹空白处,shift + 鼠标右键,点击“在此处打开 Powershell 窗口”,然后输入相关命令,点击回车。 4. 然后,回到文件夹下,双击 main.py 。 5. 登录微信即可。 如果群满,加我,回复“机器人”拉您进机器人群,回复“人类群”拉您进人类群。
2025-02-20
通过飞书机器人与 Coze 搭建的智能体进行对话
通过飞书机器人与 Coze 搭建智能体进行对话,实现跨平台的稍后读收集与智能阅读计划推荐,具体步骤如下: 1. 前期准备: 设计 AI 稍后读助手的方案思路,包括简化“收集”(实现跨平台收集功能,支持电脑(web 端)、安卓、iOS 多端操作,输入 URL 完成收集,借鉴微信文件传输助手通过聊天窗口输入)、自动化“整理入库”(自动整理每条内容的关键信息,支持跨平台查看)、智能“选择”推荐(根据收藏记录和阅读兴趣生成阅读计划)。 2. 逐步搭建 AI 智能体: 经过配置得到两个可用工作流(整理入库、选择内容),将其编排为完整智能体。 配置过程包括创建 Bot、填写 Bot 介绍、切换模型为“通义千问”、把工作流添加到 Bot 中、新增变量{{app_token}}、添加外层 bot 提示词,完成后可在「预览与调试」窗口与智能体对话并使用全部功能。
2025-02-16
使用飞书机器人(如Coze智能体)自动抓取外部链接(如网页、公众号文章),通过多维表格存储为“稍后读”清单,并自动提取关键信息(标题、摘要、标签)
以下是使用飞书机器人(如 Coze 智能体)自动抓取外部链接(如网页、公众号文章),通过多维表格存储为“稍后读”清单,并自动提取关键信息(标题、摘要、标签)的相关内容: 前期准备: 1. 简化“收集”: 实现跨平台收集功能,支持电脑(web 端)、安卓、iOS 多端操作。 输入一个 URL 即可完成收集,借鉴微信文件传输助手的方式,通过聊天窗口输入更符合用户习惯。 2. 自动化“整理入库”: 系统在入库时自动整理每条内容的关键信息,包括标题、摘要、作者、发布平台、发布日期、收集时间和阅读状态。 阅读清单支持跨平台查看。 3. 智能“选择”推荐: 根据当前收藏记录和用户阅读兴趣进行相关性匹配,生成阅读计划。 使用步骤: 1. 设置稍后读存储地址: 首次使用,访问。 点击「更多创建副本」,然后复制新表格的分享链接。 将新链接发送到智能体对话中。 还可以发送“查询存储位置”、“修改存储位置”来更换飞书多维表格链接,调整稍后读存储位置。 2. 收藏待阅读的页面链接: 在对话中输入需要收藏的页面链接,第一次使用会要求授权共享数据,授权通过后再次输入即可完成收藏。 目前部分页面链接可能小概率保存失败。 3. 智能推荐想看的内容: 在对话中发送“我想看 xx”、“xx 内容”,即可按个人兴趣推荐阅读计划。 通过飞书机器人与 Coze 搭建的智能体进行对话,在聊天窗口中完成链接输入和阅读计划输出,由 Coze 调用大模型、插件完成内容的整理、推荐,利用飞书多维表格存储和管理稍后读数据,理论上无需开发任何插件、APP,就能实现跨平台的稍后读收集与智能阅读计划的推荐。部署完成后,您可以在电脑、手机端通过飞书机器人与稍后读助手进行对话,也可以直接在 Coze 商店中与 bot 进行对话,如果部署到微信服务号、订阅号,还可以通过这些渠道调用 bot。
2025-02-16