Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

给我能够帮助阅读的AI

Answer

以下是一些能够帮助阅读的 AI 相关内容:

  • 小七姐提到,若想让 AI 像“樊登读书”或“得到”那样讲书,可设计一个“书籍阅读助手”的 Prompt,将通用读书方法论复刻其中,并根据不同类型书籍测试优化迭代。若想让 AI 在“选书”和“督促读书”环节起作用,可做一个“催我读书”的 Prompt,重点研究选书和激励效果。若侧重读完书后的知识内化,要研究读书效率和信息转化,注重结构化信息能力及有效记忆存储和调取。
  • 一泽 Eze 推荐按照教程给自己定制一个稍后读 AI 智能体来自动管理阅读计划。他在学习 AI 时,因新内容多来不及看,起初将文章丢进微信文件传输助手,但出现分不清阅读状态和遗忘收藏原因等问题。调研常见稍后读解决方案后,发现它们存在与个人知识管理体系不合或步骤复杂等不足,于是想到定制 AI 稍后读助手来摆脱归纳工作,自动整理阅读清单并按个人兴趣推荐阅读计划。
Content generated by AI large model, please carefully verify (powered by aily)

References

小七姐:Prompt 喂饭级系列教程小白学习指南(五)

如果我想把他的这种令人羡慕的方法论“萃取”成一条Prompt,我需要做的是类似这样的访谈:1、不同类型的书是不是有不同的阅读和记忆方法?如何分类,有没有一些共性的方法论可以给出?2、阅读和记忆是不是有不同的思维模型或者小技巧,能列出来参考吗?3、读书时更需要的好像是一种自驱力,如何优先选择自己“一定看得下去”的书籍?怎么通过目录大纲确定一本书的核心内容?4、一本书你会读几遍?有什么顺序上的讲究吗?5、你会在读的过程中做笔记吗?还是读完以后回忆来做大纲呢?6、如果要教你大学刚毕业的孩子学会有效读书,怎么才能快速教会他呢?当上述问题都有清晰、明确的答案之后,可以开始设计一个Prompt了:如果想要让AI帮助你,像“樊登读书”或者“得到”这样给你讲书,你要做的是一个叫做“书籍阅读助手”的Prompt,要把所有通用型的读书方法论复刻到Prompt里,再根据不同类型的书籍测试,来不断优化和迭代。如果想要让AI在“选书”和“督促我读书”这个环节起作用,那要做的是一个叫做“催我读书”的Prompt,要重点研究如何选出适合用户的书,如何实现Prompt的激励效果和让自己读完有获得感(例如生成读书笔记)。如果更侧重读完书后的知识内化部分,要重点研究的是读书的效率和信息转化问题,这里更重要的是结构化信息能力和有效的记忆存储和调取。我用这个例子是想让正在阅读本文的你明白,什么是所谓的“方法论萃取”,而在这个例子里,如果这个Prompt做出来并有效,它的价值是显而易见的:

Coze+飞书多维表格,打造专属 AI 智能体,享受 10 倍知识管理效率

很推荐按照这个教程,给自己定制一个稍后读AI智能体,自动管理阅读计划。最近学习AI,每天都有很多新内容来不及看,得攒起来稍后读。一开始为了省事,我把所有想读的文章都丢进了微信文件传输助手。但时间一长,问题就暴露出来:不仅分不清哪些读过哪些没读,甚至还忘了每个链接的看点和收藏原因。(说实话,我很好奇有多少人也经历过这种困境)带着解决问题的心态,调研了一圈稍后读解决方案。但常见的Pocket、Instapaper、简悦、Notion,要么与个人知识管理体系格格不入,要么步骤复杂、依赖人工归纳管理,还不如文件传输助手来的方便。正好最近在研究智能体,灵光一现:何不给自己定制一个AI稍后读助手,帮助自己摆脱恼人的归纳工作,自动整理阅读清单,按个人兴趣推荐阅读计划呢?

一泽 Eze:Coze+飞书多维表格,打造专属 AI 智能体,享受 10 倍知识管理效率

很推荐按照这个教程,给自己定制一个稍后读AI智能体,自动管理阅读计划。最近学习AI,每天都有很多新内容来不及看,得攒起来稍后读。一开始为了省事,我把所有想读的文章都丢进了微信文件传输助手。但时间一长,问题就暴露出来:不仅分不清哪些读过哪些没读,甚至还忘了每个链接的看点和收藏原因。(说实话,我很好奇有多少人也经历过这种困境)带着解决问题的心态,调研了一圈稍后读解决方案。但常见的Pocket、Instapaper、简悦、Notion,要么与个人知识管理体系格格不入,要么步骤复杂、依赖人工归纳管理,还不如文件传输助手来的方便。正好最近在研究智能体,灵光一现:何不给自己定制一个AI稍后读助手,帮助自己摆脱恼人的归纳工作,自动整理阅读清单,按个人兴趣推荐阅读计划呢?

Others are asking
有哪些好用的ai可视化工具
以下是一些好用的 AI 可视化工具: 1. Lucidchart:流行的在线绘图工具,支持多种图表创建,包括逻辑视图、功能视图和部署视图,用户可通过拖放界面轻松创建架构图。 2. Visual Paradigm:全面的 UML 工具,提供创建各种架构视图的功能,如逻辑视图(类图、组件图)、功能视图(用例图)和部署视图(部署图)。 3. ArchiMate:开源的建模语言,专门用于企业架构,支持逻辑视图的创建,可与 Archi 工具配合使用,该工具提供图形化界面创建模型。 4. Enterprise Architect:强大的建模、设计和生成代码的工具,支持创建多种架构视图,包括逻辑、功能和部署视图。 5. Microsoft Visio:广泛使用的图表和矢量图形应用程序,提供丰富模板用于创建逻辑视图、功能视图和部署视图等。 6. draw.io(现称为 diagrams.net):免费的在线图表软件,允许创建各种类型的图表,包括软件架构图,支持创建逻辑视图和部署视图等。 7. PlantUML:文本到 UML 的转换工具,通过编写描述性文本自动生成序列图、用例图、类图等,帮助创建逻辑视图。 8. Gliffy:基于云的绘图工具,提供创建各种架构图的功能,包括逻辑视图和部署视图。 9. Archi:免费的开源工具,用于创建 ArchiMate 和 TOGAF 模型,支持逻辑视图的创建。 10. Rational Rose:IBM 的 UML 工具,支持创建多种视图,包括逻辑视图和部署视图。 此外,Google DeepMind 发布了一套可视化工具,可用于了解语言模型的内部工作原理,提取有意义的特征,揭示语言模型内部的激活状态。详细原理解释:https://xiaohu.ai/p/12186 链接:https://x.com/imxiaohu/status/1818825233778061560 。
2025-02-22
AI文档
以下是为您整理的关于 AI 文档的相关内容: 如何使用 AI 来做事: 越来越强大的人工智能系统正快速发布,如 Claude 2、Open AI 的 Code Interpreter 等,但似乎没有实验室提供用户文档,用户指南多来自 Twitter 影响者。 作者基于经验为学生和感兴趣的读者准备入门指南,侧重于如何选择正确工具做事,提前阅读相关任务类型可能有帮助。 Cursor 进阶: 模块结构上的使用,目的是让 AI 输出更多理解信息,使用后 AI 回复会随机带图便于查阅。 意在以各种形式提升 AI 对所做事情的理解,方便用户理解以持续控制 AI 产出。 有更新提示词限制 AI 产出的情况。 建议配置各种文档,如初始化文档、目录文档、关联模块文档、全局文档等。 AI 文章排版工具: 主要用于自动化和优化文档布局和格式,处理学术论文和专业文档时很有用。 一些流行的工具包括:Grammarly(提供排版功能改进风格)、QuillBot(改进文本清晰度和流畅性)、Latex(学术论文排版常用,有 AI 辅助编辑器和插件)、PandaDoc(文档自动化平台)、Wordtune(重新表述和改进文本)、Overleaf(在线 Latex 编辑器)。 选择合适工具取决于具体需求,如文档类型、出版标准和个人偏好。学术论文常用 Latex 和 Overleaf,一般文章和商业文档可用 Grammarly 和 PandaDoc 等。 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2025-02-22
用AI建立本地的知识库,推荐哪些?
以下是为您推荐的用 AI 建立本地知识库的方法和相关软件: 1. AnythingLLM: 包含了所有 Open WebUI 的能力,并额外支持选择文本嵌入模型和向量数据库。 安装地址:https://useanything.com/download 。 安装完成后进入配置页面,主要分为三步:选择大模型、选择文本嵌入模型、选择向量数据库。 构建本地知识库时,有 Workspace 的概念,可创建独有的 Workspace 与其他项目数据隔离。首先创建工作空间,然后上传文档并在工作空间中进行文本嵌入,接着选择对话模式(包括 Chat 模式和 Query 模式),最后进行测试对话。 2. Obsidian 加 Cursor: 可利用 Obsidian 的浏览器剪藏插件和 AI 插件,但配置复杂,可能存在恶性 Bug 。 可以用 Cursor 等 AI IDE 解决问题,主要有三类作用:帮助用模糊问题检索笔记库;基于笔记库进行研究,结合多个笔记软件给出建议;生成和修改笔记,如生成整个笔记文件或修改笔记文案。 希望以上内容对您有所帮助。
2025-02-22
有没有专业分析和修改简历的AI
以下是一些专业分析和修改简历的 AI 工具: 1. Kickresume 的 AI 简历写作器:使用 OpenAI 的 GPT4 语言模型自动生成简历,能为简历摘要、工作经验和教育等专业部分编写内容,并保持一致语调。 2. Rezi:受到超过 200 万用户信任的领先 AI 简历构建平台,使用先进的 AI 技术自动化创建可雇佣简历的每个方面,包括写作、编辑、格式化和优化。 3. Huntr 的 AI 简历构建器:提供免费的简历模板,以及 AI 生成的总结/技能/成就生成器和 AI 驱动的简历工作匹配。 此外,还有超级简历优化助手,能帮助用户优化简历提高求职成功率。您还可以查看这里获取更多 AI 简历产品:https://www.waytoagi.com/category/79 。 希望这些信息对您有所帮助,您可以根据自己的需要选择最适合您的工具。
2025-02-22
我是高中历史老师,我想知道用什么AI模型可以“将自己的PPT变成一篇论文”
目前在将 PPT 转换为论文方面,GPT 模型可能会有所帮助。例如,在“教育:一个历史老师用 GPT 给学生讲课”的案例中,学生利用 GPT 相关功能进行模拟体验,并根据要求撰写论文,包括分析模拟的准确性、进行事实核查等。 另外,Claude 模型也能在相关工作中发挥作用。比如可以帮助快速寻找符合条件的论文、提取精炼论文中的信息,甚至找到适合的 PPT 制作工具并指导使用。 此外,一些神经网络大模型通过预测下一个字的方式生成文字,这种方式具有一定的创意性,且可拓展到图像、声音等领域。但需要注意的是,AI 的预测不一定保证完全正确。
2025-02-22
AI案例
以下是一些 AI 在不同领域的应用案例: 活动策划方面: 1. 活动主题及内容生成:根据活动目标、参与者背景等信息,AI 可以生成合适的活动主题和内容框架建议,例如通过对话生成模型提出活动主题和议程草案。 2. 邀请函和宣传文案生成:AI 可以基于活动信息生成吸引人的邀请函和宣传文案,增强宣传效果。例如微软在 Build 大会上,使用 AI 生成了 8000 多份个性化的邀请函。 3. 现场活动管理:利用计算机视觉、语音识别等,AI 可以辅助管理活动现场的人流、秩序等。例如基于人群密度的通道引导、实时翻译等。 4. 虚拟助手:AI 对话系统可以作为虚拟活动助手,为参与者提供信息查询、问题咨询等服务。例如,Replika 提供了智能的虚拟活动助手应用。 5. 活动反馈分析:AI 可以自动分析活动反馈(文字、语音等),总结关键观点和改进建议。例如飞书和钉钉的会议总结功能。 6. 活动营销优化:基于参与者行为数据,AI 可以优化营销策略,实现个性化营销。例如,针对目标受众的定向广告投放等。 其他领域: 1. 客户服务聊天机器人中的自然语言处理:具有适应性,能根据大量数据集训练对实时客户消息做出响应,并可能随着系统学习而增加个性化;具有自主性,基于客户文本输入生成类似人类的输出,回答查询、帮助客户查找产品和服务或发送有针对性的更新,操作时几乎不需要人工监督或干预。但可能存在无意包含不准确或误导信息等监管问题。 2. 医疗保健分诊系统的自动化:具有适应性,能根据医疗数据集、患者记录和实时健康数据分析预测患者病情;具有自主性,为医疗专业人员或直接为患者生成有关患者症状可能原因的信息,并推荐潜在的干预措施和治疗方法。 扣子案例: 1. 2. 3. 4. 5. 6. 7. 8. 9.
2025-02-22
AI 阅读
以下是为您整理的关于 AI 阅读的相关内容: 1. 1 月 19 日的 Xiaohu.AI 日报中提到: AWPortrait 1.3 人像模型更新,优化了棚拍质感、皮肤肌理,增强户外场景优化,提高对面部表情的识别。 Meta AI 的自奖励语言模型采用新型训练方法,自生成训练数据,在 AlpacaEval 2.0 排行榜上表现优异。 微软推出为学生设计的 AI 阅读教练工具,能创造 AI 生成故事,通过语音转文本 AI 分析阅读流利性。 Stefano Rivera 的 AI 交互式“MR 木偶秀”利用多种 AI 工具,包括 3D 渲染、场景构建、音乐和语音技术。 KREA AI 实时生图有新功能,提供文本到图像、背景去除和橡皮擦工具,可实时生成图像提高创作便捷性。 推荐开源知识库程序 Outline,其特点为美观、实时协作、功能丰富,支持 Markdown、即时搜索、与 Slack 集成等。 2. GPT1 到 Deepseek R1 所有公开论文《The 2025 AI Engineer Reading List》中提到:挑选了 50 篇涉及人工智能工程 10 个领域(LLMs、基准、提示、RAG、代理、CodeGen、视觉、语音、扩散、微调)的论文/模型/博客。如果从零开始,可以从此处入手。该系列中所有演讲者的精选文章为 2024 年做了总结,因开办论文俱乐部的文章,多次被要求为从零开始的人推荐阅读清单。这里为人工智能工程师策划了“必读书目”。
2025-02-20
请给我推荐一个能够阅读网页链接内部信息的AI模型
以下为您推荐能够阅读网页链接内部信息的 AI 模型相关内容: 有一款 AI 浏览器插件,在产品化开发阶段,需要考虑如何稳定获取网页内容、如何选择适合的 AI 大模型 API 服务以及如何构建生产级提示词等问题。 在获取网页内容方面,由于大模型对话产品的外链解析方式容易遭到平台反爬机制制裁,通过用户浏览器以浏览器插件形式本地提取网页内容是一种稳定、经济的解决方案。比如 AI Share Card 插件,可以获取网页元素清单。开发时,您可以拿着初版提示词,询问 AI 来设计获取相关元素的 js 代码。 对于大模型 API,需要利用插件预先获取的网页内容变量、提示词和 API 请求参数,拼搭出完整的 API 提示请求,精确引导 API 返回想要的生成结果。根据 BigModel 官网给出的请求示例,需要传递 Model 类型、系统提示词、用户提示词、top_p、temperature 等关键参数。如果缺少参数设定经验,可以先询问 AI 相关设定的合适值,再逐步调试效果。 同时需要注意,使用 AI 写东西时,它可能会“产生幻觉”生成错误内容,需要检查所有内容。而且 AI 不会真正解释自己,可能给出编造的答案,使用时要对其输出负责。
2025-02-07
有没有能够阅读网页链接内部信息的AI模型?
目前存在能够阅读网页链接内部信息的相关技术和工具。例如,有一些 AI 浏览器插件可以实现这一功能。 在实现过程中,需要考虑以下几个关键方面: 1. 稳定获取网页内容:在初版提示词实验中,获取网页内容依赖大模型对话产品的外链解析能力,但易受平台反爬机制制裁。转换思路,通过用户浏览器以插件形式本地提取网页内容是一种稳定且经济的解决方案。开发时需确定需要插件获取的网页元素,可拿着初版提示词询问 AI 来设计获取相关元素的 js 代码。 2. 选择适合的 AI 大模型 API 服务:需要综合考虑多种因素来选择合适的服务。 3. 构建生产级提示词:对于大模型 API,要利用插件预先获取的网页内容变量、提示词和 API 请求参数,拼搭出完整的 API 提示请求,精确引导 API 返回想要的生成结果。同时,要根据不同模型的特点和要求设置相关参数,也可先询问 AI 相关参数的设定经验再进行调试。 此外,在初版提示词的开发中,将设计要求拆分为“设计规范”和“内容结构”,再细分为独立模块,并结合“内容结构”进行要求提示,这种提示词组织方式具有模型通用性、提示简易性和生成稳定性等显著优势。
2025-02-07
我想要搭建一个能够帮我阅读并总结提炼,同时能在我提出问题时,随时在我给他提供的知识库中检索的AI Agent,如何用Coze搭建?
搭建能够阅读、总结提炼并在给定知识库中检索的 AI Agent 可以使用 Coze 按照以下步骤进行: 1. 规划 制定任务的关键方法。 总结任务目标与执行形式。 将任务分解为可管理的子任务,确立逻辑顺序和依赖关系。 设计每个子任务的执行方法。 2. 实施 在 Coze 上搭建工作流框架,设定每个节点的逻辑关系。 详细配置子任务节点,并验证每个子任务的可用性。 3. 完善 整体试运行 Agent,识别功能和性能的卡点。 通过反复测试和迭代,优化至达到预期水平。 关于一些其他问题: 1. 如何判断自己的任务/Prompt 是否需要拆解为工作流? 构建稳定可用的 AI Agent 是一个需要不断调试和迭代的过程。通常先从当前性能最强的 LLM(如 ChatGPT4 和 Claude 3.5 sonnet)着手,先用单条 Prompt 或 Prompt Chain 来测试任务的执行质量和稳定性。然后,根据实际执行情况、最终投产使用的 LLM,逐步拆解子任务,降低 LLM 执行单任务的难度,直到达成工程目标。一般对于场景多样、结构复杂、对输出格式要求严格的内容,基本可以预见到需要将其拆解为工作流。此外,如果涉及生成多媒体内容或从网络自主获取额外信息等能力,必然需要通过工作流来调用相应的插件。 2. 只用了一段 Prompt 的 Agent,还算 AI Agent 吗? 算。详见
2025-02-06
AI阅读书籍的最佳实践是什么?
以下是关于 AI 阅读书籍的一些最佳实践: 1. 方法论萃取: 针对不同类型书籍的阅读和记忆方法进行分类,探讨共性方法论。 研究阅读和记忆的思维模型及小技巧。 思考如何优先选择自己“一定看得下去”的书籍,通过目录大纲确定核心内容。 确定一本书的阅读次数和顺序。 考虑读书过程中做笔记还是读完后回忆做大纲。 探索如何教刚毕业的孩子学会有效读书。 根据上述问题的答案设计“书籍阅读助手”“催我读书”等 Prompt,并不断优化和迭代。 2. 成为博物学家: 了解各个领域的知识,在恰当的时候调用。 参考权威、准确、有框架、成体系且好读的推荐书单,如涵盖心理学、人工智能、经济学等 13 个学科的书单。 3. 批判性思考: 思考在哪些情况下使用和不使用 AI 辅助阅读。 避免将 AI 作为默认选项,例如在使用地图导航时,不应完全依赖,而应注重自身对环境的观察和记忆。
2025-01-31
Coze + 飞书 + 飞书多维表格:通过飞书机器人与 Coze 搭建的智能体进行对话,在聊天窗口中完成链接输入和阅读计划输出。由 Coze 调用大模型、插件完成内容的整理、推荐,利用飞书多维表格存储和管理稍后读数据,无需开发任何插件、APP,能实现跨平台的稍后读收集与智能阅读计划的推荐。其设计思路包括简化“收集”,实现跨平台收集和通过输入 URL 完成收集;自动化“整理入库”,自动整理关键信息并支持跨平台查看;智能“选择”推荐,根据收藏记录和用户兴趣生成阅读计划——这个方法具体如何操作?
以下是关于通过飞书机器人与 Coze 搭建的智能体进行对话,并利用飞书多维表格存储和管理稍后读数据,实现跨平台的稍后读收集与智能阅读计划推荐的具体操作方法: 前期准备: 1. 简化“收集”: 实现跨平台收集功能,支持电脑(web 端)、安卓、iOS 多端操作。 输入一个 URL 即可完成收集,借鉴微信文件传输助手的方式,通过聊天窗口完成收集输入。 2. 自动化“整理入库”: 系统在入库时自动整理每条内容的关键信息,包括标题、摘要、作者、发布平台、发布日期、收集时间和阅读状态。 阅读清单支持跨平台查看。 3. 智能“选择”推荐: 根据当前收藏记录和用户阅读兴趣进行相关性匹配,生成阅读计划。 使用飞书·稍后读助手: 1. 设置稍后读存储地址: 首次使用,访问。 点击「更多创建副本」,复制新表格的分享链接。 将新链接发送到智能体对话中。 还可以发送“查询存储位置”、“修改存储位置”来更换飞书多维表格链接,调整稍后读存储位置。 2. 收藏待阅读的页面链接: 在对话中输入需要收藏的页面链接,第一次使用会要求授权共享数据,授权通过后再次输入即可完成收藏。但目前部分页面链接可能小概率保存失败。 3. 智能推荐想看的内容: 在对话中发送“我想看 xx”、“xx 内容”,即可按个人兴趣推荐阅读计划。 至此,专属 AI 稍后读智能体大功告成,您可以尽情享受相关服务。
2025-01-27
软件工程师如何从ai上获得帮助
软件工程师可以从以下几个方面在 AI 上获得帮助: 1. 辅助编程的 AI 工具: GitHub Copilot:由 GitHub 联合 OpenAI 和微软 Azure 团队推出,支持多种语言和 IDE,能快速提供代码建议。 通义灵码:阿里巴巴团队推出,提供多种编程相关能力。 CodeWhisperer:亚马逊 AWS 团队推出,由机器学习技术驱动,提供实时代码建议。 CodeGeeX:智谱 AI 推出的开源免费工具,基于大模型可快速生成代码。 Cody:Sourcegraph 推出,借助强大的代码语义索引和分析能力为开发者服务。 CodeFuse:蚂蚁集团支付宝团队提供的免费 AI 代码助手。 Codeium:由 AI 驱动,提供代码建议、重构提示和代码解释等帮助。 更多工具可查看:https://www.waytoagi.com/category/65 。每个工具功能和适用场景不同,可根据需求选择。 2. 生成性 AI 作为助手:模型在大量代码库上训练,在编码时给出建议,但要注意生成代码的正确性,在提高生产力的同时限制生成量以检查正确性。例如 GitHub Copilot 帮助提高了开发人员的生产力,估计增长在 2 倍或更少的范围内。 Sam Altman 的三点观察表明: 1. AI 模型的智能大致等于用于训练和运行它的资源的对数,预测这一规律的缩放定律在多个数量级上都准确。 2. 使用给定水平的人工智能的成本每 12 个月下降约 10 倍,较低价格导致使用量大幅增加。 3. 社会经济上线性提升智力的价值具有超指数性质,这一结果导致看不到指数式投资在不久将来会停止的理由。 未来可能会推出人工智能代理,如软件工程师代理人,虽然存在一些不足,但仍可能产生重大影响。生成性 AI 作为程序员助手是最早应用之一,成果出色,但相对于图像生成,生产力提升相对较小,且要注意代码正确性。
2025-02-22
能够帮助大学老师提高工作效率的AI工具有哪些?请为我推荐10个APP
以下为您推荐 10 个能够帮助大学老师提高工作效率的 AI 工具 APP: 1. WPS 文档翻译功能:这是 WPS 的一项功能,利用自然语言处理技术,可快速翻译办公文档,提高工作效率。 2. 美丽修行 APP:通过数据分析和自然语言处理技术,根据用户肤质推荐适合的美容护肤产品。 3. 360 儿童手表:利用图像识别和机器学习技术,实现定位、通话、安全区域设置等功能,保障儿童安全。 4. 汽车之家 APP:借助数据分析和机器学习技术,根据用户汽车型号、行驶里程等信息提醒车主及时进行汽车保养。 5. 豆果美食 APP:运用自然语言处理和数据分析技术,根据用户口味和现有食材生成个性化菜谱。 6. 沪江开心词场:采用自然语言处理和机器学习技术,辅助用户学习语言,提供个性化学习方案。 7. 爱奇艺智能推荐:利用数据分析和机器学习技术,根据用户喜好推荐电影。 8. WPS Office:借助自然语言处理和机器学习技术,提高办公效率,实现自动化办公流程。 9. Speak:是一个由 AI 驱动的语言老师,能够实时交流,并对发音或措辞给予反馈。 10. Quazel:提供类似的语言学习帮助。 此外,还有 Lingostar、Photomath、Mathly、PeopleAI、Historical Figures、Grammarly、Orchard、Lex、Tome、Beautiful.ai 等工具在不同方面为学习和工作提供支持。
2025-02-21
给我总结一下不同的AI工具在写作时可以提供什么样的帮助,他们的优势是什么
以下是不同的 AI 工具在写作时所能提供的帮助及其优势: 邮件写作: Grammarly:提供语法检查、拼写纠正、风格建议和语气调整等功能。易于使用,支持多种平台,适用于多种语言。 Hemingway Editor:简化句子结构,提高可读性,标记复杂句和冗长句。界面简洁,重点突出,适用于改善写作风格和简洁性。 ProWritingAid:全面的语法和风格检查,提供详细的写作报告和建议。功能强大,支持多种平台和集成,特别适合专业写作者。 Writesonic:基于 AI 生成各种类型的文本,包括电子邮件、博客文章、广告文案等。生成速度快,适合需要快速创作和灵感的用户。 Lavender:专注于邮件写作优化,提供个性化建议和模板,帮助用户提高邮件打开率和回复率。 论文写作: 文献管理和搜索: Zotero:结合 AI 技术,自动提取文献信息,帮助管理和整理参考文献。 Semantic Scholar:AI 驱动的学术搜索引擎,提供文献推荐和引用分析。 内容生成和辅助写作: Grammarly:提供文本校对、语法修正和写作风格建议,提高语言质量。 Quillbot:基于 AI 的重写和摘要工具,精简和优化论文内容。 研究和数据分析: Google Colab:提供基于云的 Jupyter 笔记本环境,支持 AI 和机器学习研究,便于进行数据分析和可视化。 Knitro:用于数学建模和优化,进行复杂的数据分析和模型构建。 论文结构和格式: LaTeX:结合自动化和模板,高效处理论文格式和数学公式。 Overleaf:在线 LaTeX 编辑器,提供丰富模板库和协作功能,简化编写过程。 研究伦理和抄袭检测: Turnitin:广泛使用的抄袭检测工具,确保论文原创性。 Crossref Similarity Check:检测潜在抄袭问题。 文章润色: Wordvice AI:集校对、改写转述和翻译等功能于一体,基于大型语言模型提供全面的英文论文润色服务。 ChatGPT:由 OpenAI 开发的大型语言模型,可用于多方面写作辅助。 Quillbot:人工智能文本摘要和改写工具,可快速筛选和改写文献资料。 HyperWrite:基于 AI 的写作助手和大纲生成器,帮助写作前进行头脑风暴和大纲规划。 Wordtune:AI 驱动的文本改写和润色工具,优化文章语言表达。 Smodin:提供 AI 驱动的论文撰写功能,根据输入生成符合要求的学术论文。 总之,这些 AI 工具在写作的不同方面发挥作用,涵盖了校对、改写、大纲生成、内容生成等环节,可有效提高写作效率和质量。用户应根据自身需求选择合适的工具。但使用时需注意仔细甄别内容。
2025-02-20
帮助产品经理根据产品原型截图写产品需求文档的AI工具和提示词有哪些
以下是一些帮助产品经理根据产品原型截图写产品需求文档的 AI 工具和提示词: AI 工具: 1. 产品管理工具:如 Aha!、ProductPlan 等,帮助管理整个产品生命周期。 2. 协作工具:如 Google Docs、Microsoft Office 365,支持团队协作和文档共享。 3. 项目管理软件:如 JIRA、Trello,用于任务分配和进度跟踪。 4. 市场研究工具:如 Google Trends、SEMrush,分析市场趋势和用户行为。 5. 用户调研工具:如 SurveyMonkey、Typeform,收集用户反馈和需求。 6. 数据分析工具:如 Tableau、Power BI,对市场数据进行可视化分析。 7. 思维导图软件:如 MindMeister、XMind,帮助组织思路和概念。 8. 流程图软件:如 Lucidchart、Visio,绘制产品功能和流程图。 提示词: 1. 行业洞察分析:对行业现状、趋势和未来发展方向进行深入研究和预测。 2. 方法论专家:精通各类管理和研发方法论,能根据具体情况选择和应用最佳方法。 3. 头脑风暴:团队成员自由提出各种想法和见解,快速产出创意解决方案。 4. 需求文档设计:根据产品特性和用户需求,设计产品需求文档。 5. 功能价值分析:评估产品各项功能的重要性和价值,辅助优化资源配置。 6. 竞品分析报告:对竞争对手的产品进行全面的分析比较,找出优劣势。 7. 流程图/图表设计:直观地呈现业务流程、组织结构或统计数据。 8. 思维导图设计:以树状图形式展示思路和知识框架。 9. 解决方案专家:根据问题分析,提供切实可行的解决方案。 10. 周报生成器:自动化生成工作周报,提高工作效率。 学习 Prompt 提示词可以参考这份文档:https://www.promptingguide.ai/zh 。 在写提示词时,要注意以下几点: 1. 提示词内容准确,包含人物主体、风格、场景特点、环境光照、画面构图、画质等,比如:一个女孩抱着小猫,背景是一面红墙,插画风格、孤独感,高质量。 2. 调整负面提示词,帮助 AI 理解不想生成的内容,比如:不好的质量、低像素、模糊、水印。 3. 利用“加权重”功能,让 AI 明白重点内容,可在功能框增加提示词,并进行加权重调节,权重数值越大,更优先。 4. 对于星流一站式 AI 设计工具,其提示词用于描绘画面,支持中英文输入,启用提示词优化后能更生动地描述画面内容,小白用户可以点击提示词上方官方预设词组进行生图。 使用这些提示词和工具,可以帮助产品经理更高效地撰写产品需求文档,确保文档全面覆盖了市场和产品的关键方面。同时,它们也有助于提高团队之间的沟通效率和文档的可管理性。但请注意,内容由 AI 大模型生成,请仔细甄别。
2025-02-19
我想做一个产品(生涯规划领域的垂直大模型),这个产品服务的对象是所有人:帮助所有人进行更好的职业规划。每个人都能通过使用这个产品更好地了解自己,了解自己的天赋、兴趣、优势,然后找到自己的热爱的领域和热爱的事业,并且能够个性化地推荐相关的行业和职业,包括职业的主要工作内容和核心能力要求等等。 请对这个产品进行可行性分析,并给出产品的发展规划,别忘了给这个项目起一个名字。
以下是对您提出的生涯规划领域垂直大模型产品的可行性分析和发展规划,并为项目取名为“生涯智途”。 可行性分析: 1. 需求广泛:帮助人们进行职业规划是一个普遍存在的需求,涵盖了各个年龄段和职业阶段的人群。 2. 数据可用性:可以通过各种渠道收集大量与职业相关的数据,包括行业报告、职位描述、人才需求等。 3. 技术支持:当前大模型技术的发展为实现这样的产品提供了可能,能够处理和分析大量复杂的数据。 发展规划: 1. 数据收集与整理:广泛收集各类职业数据,建立丰富的数据库,确保数据的准确性和完整性。 2. 模型训练与优化:利用收集到的数据进行模型训练,不断优化模型,提高预测和推荐的准确性。 3. 功能开发: 个性化测评:开发能够准确评估用户天赋、兴趣、优势的功能模块。 精准推荐:根据用户的特点,提供个性化的行业和职业推荐,并详细介绍职业的工作内容和核心能力要求。 持续学习与更新:随着行业变化,及时更新数据和模型,以提供最新的职业信息。 4. 用户体验优化:设计简洁、易用的界面,提供良好的用户交互体验。 5. 市场推广:通过线上线下多种渠道进行推广,提高产品的知名度和用户覆盖面。 希望以上分析和规划对您有所帮助。
2025-02-18
我应该如何使用AI帮助自己的学习?
以下是使用 AI 帮助自己学习的方法: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛(比如图像、音乐、视频等),根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,通过实践巩固知识,尝试使用各种产品做出自己的作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 通过与这些 AI 产品的对话,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 此外,使用 AI 进行英语学习和数学学习可以这样做: 英语学习: 利用 AI 写作助手(如 Grammarly)进行英语写作和语法纠错,改进英语表达和写作能力。 使用语音识别应用(如 Call Annie)进行口语练习和发音纠正,让 AI 提供实时反馈和建议。 使用自适应学习平台(如 Duolingo)利用 AI 技术为您量身定制学习计划,提供个性化的英语学习内容和练习。 利用智能对话机器人(如 ChatGPT)进行英语会话练习和对话模拟,提高交流能力和语感。 数学学习: 使用自适应学习系统(如 Khan Academy)结合 AI 技术为您提供个性化的数学学习路径和练习题,根据您的能力和需求进行精准推荐。 利用智能题库和作业辅助工具(如 Photomath)通过图像识别和数学推理技术为您提供数学问题的解答和解题步骤。 使用虚拟教学助手(如 Socratic)利用 AI 技术为您解答数学问题、提供教学视频和答疑服务,帮助您理解和掌握数学知识。 参与交互式学习平台(如 Wolfram Alpha)的数学学习课程和实践项目,利用 AI 技术进行数学建模和问题求解。 需要注意的是,因为 AI 可能会产生幻觉,所以对于关键数据要根据其他来源仔细检查。同时,内容由 AI 大模型生成,请仔细甄别。
2025-02-17
复杂推理的产品,给模型灌什么能够更好训练推理能力?以及怎么优化模型的推理准确度?
以下是一些能够更好训练模型推理能力以及优化推理准确度的方法: 1. OpenAI 的推理模型通过强化学习进行训练,在训练过程中,模型学会在回答前思考,产生长链的思维过程,并不断尝试不同策略,识别错误,从而能够遵循特定的指导方针和模型政策,提供更有用的回答,避免产生不安全或不适当的内容。 2. 蒙特卡洛树搜索(MCTS)对推理模型有积极影响,例如在数学定理证明中,能探索非确定性证明路径,将解决 IMO 几何题的耗时从传统方法的 30 分钟降至 90 秒;在多跳问答系统中,结合 MCTS 的模型在 HotpotQA 数据集上准确率提升 12%,因其能回溯验证中间推理步骤。 3. 动态知识融合机制方面,传统基于规则的推理无法处理模糊知识,而 MCTS 增强方案在医疗诊断中可将误诊率从纯规则引擎的 23%降至 9%。 4. 资源分配优化方面,在逻辑谜题求解任务中,MCTS + Transformer 能达到 85%准确率且耗时 3 秒,而纯 Transformer 为 62%准确率且耗时 8 秒;在法律条文推导任务中,MCTS + Transformer 有 92%合规性且耗时 5 秒,纯 Transformer 为 88%合规性且耗时 2 秒。 OpenAI 于 9 月 12 日发布的新模型 o1 旨在实现通用复杂推理,通过强化学习和思维链的方式提升推理能力,尤其在数学和编程领域表现出色,但用户反馈显示其实际表现与宣传存在差距,成本高于 GPT4o,且在某些任务上优势不明显,OpenAI 仍在探索如何优化模型的推理性能。
2025-02-21
找一个能够生成音乐的AI。我给一个曲名(比如《生日快乐歌》),他就能给我生成不同风格的音乐供我下载。
以下为您推荐能够根据给定曲名生成不同风格音乐并供下载的 AI 工具: 1. Suno AI: 地址:https://www.suno.ai/ 简介:被誉为音乐界的 ChatGPT,能够根据简单提示创造出从歌词到人声和配器的完整音乐作品。 账号要求:需要拥有 Discord、谷歌或微软中的至少一个账号,并确保网络环境稳定。 订阅信息: 免费用户每天 50 积分,每首歌消耗 5 积分,每天可创作 10 首歌曲,每次点击生成两首歌曲。 Pro 用户每月 2500 点数(大约 500 首歌),按月每月 10 美元,按年每月 8 美元,每年 96 美元。 Premier 用户每月 10000 点数(大约 2000 首歌),按月每月 30 美元,按年每月 24 美元,每年 288 美元。 操作模式: 默认模式:包括关闭个性化、歌曲描述、乐器开关、模型选择 v3 等设置。 个性化模式:开启个性化定制,可填写歌词、曲风、标题等。 生成歌词:可使用大模型如 Kimi、GPT、文心一言等生成。 开始生成:填写好所需内容后点击 Create,等待 2 3 分钟即可。 下载:生成后可下载。 2. Udio:由前 Google DeepMind 工程师开发,通过文本提示快速生成符合用户音乐风格喜好的高质量音乐作品。地址:https://www.udio.com/ 3. YuE:支持从歌词生成 5 分钟高质量音乐(含人声与伴奏),多语言支持(中、英、日、韩),覆盖多种音乐风格与专业声乐技术。详细介绍:https://www.xiaohu.ai/c/xiaohuai/yue5
2025-02-18
我想创业,花多少钱,能够搭建一个视频领域的AI模型
在视频领域搭建 AI 模型的成本因多种因素而异。对于创业者或小公司来说,这个领域存在一定的挑战。 腾讯的混元 AI 视频模型目前只支持文生视频,且已开源免费。 在模型供应商方面,不同供应商的特点和成本有所不同: 智谱 GLM4V 是通用视觉类大模型,为拍立得最早使用的模型,接口响应速度快,指令灵活性差一些,调用成本为 0.05 元/千 tokens。 阿里云百炼 qwenvlplus 也是通用视觉类大模型,是拍立得目前使用的模型,指令灵活性比较丰富,接口调用入门流程长一些,密钥安全性更高,调用成本为 0.008 元/千 tokens,训练成本为 0.03 元/千 tokens。 阶跃星辰是通用视觉类大模型,响应速度快,支持视频理解,输入成本为 0.005 0.015 元/千 tokens,输出成本为 0.02 0.07 元/千 tokens。 百度 PaddlePaddle 是 OCR 垂直小模型,文本识别能力补齐增强,私有化部署有服务费,API 调用在 0.05 0.1 元/次。 此外,获取高质量数据的难度较高,大厂在该领域的护城河深厚。大公司在争取大模型 API 客户方面更具优势,且开源大模型的发展可能会影响创业公司的业务。去年为大客户定制一个大模型的最高订单额可达 1000 万元,而今年则快速降到了百万元级别乃至更低。
2025-02-18
我想学习所有能够赋能室内设计的AI知识
以下是关于能够赋能室内设计的 AI 知识: 1. MewXAI 平台:这是一款操作简单的 AI 绘画创作平台。 MX 绘画:拥有众多超火模型和上百种风格,支持文生图、图生图。 MX Cute:自研的可爱风动漫大模型,融合想象力和逻辑性。 MJ 绘画:创意度和想象力极高,适用于多种设计需求。 边缘检测:对草图上色,有多种渲染风格,创意无限。 室内设计:上传空间图,分析图片结构和形状,一键完成多种室内/建筑设计,为设计师提供灵感并节约时间。 姿态检测:通过姿态识别精准控制人物动作。 AI 艺术二维码:几秒内创建艺术二维码。 AI 艺术字:融入光影文字等,美观实用。 访问地址:https://www.mewxai.cn/ 2. 室外设计的最佳实践也可借鉴到室内设计中: 充分利用 AI 的创意生成能力,输入关键词生成多种方案,获取新颖灵感。 结合 AI 的模拟和可视化功能,利用 AR/VR 等技术模拟实际环境。 运用 AI 的分析和优化能力,对采光、动线、材料等方面进行优化。 借助 AI 的自动化设计功能,生成平面图、立面图等。 融合 AI 与人工设计的协作模式,发挥各自优势。 3. 2023 年历史更新(归档)中的相关内容: 12 月 28 日,邬嘉文开发的利用室内设计规则和现实布局特点重新渲染更协调室内设计方案的相关内容。 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2025-02-12