Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

用AI建立本地的知识库,推荐哪些?

Answer

以下是为您推荐的用 AI 建立本地知识库的方法和相关软件:

  1. AnythingLLM
    • 包含了所有 Open WebUI 的能力,并额外支持选择文本嵌入模型和向量数据库。
    • 安装地址:https://useanything.com/download 。
    • 安装完成后进入配置页面,主要分为三步:选择大模型、选择文本嵌入模型、选择向量数据库。
    • 构建本地知识库时,有 Workspace 的概念,可创建独有的 Workspace 与其他项目数据隔离。首先创建工作空间,然后上传文档并在工作空间中进行文本嵌入,接着选择对话模式(包括 Chat 模式和 Query 模式),最后进行测试对话。
  2. Obsidian 加 Cursor
    • 可利用 Obsidian 的浏览器剪藏插件和 AI 插件,但配置复杂,可能存在恶性 Bug 。
    • 可以用 Cursor 等 AI IDE 解决问题,主要有三类作用:帮助用模糊问题检索笔记库;基于笔记库进行研究,结合多个笔记软件给出建议;生成和修改笔记,如生成整个笔记文件或修改笔记文案。

希望以上内容对您有所帮助。

Content generated by AI large model, please carefully verify (powered by aily)

References

手把手教你本地部署大模型以及搭建个人知识库

如果想要对知识库进行更加灵活的掌控,我们需要一个额外的软件:AnythingLLM。这个软件包含了所有Open WebUI的能力,并且额外支持了以下能力选择文本嵌入模型选择向量数据库[heading2]AnythingLLM安装和配置[content]安装地址:https://useanything.com/download当我们安装完成之后,会进入到其配置页面,这里面主要分为三步1.第一步:选择大模型1.第二步:选择文本嵌入模型1.第三步:选择向量数据库[heading2]构建本地知识库[content]AnythingLLM中有一个Workspace的概念,我们可以创建自己独有的Workspace跟其他的项目数据进行隔离。1.首先创建一个工作空间1.上传文档并且在工作空间中进行文本嵌入1.选择对话模式AnythingLLM提供了两种对话模式:Chat模式:大模型会根据自己的训练数据和我们上传的文档数据综合给出答案Query模式:大模型仅仅会依靠文档中的数据给出答案1.测试对话当上述配置完成之后,我们就可以跟大模型进行对话了[heading1]六、写在最后[content]我非常推崇的一句话送给大家:看十遍不如实操一遍,实操十遍不如分享一遍如果你也对AI Agent技术感兴趣,可以联系我或者加我的免费知识星球(备注AGI知识库)

Obsidian加Cursor就是最强AI知识库!藏师傅教你从零学习 Obsidian 01

这几天因为看到了Obsidian的浏览器剪藏插件的强大(这个下节讲)所以开始玩Obsidian,想要搞一个符合自己要求的本地知识库再加上AI的加持。也装了几个Obsidian的AI插件,结果发现配置非常复杂,体验不太行,想要顺畅使用的话得看文档,甚至还有看文档都无法结局的恶性Bug,我得搜Github其他人的问题才能搞定。这些插件的作用主要是内置在Obsidian里面的AI助手,可以帮你检索你的笔记和基于笔记生成新的内容。然后我就想能不能用Cursor这些AI IDE解决这个问题,反正他解决的也是类似的问题,检索代码,回答代码问题,生成新的代码,HTML是标记语言,Markdown也是标记语言是吧。结果发现还真能用,而且非常顺滑,主要是三类作用:帮助你用模糊的问题检索你的笔记库,而不是关键字帮助你基于笔记库进行研究,可以结合多个笔记软件给出建议帮你生成和修改笔记,比如生成整个笔记文件或者修改你写的笔记文案教程里为了照顾大多数人我会用默认中文而且免费的Trae演示,但是由于现在AI IDE都大同小异所以你用Cursor或者Windsurf也可以看懂甚至,快捷键和按钮位置都一样的。

手把手教你本地部署大模型以及搭建个人知识库

本文的思路来源于视频号博主:黄益贺我按照他的视频进行了实操,并且附加了一些关于RAG的额外知识[heading1]一、引言[content]大家好,我是大圣,一个致力使用AI工具将自己打造为超级个体的程序员。目前沉浸于AI Agent研究中无法自拔今天给大家分享的是手把手教你如何部署本地大模型以及搭建个人知识库读完本文,你会学习到如何使用Ollama一键部署本地大模型通过搭建本地的聊天工具,了解ChatGPT的信息是如何流转的RAG的概念以及所用到的一些核心技术如何通过AnythingLLM这款软件搭建完全本地化的数据库虽然我们大多数人不需要在自己部署大模型,但是我期望在本文的帮助下,能够带你手把手折腾一遍。这样在使用任何软件的时候,可以做到知其然,知其所以然。

Others are asking
有哪些好用的ai可视化工具
以下是一些好用的 AI 可视化工具: 1. Lucidchart:流行的在线绘图工具,支持多种图表创建,包括逻辑视图、功能视图和部署视图,用户可通过拖放界面轻松创建架构图。 2. Visual Paradigm:全面的 UML 工具,提供创建各种架构视图的功能,如逻辑视图(类图、组件图)、功能视图(用例图)和部署视图(部署图)。 3. ArchiMate:开源的建模语言,专门用于企业架构,支持逻辑视图的创建,可与 Archi 工具配合使用,该工具提供图形化界面创建模型。 4. Enterprise Architect:强大的建模、设计和生成代码的工具,支持创建多种架构视图,包括逻辑、功能和部署视图。 5. Microsoft Visio:广泛使用的图表和矢量图形应用程序,提供丰富模板用于创建逻辑视图、功能视图和部署视图等。 6. draw.io(现称为 diagrams.net):免费的在线图表软件,允许创建各种类型的图表,包括软件架构图,支持创建逻辑视图和部署视图等。 7. PlantUML:文本到 UML 的转换工具,通过编写描述性文本自动生成序列图、用例图、类图等,帮助创建逻辑视图。 8. Gliffy:基于云的绘图工具,提供创建各种架构图的功能,包括逻辑视图和部署视图。 9. Archi:免费的开源工具,用于创建 ArchiMate 和 TOGAF 模型,支持逻辑视图的创建。 10. Rational Rose:IBM 的 UML 工具,支持创建多种视图,包括逻辑视图和部署视图。 此外,Google DeepMind 发布了一套可视化工具,可用于了解语言模型的内部工作原理,提取有意义的特征,揭示语言模型内部的激活状态。详细原理解释:https://xiaohu.ai/p/12186 链接:https://x.com/imxiaohu/status/1818825233778061560 。
2025-02-22
AI文档
以下是为您整理的关于 AI 文档的相关内容: 如何使用 AI 来做事: 越来越强大的人工智能系统正快速发布,如 Claude 2、Open AI 的 Code Interpreter 等,但似乎没有实验室提供用户文档,用户指南多来自 Twitter 影响者。 作者基于经验为学生和感兴趣的读者准备入门指南,侧重于如何选择正确工具做事,提前阅读相关任务类型可能有帮助。 Cursor 进阶: 模块结构上的使用,目的是让 AI 输出更多理解信息,使用后 AI 回复会随机带图便于查阅。 意在以各种形式提升 AI 对所做事情的理解,方便用户理解以持续控制 AI 产出。 有更新提示词限制 AI 产出的情况。 建议配置各种文档,如初始化文档、目录文档、关联模块文档、全局文档等。 AI 文章排版工具: 主要用于自动化和优化文档布局和格式,处理学术论文和专业文档时很有用。 一些流行的工具包括:Grammarly(提供排版功能改进风格)、QuillBot(改进文本清晰度和流畅性)、Latex(学术论文排版常用,有 AI 辅助编辑器和插件)、PandaDoc(文档自动化平台)、Wordtune(重新表述和改进文本)、Overleaf(在线 Latex 编辑器)。 选择合适工具取决于具体需求,如文档类型、出版标准和个人偏好。学术论文常用 Latex 和 Overleaf,一般文章和商业文档可用 Grammarly 和 PandaDoc 等。 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2025-02-22
有没有专业分析和修改简历的AI
以下是一些专业分析和修改简历的 AI 工具: 1. Kickresume 的 AI 简历写作器:使用 OpenAI 的 GPT4 语言模型自动生成简历,能为简历摘要、工作经验和教育等专业部分编写内容,并保持一致语调。 2. Rezi:受到超过 200 万用户信任的领先 AI 简历构建平台,使用先进的 AI 技术自动化创建可雇佣简历的每个方面,包括写作、编辑、格式化和优化。 3. Huntr 的 AI 简历构建器:提供免费的简历模板,以及 AI 生成的总结/技能/成就生成器和 AI 驱动的简历工作匹配。 此外,还有超级简历优化助手,能帮助用户优化简历提高求职成功率。您还可以查看这里获取更多 AI 简历产品:https://www.waytoagi.com/category/79 。 希望这些信息对您有所帮助,您可以根据自己的需要选择最适合您的工具。
2025-02-22
我是高中历史老师,我想知道用什么AI模型可以“将自己的PPT变成一篇论文”
目前在将 PPT 转换为论文方面,GPT 模型可能会有所帮助。例如,在“教育:一个历史老师用 GPT 给学生讲课”的案例中,学生利用 GPT 相关功能进行模拟体验,并根据要求撰写论文,包括分析模拟的准确性、进行事实核查等。 另外,Claude 模型也能在相关工作中发挥作用。比如可以帮助快速寻找符合条件的论文、提取精炼论文中的信息,甚至找到适合的 PPT 制作工具并指导使用。 此外,一些神经网络大模型通过预测下一个字的方式生成文字,这种方式具有一定的创意性,且可拓展到图像、声音等领域。但需要注意的是,AI 的预测不一定保证完全正确。
2025-02-22
AI案例
以下是一些 AI 在不同领域的应用案例: 活动策划方面: 1. 活动主题及内容生成:根据活动目标、参与者背景等信息,AI 可以生成合适的活动主题和内容框架建议,例如通过对话生成模型提出活动主题和议程草案。 2. 邀请函和宣传文案生成:AI 可以基于活动信息生成吸引人的邀请函和宣传文案,增强宣传效果。例如微软在 Build 大会上,使用 AI 生成了 8000 多份个性化的邀请函。 3. 现场活动管理:利用计算机视觉、语音识别等,AI 可以辅助管理活动现场的人流、秩序等。例如基于人群密度的通道引导、实时翻译等。 4. 虚拟助手:AI 对话系统可以作为虚拟活动助手,为参与者提供信息查询、问题咨询等服务。例如,Replika 提供了智能的虚拟活动助手应用。 5. 活动反馈分析:AI 可以自动分析活动反馈(文字、语音等),总结关键观点和改进建议。例如飞书和钉钉的会议总结功能。 6. 活动营销优化:基于参与者行为数据,AI 可以优化营销策略,实现个性化营销。例如,针对目标受众的定向广告投放等。 其他领域: 1. 客户服务聊天机器人中的自然语言处理:具有适应性,能根据大量数据集训练对实时客户消息做出响应,并可能随着系统学习而增加个性化;具有自主性,基于客户文本输入生成类似人类的输出,回答查询、帮助客户查找产品和服务或发送有针对性的更新,操作时几乎不需要人工监督或干预。但可能存在无意包含不准确或误导信息等监管问题。 2. 医疗保健分诊系统的自动化:具有适应性,能根据医疗数据集、患者记录和实时健康数据分析预测患者病情;具有自主性,为医疗专业人员或直接为患者生成有关患者症状可能原因的信息,并推荐潜在的干预措施和治疗方法。 扣子案例: 1. 2. 3. 4. 5. 6. 7. 8. 9.
2025-02-22
财务与ai
以下是关于财务与 AI 的相关内容: 生成式 AI 在金融服务业具有巨大潜力,能帮助金融服务团队改进内部流程,简化财务团队日常工作。具体表现为: 1. 更动态的预测和报告: 预测方面:帮助编写公式和查询实现分析自动化,发现模式,为预测建议输入并适应模型。 报告方面:自动创建文本、图表等内容,并根据不同示例调整报告。 会计和税务方面:综合、总结并提供可能答案。 采购和应付账款方面:自动生成和调整合同、订单、发票及提醒。 2. 但生成式 AI 输出有局限性,在需要判断或精确答案领域不能完全依赖,至少需人工审查。 在将生成式 AI 应用于金融服务时,新进入者和现有参与者面临两个主要挑战: 1. 使用金融数据训练 LLMs:新进入者可能先使用公开金融数据优化模型,再用自身收集数据;现有参与者虽可利用专有数据但往往过于保守,这给新进入者带来竞争优势。 2. 模型输出准确性:金融问题答案影响大,新的 AI 模型需尽可能准确,初期人类常作为最终验证环节。 金融服务公司若用历史金融数据微调大型语言模型,能迅速回答各类金融问题。金融服务行业准备利用生成式 AI 实现五个目标:个性化消费者体验、成本效益高的运营、更好的合规性、改进的风险管理、动态的预测和报告。在现有企业与初创公司的竞争中,现有企业因专有金融数据访问权限有初始优势,但受准确性和隐私高标准限制;新进入者初期用公开数据,后逐渐生成自身数据并以 AI 作为新产品分销突破口。
2025-02-22
与dify类似的知识库有那些?哪个更适合商用?
以下是一些与 Dify 类似的知识库: 1. Notion:功能强大,支持多种格式和复杂的结构,适用于各种类型的知识管理。 2. Confluence:常用于团队协作和企业知识共享。 3. Evernote:方便记录和整理各种类型的信息。 至于哪个更适合商用,这取决于具体的需求和使用场景。如果对可视化的知识库管理工具、简单易用且能快速集成到应用中有较高需求,Dify 是不错的选择。Notion 则在灵活性和扩展性方面表现出色,适合对知识结构有复杂要求的商业场景。Confluence 更侧重于团队协作和企业级的知识共享。 使用 Dify 构建知识库的具体步骤如下: 1. 准备数据:收集需要纳入知识库的文本数据,包括文档、表格等格式。对数据进行清洗、分段等预处理,确保数据质量。 2. 创建数据集:在 Dify 中创建一个新的数据集,并将准备好的文档上传至该数据集。为数据集编写良好的描述,描述清楚数据集包含的内容和特点。 3. 配置索引方式:Dify 提供了三种索引方式供选择,包括高质量模式、经济模式和 Q&A 分段模式。根据实际需求选择合适的索引方式,如需要更高准确度可选高质量模式。 4. 集成至应用:将创建好的数据集集成到 Dify 的对话型应用中,作为应用的上下文知识库使用。在应用设置中,可以配置数据集的使用方式,如是否允许跨数据集搜索等。 5. 持续优化:收集用户反馈,对知识库内容和索引方式进行持续优化和迭代。定期更新知识库,增加新的内容以保持知识库的时效性。 Dify 有两种使用方式: 1. 云服务版本。直接在官网 dify.ai 上注册账号使用。 2. 部署社区版。开源,可商用,但是不能作为多租户服务使用。对个人使用完全无限制。 部署前提条件:2 核 4G 云服务器一台(约 159 元)。
2025-02-22
如何权构建个人AI知识库,请提供详尽的方案,并提供相关工具应用案例。
以下是构建个人 AI 知识库的详尽方案及相关工具应用案例: 方案: 1. 知识收集:学习如何有效地收集、整理和检索信息,例如分新闻、观点、访谈、论文翻译来进行提炼。 2. 知识管理:通过实际操作,体验工具在知识管理方面的应用。 3. 数据处理:使用工具对数据进行转换、提取和呈现,如从图像和图形中提取数据。 4. 内容总结:总结视频内容、翻译和改换风格等。 工具应用案例: 1. 知识收集与整理: 通义听悟整理录音笔记:https://tingwu.aliyun.com 用 React 实现选中即解释 本机跑大语言模型工具:https://ollama.com 选词翻译、解读、拓展:https://snapbox.app 与各种 AI 机器人聊天:https://opencat.app 、https://chathub.gg/ 、https://www.elmo.chat/ 定义提示语,根据不同类型提取有用信息:https://memo.ac/zh/ 2. 数据获取与处理: 下载视频:Mac 用 Downie,Windows 推荐 IDM 淘宝数码荔枝店购买 开源免费屏幕录制工具 OBS:https://obsproject.com/ 用 losslessCut 快速切块 3. 构建知识库: 将文本转换成向量(如使用 embeddings API),先把大文本拆分成若干小文本块(chunk),将小文本块转换成 embeddings 向量并在向量储存库中保存,当用户提问时,通过比对向量提取关联度最高的文本块与问题组合成新的 prompt 发送给 GPT API。 例如对于一篇包含多个文本块的文章,如“文本块 1:本文作者:越山。xxxx。”“文本块 2:公众号越山集的介绍:传播效率方法,分享 AI 应用,陪伴彼此在成长路上,共同前行。”等,当提问“此文作者是谁?”时,可通过比较 embeddings 向量找出关联度最高的文本块。 4. 工具入门: 提示词:现成好用的 Prompt: AI Agent:Agent 工具 小白的 Coze 之旅: AI Pic:现在主流的 AI 绘图工具网站:
2025-02-22
coze知识库是否稳定且保密
Coze 知识库目前存在一些不稳定的情况。例如,在国内版中,某些官方和第三方插件的 API 调用及返回结果不太稳定,可能导致部分信息无法完全显示。但对于以问答为主的客服场景,其表现相对稳定。同时,目前存在不稳定版本,需要不断调试完善。关于保密方面,文中未提及相关内容。
2025-02-22
如何生成企业自己的知识库
生成企业自己的知识库可以参考以下内容: 理论基础: 大模型训练数据有截止日期,当需要依靠不在训练集中的数据时,可通过检索增强生成 RAG(Retrieval Augmented Generation)实现。 RAG 应用包括文档加载(从多种来源加载文档,如 PDF 等非结构化数据、SQL 等结构化数据及代码)、文本分割(把文档切分为指定大小的块)、存储(将切分好的文档块嵌入转换成向量形式并存储到向量数据库)、检索(通过检索算法找到与输入问题相似的嵌入片)、输出(把问题及检索出的嵌入片提交给 LLM 生成答案)。 使用 Coze 知识库: 海外官方文档:https://www.coze.com/docs/zh_cn/knowledge.html 国内官方文档:https://www.coze.cn/docs/guides/use_knowledge Coze 实操 徒手捏 Bot: 搭建流程: 用户输入问题。 大模型通过知识库搜索答案。 大模型根据知识库的内容生成答案。 数据库将用户问题和答案进行存储。 将答案展示给用户。 创建工作流: Start 节点:默认节点,定义输入变量“question”,由 Bot 从外部获取信息传递过来。 知识库节点:输入为用户的查询,输出为从知识库中查询出来的匹配片段。注意查询策略包括混合查询、语义查询和全文索引。 变量节点:有设置变量给 Bot 和从 Bot 中获取变量的能力。 此外,您还可以参考以下作业: 5 月 7 号:创建 https://www.coze.com 账号、创建 https://www.coze.cn 账号、加入共学的 team(看备注)、有精力的话提前阅读、尝试创建自己的第一个 Bot 用来免费使用 GPT4。 5 月 10 日罗文:认领一个插件制作插件说明,可参考。 上述两个作业在 5 月 8 号分享结束之后就可以上手进行了,5 月 9 号会针对工作流和多 Agent 模式进行进一步的讲解。大家制作的 Bot 都可以在飞书群中进行投稿,然后会有专门的同学记录到 Bot 收集板。
2025-02-22
deepseek本地部署知识库
以下是关于 DeepSeek 本地部署知识库的相关信息: 您可以参考以下链接获取更多详细内容: DeepSeek 资料库:照着做可直接上手🔗 需要注意的是,日报中提到本地部署并不适合普通用户,纳米 AI 搜索是目前较为稳定的第三方替代方案,其满血版推理能力接近官方但速度较慢,高速版速度快、体验流畅但推理能力稍弱。体验地址:🔗或下载纳米 AI 搜索 APP 。
2025-02-21
waytoagi 的飞书知识库智能问答机器人是怎么做的
waytoagi 的飞书知识库智能问答机器人是基于飞书 aily 搭建的。在飞书 5000 人大群里内置了名为「waytoAGI 知识库智能问答」的智能机器人,它会根据通往 AGI 之路的文档及知识进行回答。 其具有以下功能和特点: 1. 自动问答:自动回答用户关于 AGI 知识库内涉及的问题,可以对多文档进行总结、提炼。 2. 知识搜索:在内置的「waytoAGI」知识库中搜索特定的信息和数据,快速返回相关内容。 3. 文档引用:提供与用户查询相关的文档部分或引用,帮助用户获取更深入的理解。 4. 互动教学:通过互动式的问答,帮助群成员学习和理解 AI 相关的复杂概念。 5. 最新动态更新:分享有关 AGI 领域的最新研究成果、新闻和趋势。 6. 社区互动:促进群内讨论,提问和回答,增强社区的互动性和参与度。 7. 资源共享:提供访问和下载 AI 相关研究论文、书籍、课程和其他资源的链接。 8. 多语言支持:支持多语言问答,满足不同背景用户的需求。 使用方法: 1. 在飞书群里发起话题时即可,它会根据 waytoAGI 知识库的内容进行总结和回答。 2. 可以在 WaytoAGI 飞书知识库首页找到加入飞书群的链接(二维码需在获取),然后点击加入,直接@机器人即可。 3. 也可以在 WaytoAGI.com 的网站首页,直接输入问题,即可得到回答。 搭建问答机器人的相关情况: 1. 2024 年 2 月 22 日的会议介绍了 WaytoAGI 社区的成立愿景和目标,以及其在飞书平台上的知识库和社区的情况。 2. 讨论了利用 AI 技术帮助用户更好地检索知识库中的内容,引入了 RAG 技术,通过机器人来帮助用户快速检索内容。 3. 介绍了基于飞书的知识库智能问答技术的应用场景和实现方法,可以快速地给大模型补充新鲜的知识,提供大量新的内容。 4. 讨论了如何使用飞书的智能伙伴功能来搭建 FAQ 机器人,以及智能助理的原理和使用方法。 5. 飞书智能伙伴创建平台(英文名:Aily)是飞书团队旗下的企业级 AI 应用开发平台,提供了一个简单、安全且高效的环境,帮助企业轻松构建和发布 AI 应用,推动业务创新和效率提升。为企业探索大语言模型应用新篇章、迎接企业智能化未来提供理想选择。
2025-02-20
快速生成小红书风格的图片推荐用什么软件
以下是一些可以快速生成小红书风格图片的软件和相关步骤: 1. DeepSeek+扣子: 生成单词:输入单词主题、图片风格、单词数量等,选择 deepseekr1 模型生成单词数组。 生成视频 1: 循环:包括将数组变量打散为单个变量、进入生图工作流、裁剪(将图片 url 转图片)、将图片放到背景上。 制作固定元素:如背景图和结尾图,可使用百度图片或即梦生成,并用 ps 或美图秀秀调整尺寸并添加元素。 2. 提示词: 角色:作为专业的单词生成助手,围绕主题挖掘相关英语单词,提供精准实用的单词、中文、美式音标内容。 技能:输出关联英语单词,并以数组形式呈现。 限制:仅围绕用户输入主题输出相关内容,以符合要求的数组形式呈现。
2025-02-22
我是一个小学教师,我要写一个值周小结,推荐用哪款AI软件
以下是为您推荐的一些可能有助于写值周小结的 AI 软件: 1. 可画软件:提供多种排版模板和 AI 功能,方便图片处理和尺寸调整,如将海报尺寸调为 1080 乘 1440。 2. Request 软件:具有锐化清晰度等 PS 中有的功能,可自定义尺寸、选择风格模型、创建风格,支持中文输入但部分提示词用谷歌翻译更准确,还具有文字输入、样机等功能。每天登录有 50 点积分,生成一次图像需 1 点积分,可创建系列图像。 3. 吉梦智能画板:具有消除、图层、一键抠图等功能,抠图效果较好。 此外,还有一些辅助工具: 1. IAIFONT、自由等字体软件:可及时预览和切换字体,注意使用免费字体和避免版权问题。 2. 内容排版大师的 GPTs:只需在聊天框粘贴文字内容,然后点击发送即可。GPTs 链接:https://chat.openai.com/g/gt9dIHp4Ntneirongpaibandashi 。 3. 小作卡片 app:官网链接:https://kosaku.imxie.club/ 。操作步骤为:①打开软件点击「自制卡片」;②在「记录些什么...」中粘贴 AI 生成文本内容;③点击右下角的保存图标即可导出。
2025-02-22
推荐些AI文章
以下是为您推荐的一些 AI 文章: 1. 《新手如何学习 AI?》 了解 AI 基本概念:建议阅读「」部分,熟悉术语和基础概念,包括主要分支及联系。 浏览入门文章,了解历史、应用和发展趋势。 开始 AI 学习之旅:在「」中找到为初学者设计的课程,特别推荐李宏毅老师的课程。还可通过在线教育平台按自己节奏学习并获取证书。 选择感兴趣的模块深入学习:AI 领域广泛,可根据兴趣选择特定模块,如图像、音乐、视频等,并掌握提示词技巧。 实践和尝试:理论学习后通过实践巩固知识,使用各种产品创作,知识库有实践作品和文章分享。 体验 AI 产品:与 ChatGPT、Kimi Chat、智谱、文心一言等互动,了解工作原理和交互方式。 2. 《01通往 AGI 之路知识库使用指南》 包括关于 AI 知识库使用及 AIPO 活动的介绍,AIPO 线下活动及 AI 相关探讨,way to AGI 社区活动与知识库介绍,AI 知识库及学习路径的介绍,时代杂志评选的领军人物,AI 相关名词解释,知识库的信息来源,社区共创项目,学习路径,经典必读文章,初学者入门推荐,历史脉络类资料等内容。 3. 《【AI 学习笔记】小白如何理解技术原理与建立框架(通俗易懂内容推荐)》 作者 Allen 旨在帮助入门同学建立框架,推荐了两个有重大帮助的视频: 由」,50 分钟速通 AI 大模型原理。 某知识 up 主老石谈芯专访安克创新 CEO 阳萌的视频「」,一共两期,内容都值得观看。
2025-02-21
如果想用AI创作表情包,推荐用什么AI大模型
如果您想用 AI 创作表情包,以下是一些推荐的 AI 大模型及相关平台: 1. MewXAI:这是一款操作简单的 AI 绘画创作平台。其功能包括 MX 绘画,拥有众多超火模型和上百种风格,支持文生图、图生图;MX Cute 是自研的可爱风动漫大模型;MJ 绘画在表情包制作等方面表现出色;还有边缘检测、室内设计、姿态检测、AI 艺术二维码、AI 艺术字等多种功能。访问地址:https://www.mewxai.cn/ 2. 在开发 AI Share Card 插件的过程中,选用的是 GLM4flash 模型。它具有较长的上下文窗口、响应速度快、并发支持高、免费或价格较低等优点。 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2025-02-21
能够帮助大学老师提高工作效率的AI工具有哪些?请为我推荐10个APP
以下为您推荐 10 个能够帮助大学老师提高工作效率的 AI 工具 APP: 1. WPS 文档翻译功能:这是 WPS 的一项功能,利用自然语言处理技术,可快速翻译办公文档,提高工作效率。 2. 美丽修行 APP:通过数据分析和自然语言处理技术,根据用户肤质推荐适合的美容护肤产品。 3. 360 儿童手表:利用图像识别和机器学习技术,实现定位、通话、安全区域设置等功能,保障儿童安全。 4. 汽车之家 APP:借助数据分析和机器学习技术,根据用户汽车型号、行驶里程等信息提醒车主及时进行汽车保养。 5. 豆果美食 APP:运用自然语言处理和数据分析技术,根据用户口味和现有食材生成个性化菜谱。 6. 沪江开心词场:采用自然语言处理和机器学习技术,辅助用户学习语言,提供个性化学习方案。 7. 爱奇艺智能推荐:利用数据分析和机器学习技术,根据用户喜好推荐电影。 8. WPS Office:借助自然语言处理和机器学习技术,提高办公效率,实现自动化办公流程。 9. Speak:是一个由 AI 驱动的语言老师,能够实时交流,并对发音或措辞给予反馈。 10. Quazel:提供类似的语言学习帮助。 此外,还有 Lingostar、Photomath、Mathly、PeopleAI、Historical Figures、Grammarly、Orchard、Lex、Tome、Beautiful.ai 等工具在不同方面为学习和工作提供支持。
2025-02-21
推荐几个ai相关的优质公众号
以下是为您推荐的一些 AI 相关的优质公众号: 超时空视角 麦橘 麦乐园 MAILAND 𝐦𝐚𝐣𝐢𝐜𝐌𝐈𝐗 模型的作者 orange Web3 天空之城 Ragnar 瑞哥那 海辛 三思 INDIGO TALK 云中江树 陈财猫 阿文
2025-02-20
通往agi之路的网站啥时候建立的?
通往 AGI 之路(WayToAGI)于 2023 年 4 月 26 日诞生。
2025-02-19
怎么建立自己的知识库
要建立自己的知识库,可以参考以下两种方法: 方法一:用 GPT 打造个人知识库 1. 理解 embeddings: Embeddings 是一个浮点数字的向量(列表),两个向量之间的距离衡量它们的关联性。小距离表示高关联度,大距离表示低关联度。 向量是数学中表示大小和方向的一个量,通常用一串数字表示。在计算机科学和数据科学中,向量通常用列表(list)来表示。 向量之间的距离是一种度量两个向量相似性的方法,最常见的是欧几里得距离。 2. 使用 embeddings: 将大文本拆分成若干个小文本块(chunk),通过 embeddings API 将小文本块转换成 embeddings 向量。 在一个地方(向量储存库)中保存这些 embeddings 向量和文本块,作为问答的知识库。 当用户提出一个问题时,该问题先通过 embeddings API 转换成问题向量,然后将这问题向量与向量储存库的所有文本块向量比对,查找距离最小的几个向量,把这几个向量对应的文本块提取出来,与原有问题组合成为新的 prompt(问题/提示词),发送给 GPT API。 方法二:用 Coze 免费打造自己的微信 AI 机器人 1. 设计你的 AI 机器人: 确定功能范围。 编写【prompt】提示词,设定 Bot 的身份和目标。 2. 创建知识库: 整理“关键字”与“AI 相关资料链接”的对应关系,并将信息存储起来。 创建知识库路径:个人空间 知识库 创建知识库。 知识库文档类型支持:本地文档、在线数据、飞书文档、Notion 等,本次使用【本地文档】。 按照操作指引上传文档、分段设置、确认数据处理。 小技巧:知识库好不好用,跟内容切分粒度有很大关系,可以在内容中加上一些特殊分割符,比如“”,以便于自动切分数据。分段标识符号要选择“自定义”,内容填“”。最终的知识库结果中,同一颜色代表同一个数据段,如果内容有误需要编辑,可以点击具体内容,鼠标右键会看到“编辑”和“删除”按钮,可以编辑或删除。
2025-02-14
建立本地AI知识库有什么意义
建立本地 AI 知识库具有以下重要意义: 1. 灵活掌控:通过使用像 AnythingLLM 这样的软件,可以对知识库进行更灵活的管理和操作。例如选择文本嵌入模型、向量数据库等。 2. 数据隔离:在 AnythingLLM 中创建独有的 Workspace,能与其他项目数据进行隔离,保障数据的独立性和安全性。 3. 多样对话模式:提供 Chat 模式和 Query 模式。Chat 模式综合大模型训练数据和上传文档数据给出答案,Query 模式仅依靠文档数据回答。 4. 深入理解技术:虽然大多数人不需要自行部署大模型,但通过本地部署和搭建知识库的实操,可以更深入地了解相关技术,如 RAG 技术,包括其文档加载、文本分割、存储、检索和输出等过程,以及文本加载器的作用。 5. 个性化定制:可以根据个人需求上传文档并进行文本嵌入,实现个性化的知识储备和应用。 6. 测试与优化:完成配置后可进行对话测试,不断优化和改进知识库的性能和回答质量。
2025-02-14
如何建立自己知识库
建立自己的知识库可以参考以下方法: 1. 利用 GPT 打造个人知识库: 给 GPT 输入(投喂)定制化的知识,但需注意 GPT3.5(即当前免费版的 ChatGPT)一次交互(输入和输出)只支持最高 4096 个 Token,约等于 3000 个单词或 2300 个汉字,容量对于绝大多数领域知识可能不够。 OpenAI 提供了 embedding API 解决方案,embeddings 是一个浮点数字的向量(列表),两个向量之间的距离衡量它们的关联性,小距离表示高关联度,大距离表示低关联度。向量是数学中表示大小和方向的一个量,通常用一串数字表示,在计算机科学和数据科学中,向量通常用列表(list)来表示。向量之间的距离是一种度量两个向量相似性的方法,最常见的是欧几里得距离。 可以先把大文本拆分成若干个小文本块(也叫 chunk),通过 embeddings API 将小文本块转换成 embeddings 向量,这个向量跟文本块的语义相关。在一个地方(向量储存库)中保存这些 embeddings 向量和文本块,作为问答的知识库。当用户提出一个问题时,该问题先通过 embeddings API 转换成问题向量,然后将这问题向量与向量储存库的所有文本块向量比对,查找距离最小的几个向量,把这几个向量对应的文本块提取出来,与原有问题组合成为新的 prompt,发送给 GPT API。 2. 本地部署大模型以及搭建个人知识库: 利用大模型的能力搭建知识库本身就是一个 RAG 技术的应用,在进行本地知识库的搭建实操之前,需要先对 RAG 有一个大概的了解。 RAG 应用包括文档加载(从多种不同来源加载文档,LangChain 提供了 100 多种不同的文档加载器)、文本分割(把 Documents 切分为指定大小的块)、存储(将切分好的文档块进行嵌入转换成向量的形式,并将 Embedding 后的向量数据存储到向量数据库)、检索(通过某种检索算法找到与输入问题相似的嵌入片)、Output(把问题以及检索出来的嵌入片一起提交给 LLM,LLM 会通过问题和检索出来的提示一起来生成更加合理的答案)。 文本加载器就是将用户提供的文本加载到内存中,便于进行后续的处理。
2025-02-13
如何用ai建立自己的知识库?
以下是用 AI 建立自己知识库的方法: 1. 使用 GPT 建立: 将大文本拆分成若干小文本块(chunk)。 通过 embeddings API 将小文本块转换成与语义相关的 embeddings 向量,并在向量储存库中保存这些向量和文本块作为问答的知识库。 当用户提出问题时,将问题转换成问题向量,与向量储存库中的文本块向量比对,提取距离最小的几个向量对应的文本块,与问题组合成新的 prompt 发送给 GPT API。 例如,对于一篇万字长文,拆分成多个文本块,如“文本块 1:本文作者:越山。xxxx。”等,当提问“此文作者是谁?”时,通过比较 embeddings 向量,提取关联度高的文本块发送给 GPT API 回答问题。 2. 使用 Coze 建立: 确定功能范围,编写 prompt 提示词,设定 Bot 的身份和目标。 创建知识库,整理“关键字”与“AI 相关资料链接”的对应关系,并将信息存储起来。创建知识库路径为:个人空间 知识库 创建知识库。支持的文档类型包括本地文档、在线数据、飞书文档、Notion 等,本次可使用本地文档。按照操作指引上传文档、分段设置、确认数据处理。小技巧:在内容中加上特殊分割符“”,分段标识符号选择“自定义”,内容填“”,以便于自动切分数据。 创建工作流,告诉 AI 机器人按流程处理信息。创建工作流路径为:个人空间 工作流 创建工作流。工作流设计好后,先点击右上角“试运行”,测试无误后点击发布。如果任务和逻辑复杂,可以结合左边“节点”工具来实现,如调用大模型总结分析知识库内容、调用数据库存储用户输入信息、调用代码处理复杂逻辑等。个人建议:工作流不必复杂,能实现目的即可,所以在设计 Bot 前“确定目的”和“确定功能范围”很重要。
2025-02-13
利用deep seek建立知识库应用
以下是关于利用 deep seek 建立知识库应用的相关内容: RAG 技术: 利用大模型的能力搭建知识库是 RAG 技术的应用。在需要依靠不包含在大模型训练集中的数据时,主要通过检索增强生成 RAG 实现。RAG 应用可抽象为 5 个过程: 1. 文档加载:从多种来源加载文档,LangChain 提供 100 多种文档加载器,包括非结构化、结构化数据和代码等。 2. 文本分割:文本分割器把文档切分为指定大小的块。 3. 存储:包括将切分好的文档块嵌入转换成向量形式,并将向量数据存储到向量数据库。 4. 检索:通过检索算法找到与输入问题相似的嵌入片。 5. 输出:把问题及检索出来的嵌入片提交给 LLM,生成更合理答案。 创建知识库应用的具体步骤: 1. 地址输入浏览器:http://这里替换为你宝塔左上角的那一串:3000/ 2. 进入后,点击应用并创建,选择 qwen 模型。 3. 创建知识库。点击知识库 选择 qwen Embedding 1 点击确认创建。 4. 上传文件,等待处理,文本状态为“已就绪”即可。 5. 回到创建的应用,关联创建的知识库。 6. 点击两个发布,之前第一个叫做保存。 7. 点击新建,创建 key。创建后保存同时将 API 根地址最后加上/v1 并保存下来。 此外,在安装并接入 cow 方面: 1. 回到宝塔,打开【终端】。 2. 依次粘贴并回车:cd/root 、git clone https://github.com/zhayujie/chatgptonwechat (注意粘贴完整)。 3. 出现特定样子表示成功,失败或无反应则刷新重试。 4. 继续依次输入:cd chatgptonwechat/ 、pip install r requirements.txt 。 5. 等待执行完成后,继续粘贴:pip install r requirementsoptional.txt 。 6. 到“文件”菜单中执行,点击文件 找到 root,进入 root 文件夹,找到 chatgptonwechat 文件夹并进入。
2025-02-10