直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

AI入门的pytorch代码,举例子

回答

PyTorch 是一个流行的开源机器学习库,广泛用于计算机视觉和自然语言处理等应用。以下是使用 PyTorch 进行简单线性回归的入门代码示例:

import torch
import torch.nn as nn

# 假设我们有一些数据点
x_train = torch.tensor([[1.0], [2.0], [3.0], [4.0]], dtype=torch.float32)
y_train = torch.tensor([[2.0], [4.0], [6.0], [8.0]], dtype=torch.float32)

# 定义一个简单的线性模型
class LinearRegressionModel(nn.Module):
    def __init__(self):
        super(LinearRegressionModel, self).__init__()
        self.linear = nn.Linear(1, 1)  # 1个输入特征,1个输出特征

    def forward(self, x):
        return self.linear(x)

# 实例化模型
model = LinearRegressionModel()

# 定义损失函数(均方误差)
criterion = nn.MSELoss()

# 定义优化器
optimizer = torch.optim.SGD(model.parameters(), lr=0.01)

# 训练模型
num_epochs = 100
for epoch in range(num_epochs):
    # 前向传播
    outputs = model(x_train)
    loss = criterion(outputs, y_train)

    # 反向传播和优化
    optimizer.zero_grad()  # 清除之前的梯度
    loss.backward()  # 反向传播,计算当前梯度
    optimizer.step()  # 根据梯度更新参数

    if (epoch+1) % 10 == 0:
        print(f'Epoch [{epoch+1}/{num_epochs}], Loss: {loss.item():.4f}')

# 测试模型
with torch.no_grad():  # 测试时不需要计算梯度
    predicted = model(x_train)
    print(f'Predictions: {predicted}')

# 打印最终参数
print(f'Final learned weights: {model.linear.weight}')
print(f'Final learned bias: {model.linear.bias}')

这段代码首先导入了必要的 PyTorch 模块,然后创建了一些简单的输入数据 x_train 和对应的目标输出 y_train。接着定义了一个线性回归模型 LinearRegressionModel,该模型包含一个线性层 nn.Linear(1, 1)。然后定义了损失函数 MSELoss 和优化器 SGD

在训练循环中,我们执行了前向传播、计算损失、执行反向传播并更新模型参数的步骤。每训练10个周期,我们打印一次当前的损失值。训练完成后,我们使用 with torch.no_grad() 语句测试模型的预测结果,并打印出模型学到的权重和偏置。

这是一个非常基础的 PyTorch 入门示例,适合初学者理解 PyTorch 的基本概念和操作流程。

内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

微软AI初学者入门课程

译者:Miranda,课程原网址https://microsoft.github.io/AI-For-Beginners/通过微软为期12周、共24课时的课程,一起来探索人工智能(AI)的世界!在本课程中,你将深入学习符号人工智能(Symbolic AI)、神经网络(Neural Networks)、计算机视觉(Computer Vision)、自然语言处理(Natural Language Processing)等内容。如果想提升学习效果,可以亲身实践课程内容、做随堂小测试或根据课程内容开展实验。这套课程是由专家设计的人工智能综合指南,它非常适合初学者,覆盖了TensorFlow、PyTorch及人工智能伦理原则。今天就开始你的人工智能之旅吧!在本课程中,你将学到:实现人工智能的不同方法,包括使用了知识表示和推理的符号人工智能,它是一种“有效的老式人工智能”([GOFAI](https://en.wikipedia.org/wiki/Symbolic_artificial_intelligence))。神经网络和深度学习,它们是现代人工智能的核心,我们将使用两个最流行的框架([TensorFlow](https://www.tensorflow.org/)和[PyTorch](https://pytorch.org/))中的代码来说明这两个主题背后的重要概念。处理图像和文本的神经架构,我们将介绍最新的模型,但在最前沿的信息上可能会有所欠缺。

其他人在问
什么ai视频工具好用
以下是一些好用的 AI 视频工具: Runway:https://runwayml.com/ 。在真实影像方面质感好,战争片全景镜头处理出色,控件体验感好,但爱变色,光影不稳定,控制能力强,可指定局部对象设置运动笔刷。有网页和 app 方便。工具教程: Pixverse:https://pixverse.ai/ 。在高清化方面有优势,对偏风景和纪录、有特定物体移动的画面友好,能力全面,缺点是同时只能进行 4 个任务。工具教程: Haiper:https://app.haiper.ai/ 。默默无闻,只能生成 2s,但有不错的镜头,稳定性强,优点是没有并发任务限制。 Pika:https://pika.art/ 。对奇幻感画面把控好,自然,有嘴型同步功能,对二次元友好。工具教程: SVD:https://www.stablevideo.com/ 。整体略拉垮,唯一能打的是在风景片,优点是不带水印,动作幅度大,但崩坏概率大。工具教程: 此外,还有以下 AI 视频工具: 即梦:https://dreamina.jianying.com/ 。剪映旗下,生成 3 秒,动作幅度有很大升级,最新 S 模型,P 模型。工具教程: Kling:kling.kuaishou.com 。支持运动笔刷,1.5 模型可以直出 1080P30 帧视频。视频模型: Vidu:https://www.vidu.studio/ 智谱清影:https://chatglm.cn/video 。开源了,可以自己部署 cogvideo 。工具教程: 美图旗下:https://www.miraclevision.com/ Neverends:https://neverends.life/create 。操作傻瓜 SD:Animatediff SVD deforum 。自己部署 Leiapix:https://www.leiapix.com/ 。可以把一张照片转动态 Krea:https://www.krea.ai/ Opusclip:https://www.opus.pro/ 。利用长视频剪成短视频 Raskai:https://zh.rask.ai/ 。短视频素材直接翻译至多语种 invideoAI:https://invideo.io/make/aivideogenerator/ 。输入想法>自动生成脚本和分镜描述>生成视频>人工二编>合成长视频 descript:https://www.descript.com/?ref=feizhuke.com veed.io:https://www.veed.io/ 。自动翻译自动字幕 clipchamp:https://app.clipchamp.com/ typeframes:https://www.revid.ai/?ref=aibot.cn 还有一些其他的工具,如: Morph Studio:https://app.morphstudio.com/ 。还在内测 Heygen:https://www.heygen.com/ 。数字人/对口型 Kaiber:https://kaiber.ai/ Moonvalley:https://moonvalley.ai/ Mootion:https://discord.gg/AapmuVJqxx 。3d 人物动作转视频
2024-12-20
AI帮助写程序
以下是关于 AI 帮助写程序的相关内容: 一、辅助编程的 AI 产品 以下是一些可以帮助您编程、生成代码、debug 的 AI 工具: 1. GitHub Copilot:由全球最大的程序员社区和代码托管平台 GitHub 联合 OpenAI 和微软 Azure 团队推出的 AI 编程助手。它支持和兼容多种语言和 IDE,可为程序员快速提供代码建议,帮助开发者更快、更少地编写代码。 2. 通义灵码:阿里巴巴团队推出的一款基于通义大模型的智能编程辅助工具,提供行级/函数级实时续写、自然语言生成代码、单元测试生成、代码注释生成、代码解释、研发智能问答、异常报错排查等能力。 3. CodeWhisperer:亚马逊 AWS 团队推出的 AI 编程软件,该代码生成器由机器学习技术驱动,可为开发人员实时提供代码建议。 4. CodeGeeX:智谱 AI 推出的开源的免费 AI 编程助手,该工具基于 130 亿参数的预训练大模型,可以快速生成代码,帮助开发者提升开发效率。 5. Cody:代码搜索平台 Sourcegraph 推出的一款 AI 代码编写助手,该工具借助 Sourcegraph 强大的代码语义索引和分析能力,可以了解开发者的整个代码库,不止是代码片段。 6. CodeFuse:蚂蚁集团支付宝团队为国内开发者提供智能研发服务的免费 AI 代码助手,该产品是基于蚂蚁集团自研的基础大模型进行微调的代码大模型。 7. Codeium:一个由 AI 驱动的编程助手工具,旨在通过提供代码建议、重构提示和代码解释来帮助软件开发人员,以提高编程效率和准确性。 更多辅助编程 AI 产品,还可以查看这里:https://www.waytoagi.com/category/65 。每个工具的功能和适用场景可能会有所不同,您可以根据自己的需求来选择最适合您的工具。 二、AI 辅助在独立游戏开发中的经验 在独立游戏开发中,单独让 AI 从零开始写一些小功能没有问题,但对于复杂的程序架构,AI 目前还无法完全胜任。可以把不方便配表而又需要撰写的简单、模板化、多是调用 API 且只牵涉小部分特殊逻辑的代码交给 AI。以 Buff 系统为例,将多段类似的代码喂给 AI 并让其总结规律,在教导 AI 时要像哄小孩,肯定正确的,指出错误时要克制。目前生成复杂代码时,ChatGPT 可能更方便。 三、编程的本质与 AI 辅助编程 编程的核心是解决问题的能力,AI 辅助编程的出现正在颠覆传统编程方式。在 AI 时代,重要的是问题分解能力、逻辑思维和创意表达。例如在开发多语言翻译插件时,应先仔细分析问题,再与 AI 工具对话描述问题场景和解决思路,AI 会提供核心代码、封装建议、优化用户界面甚至错误处理等方面的帮助。
2024-12-20
AI能做哪些图像编辑
AI 在图像编辑方面有多种应用和技术,以下为您介绍: 1. 字节发布的 SeedEdit:基于图像生成常用的扩散模型,能够根据任何文本提示修订给定的图像。关键在于保持原始图像重建和生成新图像之间的平衡,通过从弱生成器开始,创建多样化图像对进行训练,最终获得所需平衡。可以实现更丰富的效果和连续编辑,让扩散模型不再完全随机生成。 论文及技术能力展示:https://team.doubao.com/seededit 2. Muse AI:一款强大的 AI 图片编辑器,具有多种功能,如快速添加、擦除和进行 AI 图片编辑。用户只需输入文字,即可轻松编辑图片内容,支持与团队成员或客户实时共享和编辑文件。 官方网站: 3. Ideogram:支持上传带有提示和设置的表格,可批量生成图像,简化工作流程。目前 Ideogram pro 用户可进行使用。 官方地址:https://ideogram.ai/ 4. BrushEdit:腾讯开源的 AI 图像编辑技术,利用多模态大型语言模型和图像修复模型,实现自主、用户友好和交互式的自由形式指令编辑。用户可以根据语言沟通,编辑图像背景、对象,增删内容。 官方地址:https://liyaoweistu.github.io/project/BrushEdit/
2024-12-20
中国大陆能用的文生视频免费ai
以下是一些在中国大陆可用的文生视频免费 AI 工具: 1. Hidreamai(国内,有免费额度):https://hidreamai.com//AiVideo 。支持文生视频、图生视频,提示词使用中文、英文都可以。文生视频支持正向提示词、反向提示词、运镜控制、运动强度控制,支持多尺寸,可以生成 5s 和 15s 的视频。 2. ETNA(国内):https://etna.7volcanoes.com/ 。Etna 是一款由七火山科技开发的文生视频 AI 模型,它可以根据用户简短的文本描述生成相应的视频内容。生成的视频长度在 8 15 秒,画质可达到 4K,最高 38402160,画面细腻逼真,帧率 60fps,文生视频支持中文,时空理解。 3. Dreamina(国内内测,有免费额度):https://jimeng.jianying.com/aitool/video/generate 。支持文生视频、图生视频、视频生视频,支持图生视频首尾帧功能,提示词使用中文、英文都可以。文生视频支持正向提示词、运镜控制、运动强度控制、帧数选择,支持多种尺寸,默认生成 3s 的视频。 4. 可灵(免费):https://klingai.kuaishou.com/ 。支持文生视频、图生视频,支持图生视频首尾帧功能,提示词可使用中文。文生视频支持正向提示词、反向提示词、运镜控制、时长选择(5s、10s),支持多种尺寸,默认生成 5s 的视频。 此外,还有一些国内外提供文生视频功能的产品推荐: 1. Pika:一款出色的文本生成视频 AI 工具,擅长动画制作,并支持视频编辑。 2. SVD:如果熟悉 Stable Diffusion,可以直接安装这款最新的插件,在图片基础上直接生成视频。这是由 Stability AI 开源的 video model。 3. Runway:老牌 AI 视频生成工具,提供实时涂抹修改视频的功能,但收费。 4. Kaiber:视频转视频 AI,能够将原视频转换成各种风格的视频。 5. Sora:由 OpenAI 开发,可以生成长达 1 分钟以上的视频。 更多的文生视频的网站可以查看:https://www.waytoagi.com/category/38 。请注意,内容由 AI 大模型生成,请仔细甄别。
2024-12-20
普通人怎么入局AI,提升自己的职场竞争力,或者开启第二副业
对于普通人入局 AI 以提升职场竞争力或开启第二副业,以下是一些建议: 1. 应用 AI 提效:在互联网大厂降本增效的背景下,个人工作量可能增加,利用 AI 提高工作效率,既能增强竞争力,又有助于早下班。 2. 躬身入局:如徐文浩老师所说,在重大技术变革时,每天在一线动手实践是可行之路。 3. 关注优质信息源:例如吴炳见的【AI 大航海】和徐文浩老师的【AI 炼金术】公众号,获取有价值的信息。 4. 了解共创模式:共创模式有多元化视角、增强参与感、共享资源、快速迭代、增强创新等优点,但也面临协调复杂、知识产权保护、利益分配、责任归属与质量控制等挑战。 需要注意的是,在开启相关行动之前,要做好充分的准备和学习。
2024-12-20
AI绘画这么厉害了,那儿童还有必要学习素描课吗
即便 AI 绘画很厉害,儿童仍有必要学习素描课。手绘素描笔记有助于建立突触连接,将信息从短期记忆转化为长期记忆,让人成为更好的概念思考者。例如,在科学观察中,学生通过手绘能更好地学会观察,这个过程不可被替代。就学习而言,掌握新技能时应先进行动手、动脑、技术最小化的学习,不应一开始就依赖 AI。比如在记笔记时,手写比打字能让学生记住更多信息。此外,在一些课程设计中,如离谱村的 AI 课,通过巧妙的环节设置和老师的引导,能让孩子更好地学习和发挥想象。
2024-12-20
什么是pytorch
PyTorch 是由 Facebook 的人工智能研究团队开发的深度学习库,以其灵活性和易用性而闻名,特别适合研究和快速原型开发。在一些应用场景中,如 AI 音乐处理,需要对应 CUDA 对应的支持版本才能正确运行。目前 CUDA 官网最新的版本是版本,如 cuda12.1 实测可以匹配 cuda 12.4。下载完后默认安装即可。
2024-12-10
如何卸载pytorch
在 Mac 系统中卸载 PyTorch 的步骤如下: 1. 以您想要操作的目录为例,在终端中输入 `cd Documents/ComfyUI`,导航到 ComfyUI 目录。 2. 使用以下命令创建并激活 Python 虚拟环境: `python3 m venv venv` `source venv/bin/activate` 3. 执行以下命令卸载 PyTorch:`pip3 uninstall torch torchvision torchaudio`
2024-12-02
pytorch跟cuda之间的关系
PyTorch 与 CUDA 之间存在密切的关系。在 AI 相关的应用中,如果使用 GPU 来处理数据以提高运算速度,通常会用到 CUDA 技术。而 PyTorch 要想利用 CUDA 进行加速运算,必须对应 CUDA 支持的版本,否则程序无法正确运行。 例如,目前 CUDA 官网最新的版本是 12.4,需要找到配套的 PyTorch 版本。对于 CUDA 12.1,实测可以匹配 CUDA 12.4。如果没有 N 卡,也可以用 CPU 代替 CUDA 进行运算处理,但速度会相对较慢,并且在代码中需要做相应调整。
2024-12-01
NVIDIA Graphics Device with CUDA capability sm_120 is not compatible with the current PyTorch installation. The current PyTorch install supports CUDA capabilities sm_37 sm_50 sm_60 sm_61 sm_70 sm_75 sm_80 sm_86 sm_90 compute_37. If you want to use th
您好,出现“NVIDIA Graphics Device with CUDA capability sm_120 is not compatible with the current PyTorch installation. The current PyTorch install supports CUDA capabilities sm_37 sm_50 sm_60 sm_61 sm_70 sm_75 sm_80 sm_86 sm_90 compute_37.”这种情况,意味着您所使用的 NVIDIA 显卡的 CUDA 计算能力(sm_120)与当前安装的 PyTorch 版本不兼容。当前安装的 PyTorch 支持的 CUDA 计算能力为 sm_37 至 sm_90 以及 compute_37 。您可能需要重新安装与您显卡 CUDA 计算能力相匹配的 PyTorch 版本,或者升级您的显卡驱动程序来解决此兼容性问题。
2024-11-30
Pytorch cuda 对应的关系
在使用 PyTorch 与 CUDA 时,需要注意它们的对应关系。以 Windows 为例,如果您使用 GPU 来处理音频,可以用 CUDA 提速。目前 CUDA 官网最新的版本是 12.4(https://developer.nvidia.com/cudadownloads?target_os=Windows&target_arch=x86_64&target_version=11&target_type=exe_local),对应找到配套的 PyTorch 版本,例如 CUDA 12.1 实测可以匹配 CUDA 12.4。下载完成后默认安装即可。一定要确保 PyTorch 对应 CUDA 支持的版本,否则程序无法正确运行。如果没有 N 卡,可以用 CPU 代替 CUDA 进行运算处理,但速度会慢一些,代码中可以做相应调整。
2024-11-29
AI入门
以下是为您提供的 AI 入门指导: 一、背景 在深入学习 AI 时,编程可能会让您感到困难,因为很多教程默认您会打命令行。 二、关于 Python Python 就像哆啦 A 梦的百宝袋,拥有丰富的标准库,遇到问题时可直接使用。若标准库不够,还能通过 pip 工具从类似 GitHub 的平台订购新道具。Python 在 AI 领域被广泛使用。 三、关于 OpenAI API OpenAI 通过两种方式提供服务:一是通过 ChatGPT 提供开箱即用的服务,直接对话即可;二是通过 OpenAI API 提供更灵活的服务,通过代码调用完成更多自动化任务。 四、学习方法 1. 了解 AI 基本概念 阅读「」部分,熟悉术语和基础概念,了解人工智能的主要分支及它们之间的联系。 浏览入门文章,了解 AI 的历史、应用和发展趋势。 2. 开始学习之旅 在「」中找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)按照自己的节奏学习,有机会获得证书。 3. 选择感兴趣的模块深入学习 AI 领域广泛,如图像、音乐、视频等,可根据兴趣选择特定模块深入学习,一定要掌握提示词技巧。 4. 实践和尝试 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。 知识库中有很多实践后的作品和文章分享,欢迎您实践后分享。 5. 体验 AI 产品 与 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人互动,了解其工作原理和交互方式,获得实际应用中的第一手体验,激发对 AI 潜力的认识。 在接下来的 20 分钟内,您可以循序渐进地完成以下任务: 1. 完成一个简单程序。 2. 完成一个爬虫应用,抓取公众号文章。 3. 完成一个 AI 应用,为公众号文章生成概述。
2024-12-19
如何快速入门AI
以下是快速入门 AI 的方法: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,如图像、音乐、视频等,可根据自身兴趣选择特定模块深入学习。 掌握提示词的技巧,其上手容易且很有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。 知识库提供了很多实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解其工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 对于不会代码的朋友,在深入学习 AI 时,若觉得编程困难,可参考以下 20 分钟上手 Python + AI 的方法: 1. 存在的问题: 许多朋友发现深入学习 AI 需要编程,变得头大。 各类教程默认会打命令行,导致入门十分困难。 2. 解决方法: 这份简明入门旨在让大家更快掌握 Python 和 AI 的相互调用。 在接下来的 20 分钟内,循序渐进完成以下任务: 完成一个简单程序。 完成一个爬虫应用,抓取公众号文章。 完成一个 AI 应用,为公众号文章生成概述。 3. 一些背景: 关于 Python:Python 就像哆拉 A 梦,拥有装满各种道具的标准库,若不够用,可通过 pip 一类的工具从 GitHub 一类的分享代码平台订购新道具,且在 AI 领域被广泛使用。 关于 OpenAI API:OpenAI 通过两种方式提供服务,其一通过 ChatGPT 提供开箱即用的服务,直接对话即可;其二通过 OpenAI API 提供更加灵活的服务,通过代码调用完成更多自动化任务。
2024-12-19
我们普通人如何入门AI
普通人入门 AI 可以参考以下步骤: 1. 了解 AI 基本概念: 建议阅读「」部分,熟悉 AI 的术语和基础概念,包括人工智能的定义、主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,能找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,还有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,可以根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出自己的作品。在知识库有很多大家实践后的作品、文章分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 另外,对于普通人直观初接触 AI,有两个方面: 1. 最低成本能直接上手试的工具是什么,自己能否试试。 2. 现在最普遍/最好的工具是什么、能达到什么效果。虽然底层都是大模型,但 AI 工具各有侧重,不同公司也有各自的优化。关于每一种工具的详细入门、讲解和应用,WayToAIG 已经分好了类目。为了更便捷展示 AI 的能力,让普通人更直观地马上上手,可以选择聊天工具、绘画工具、视频工具、音乐工具等进行体验。
2024-12-18
如何入门ai
以下是入门 AI 的一些建议: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,可根据自己的兴趣选择特定模块深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库中有很多大家实践后的作品、文章分享,欢迎您实践后也进行分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解其工作原理和交互方式。 对于不会代码的朋友,20 分钟上手 Python+AI 的方法如下: 1. 了解背景: Python 就像哆拉 A 梦,拥有标准库这个百宝袋,若不够用还可通过 pip 工具从类似 GitHub 的平台订购新道具,且在 AI 领域被广泛使用。 OpenAI 通过 ChatGPT 提供开箱即用的服务,也通过 OpenAI API 提供更灵活的代码调用服务。 2. 完成任务: 在 20 分钟内,循序渐进完成一个简单程序、一个爬虫应用抓取公众号文章、一个为公众号文章生成概述的 AI 应用。 另外,入门强化学习可参考以下内容: 明确学习目的,如以搞懂 DQN 算法作为入门目标。 可参考相关资料,如 https://github.com/ty4z2008/Qix/blob/master/dl.md 。
2024-12-18
comfyui入门
ComfyUI 是一个基于节点流程式的 stable diffusion AI 绘图工具 WebUI,可想象成集成了 stable diffusion 功能的 substance designer,将 stable diffusion 流程拆分成节点,实现更精准工作流定制和完善的可复现性。 其优势包括: 1. 对显存要求相对较低,启动和出图速度快。 2. 生成自由度更高。 3. 可以和 webui 共享环境和模型。 4. 能搭建自己的工作流程,可导出流程并分享,报错时能清晰发现错误所在。 5. 生成的图片拖进后会还原整个工作流程,模型也会选择好。 劣势有: 1. 操作门槛高,需要有清晰逻辑。 2. 生态没有 webui 多(但常用的都有),也有一些针对 Comfyui 开发的有趣插件。 官方链接:从 github 上下载作者部署好环境和依赖的整合包,按照官方文档安装即可:https://github.com/comfyanonymous/ComfyUI 。 相关学习资料: 1. ComfyUI 官方文档:提供使用手册和安装指南,适合初学者和有经验用户,网站:https://www.comfyuidoc.com/zh/ 。 2. 优设网:有详细的入门教程,适合初学者,地址:https://www.uisdc.com/comfyui3 。 3. 知乎:有用户分享部署教程和使用说明,适合有一定基础并希望进一步了解的用户,地址:https://zhuanlan.zhihu.com/p/662041596 。 4. Bilibili:有一系列涵盖从新手入门到精通各个阶段的视频教程,地址:https://www.bilibili.com/video/BV14r4y1d7r8/ 。 ComfyUI 共学 WaytoAGI 共学计划中的高频问题及自学资料: 1. 知识库跳转,展开菜单。 2. 。 3. 【海辛】因为一直被几个好朋友问 comfyui 怎么入门,给朋友录了几节 comfyui 基础课,顺手分享给大家~看完这 5 节应该就基本入门啦,然后可以看互联网上任何的进阶教程了。 安装部署: 界面介绍: 文生图、图生图: ComfyUI 中使用 ControlNet: ComfyUI 中不同放大图像方式:
2024-12-18
AI入门课程
以下是为新手提供的 AI 入门课程建议: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛(比如图像、音乐、视频等),根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,通过实践巩固知识,尝试使用各种产品做出作品。 在知识库查看大家实践后的作品、文章分享,并进行自己的分享。 5. 体验 AI 产品: 与现有的 AI 产品(如 ChatGPT、Kimi Chat、智谱、文心一言等)进行互动,了解它们的工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 此外,还有微软提供的为期 12 周、共 24 课时的 AI 初学者入门课程: 深入学习符号人工智能、神经网络、计算机视觉、自然语言处理等内容。 提升学习效果,可以亲身实践课程内容、做随堂小测试或根据课程内容开展实验。 课程覆盖 TensorFlow、PyTorch 及人工智能伦理原则。 如需了解云计算中的人工智能主题,可以考虑参加《》课程。
2024-12-17
怎么用已经公布的源代码,自己拥有一个私人ai。详细步骤让小白都能成功,并且列出硬件设施。
以下是使用已公布的源代码拥有一个私人 AI 的详细步骤,适合小白操作,并列出所需的硬件设施: 硬件设施: 云服务器 步骤: 1. 利用云服务器,在宝塔面板的终端安装相关命令。可通过以下链接获取详细信息:https://docs.dify.ai/v/zhhans/gettingstarted/installselfhosted/dockercompose 。这些命令在宝塔面板的终端安装,安装的 dockercompose 文件位于 /root/dify/docker 目录下。 2. 检查运行情况,使用 docker compose ps 命令,如果 nginx 容器无法运行,可能是 80 端口被占用。将终端输出的代码粘贴给 AI ,按照 AI 的方法检查谁占用了端口,并停止占用进程。确保每一步成功后再进行下一步,可将代码复制询问 AI 以确认。 3. 在浏览器地址栏输入公网 IP(可在腾讯云服务器或宝塔面板地址栏查看,去掉后面的:8888),随便填写邮箱密码建立一个知识库,在知识库中选择设置。 4. 选择模型,国内模型通常有免费额度,例如智谱 AI 。点击设置,从智谱 AI 获取钥匙,进入智谱官网用手机号注册,添加 API keys 并复制。查看免费额度(智谱在资源包管理中查看,赠送 500 万一个月)。 5. 回到之前的页面,复制钥匙并保存,随便创建一个应用。 6. 可以先选择智谱 glm4 进行测试,聊两句看是否有回应,然后点击发布。 7. 点击 api 秘钥,创建一个并复制。
2024-12-20
怎么用已经公布的源代码,自己拥有一个私人ai。详细步骤,并且列出硬件设施,说明jetson orin nano可以使用什么模型?
目前已公布的源代码种类繁多,要利用其拥有一个私人 AI 并非简单直接的过程,且需要一定的技术知识和经验。 一般来说,以下是大致的步骤: 1. 选择合适的源代码:根据您的需求和技术能力,从众多已公布的源代码中选择适合的项目。 2. 环境搭建:安装所需的开发工具、编程语言和相关依赖库。 3. 数据准备:收集和整理适合训练和优化模型的数据。 4. 代码理解与修改:深入理解所选源代码的结构和逻辑,根据您的需求进行必要的修改和优化。 5. 训练模型:使用准备好的数据对模型进行训练。 6. 评估与优化:对训练好的模型进行评估,根据评估结果进行进一步的优化。 关于硬件设施,Jetson Orin Nano 是一款性能不错的嵌入式计算设备。它可以支持多种模型,例如常见的深度学习模型如卷积神经网络(CNN)、循环神经网络(RNN)等。但具体能使用哪些模型,还取决于模型的规模、计算需求以及您对性能和资源的要求。
2024-12-20
计算两个文本的相识度代码实现
以下是关于计算两个文本相似度的代码实现相关内容: 在文本处理中,文本会先转为 tokens,再转为向量,然后放到计算机中运算以找出规律。在文本转为向量后,可以通过欧式距离或 cosin 角度来计算两个文本之间的相似性。例如,使用 SBERT 算法时,对于描述主体相同的情况(如屏幕相关的描述)会设为高相似性。文本统计单位“1”通常是以二级类别来衡量,比如屏幕模糊,它包括画面模糊、边缘模糊、文本模糊等细分情况。若要统计三级类别,目前多采用人工统计。同时,文本统计单位“1”是一个 clustering 概念,因为在向量空间中难以找到完全相同的两个单位,更多是距离较近的单位,所以统计通常以 clustering 计算。 另外,在初级菜鸟学 Langchain 实录中,对于文本相似度检索过程,包括读入文字、进行文字清洗、文本句子切分、文本向量化、计算相似度以及取前几的答案等步骤,详情可见 https://github.com/yuanzhoulvpi2017/DocumentSearch 。
2024-12-19
cursor好用吗?不会写代码的人可以用它来开发app吗
Cursor 是一款很好用的工具,具有以下优点: 1. 它是对话式的编程工具,集代码编写、报错调试、运行于一体,可在一个页面里丝滑实现,且以对话方式进行,能消除学习代码的恐惧感。 2. 让小白可以无压力入门代码,解决实际问题,也能提高专业程序员的效率。 3. 基于 VS code 开发,是目前使用体验最好的 AI coding IDE,不具备代码能力的人通过自然语言描述能快速开发一些项目。 4. 继承了 vscode 的强大功能和用户界面,几乎一模一样,还深度集成了 gpt 等大模型,无缝融入了包括 IntelliJ IDEA、Visual Studio Code 和 GitHub 在内的主流开发环境和代码库中。 5. 体量小,启动快,编程效率高。 然而,Cursor 也有一些局限性: 1. 比较适合简单、原型类的项目,当应用比较复杂和商业化时,会比较困难,需要考虑长期维护、用户场景和稳定性等因素。 2. 代码编写只是开发中的一环,程序员的工作还包括需求评估沟通、架构设计、调试部署等多个模块,而且大语言模型面对复杂项目可能面临改好一个 bug,产生一个新 bug 的情况。 总的来说,对于不会写代码的人,Cursor 可以帮助他们入门和开发一些简单的项目,但不能完全替代专业程序员。目前 Cursor 新账号有 2 周 pro 体验,成本为 0,值得一试。它支持多种语言,如 python、java、C等,在国内可以直接使用,还提供了 3 种订阅模式。
2024-12-16
哪个ai可以帮我写Excel代码
以下是一些可以帮助您写 Excel 代码的 AI 工具: 1. ChatGPT:您可以直接向它提问,它能为您生成相关代码。例如,对于批量处理每月周报的操作,如 30 个文件合并、标准化和删除无效数据等,您可以向 ChatGPT 寻求帮助。而且在询问过程中,它甚至能补充如何用快捷键打开 Excel 开发模式等信息。 2. Excel Labs:这是一个 Excel 插件,新增了基于 OpenAI 技术的生成式 AI 功能,可在 Excel 中直接利用 AI 进行数据分析和决策支持。 3. Microsoft 365 Copilot:微软推出的 AI 工具,整合了 Word、Excel、PowerPoint、Outlook、Teams 等办公软件。用户通过聊天形式告知需求,Copilot 会自动完成数据分析或格式创建等任务。 4. Formula Bot:提供数据分析聊天机器人和公式生成器两大功能,用户能通过自然语言交互式地进行数据分析和生成 Excel 公式。 5. Numerous AI:支持 Excel 和 Google Sheets 的 AI 插件,除公式生成外,还能根据提示生成相关文本内容、执行情感分析、语言翻译等任务。 随着技术发展,未来可能会有更多 AI 功能集成到 Excel 中,进一步提高工作效率和数据处理的智能化水平。但请注意,内容由 AI 大模型生成,请仔细甄别。
2024-12-15
无代码生成App
以下是一些无代码生成 App 的相关信息: 在 ProductHunt 2023 年度最佳产品榜单的无代码工具类别中: Bento(免费)是一个链接合集页面,内容丰富设计美观,能美化展示所有内容和链接,展示个性和品味。Linktree 在年底收购了 Bento。 PlyBeta 可使用无代码方式在 APP 中构建内部功能,适用于众多应用程序,为团队提供动力。 Dora AI 能用一次 prompt 生成网站,支持文字转网站、生成式 3D 互动、高级 AI 动画。 Albato 3.0(免费可用)能通过直观的构建器将应用程序集成到自动化工作流中。 Coze 是字节跳动推出的一站式 AI 开发平台,支持无代码生成 AIAgent,能简化 AI 开发过程,让用户无需编写代码创建、管理和部署 AI 工具。它有国内版和国际版,提供多样化模型选择和丰富的插件能力,还具备自动构建、定制 Prompt 等功能,其插件系统和记忆库功能强大。 GPTPilot 作为 AI 开发者伴侣,在代码生成质量不断完善的基础上结合图片理解和文档内容理解可实现无代码开发项目。它能自动编写代码、配置开发环境等,开发者可在一旁监督开发过程,还能通过交互式开发明确需求。
2024-12-14